


PRAISE	FOR
PRACTICAL	JULIA

“As	a	career	computational	physicist	and	early	participant	in	the	Julia
community,	Lee	has	had	a	front	row	seat	to	the	development	of	the	Julia
ecosystem.	He	has	written	numerous	technical	articles	on	Julia,	and	has	a
great	skill	in	explaining	complex	topics	in	a	simple	way.	This	book	is	a	great
starting	point	for	the	reader’s	journey	into	Julia—with	the	first	part	covering
the	fundamentals	of	the	language	and	second	part	diving	into	a	variety	of
different	scientific	disciplines.”

—VIRAL	SHAH,	CO-CREATOR	OF	THE	JULIA	PROGRAMMING	LANGUAGE	AND	CEO	OF
JULIAHUB

“This	is	a	nice	deep	dive	which	covers	a	lot	of	ground,	from	the	basics	on
how	to	define	arrays	and	use	the	type	system	all	the	way	to	biochemical
modeling	and	scientific	machine	learning.	Lee	gives	a	very	nice	in-depth
treatment,	showing	not	only	the	most	standard	ways	to	do	things,	but	also
some	different	library	options	along	with	a	good	explanation	of	the	pros	and
cons	to	the	choices.	I	think	this	is	a	great	book	for	any	Julia	user’s	shelf.”

—CHRISTOPHER	RACKAUCKAS,	RESEARCH	AFFILIATE	AND	CO-PI	OF	THE	JULIA	LAB,
DIRECTOR	OF	MODELING	AND	SIMULATION	AT	JULIA	COMPUTING,	AND	APPLIED

MATHEMATICS	INSTRUCTOR	AT	MIT



PRACTICAL	JULIA

A	Hands-On	Introduction	for	Scientific	Minds

by	Lee	Phillips

San	Francisco



PRACTICAL	JULIA.	Copyright	©	2024	by	Lee	Phillips.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or
retrieval	system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

First	printing

27	26	25	24	23									1	2	3	4	5

ISBN-13:	978-1-7185-0276-5	(print)
ISBN-13:	978-1-7185-0277-2	(ebook)

Publisher:	William	Pollock
Managing	Editor:	Jill	Franklin
Production	Manager:	Sabrina	Plomitallo-González
Production	Editor:	Miles	Bond
Developmental	Editor:	Jill	Franklin
Cover	Illustrator:	Gina	Redman
Interior	Design:	Octopod	Studios
Technical	Reviewer:	James	Foster
Copyeditor:	George	Hale
Proofreader:	Audrey	Doyle

For	information	on	distribution,	bulk	sales,	corporate	sales,	or	translations,	please	contact	No	Starch

Press®	directly	at	info@nostarch.com	or:

No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900
www.nostarch.com

Library	of	Congress	Control	Number:	2023016515

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.
Other	product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective
owners.	Rather	than	use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	we	are
using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no
intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every
precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.
shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to
be	caused	directly	or	indirectly	by	the	information	contained	in	it.

mailto:info@nostarch.com
http://www.nostarch.com


To	Gianna	and	Maxwell



About	the	Author
Lee	Phillips	was	a	theoretical	and	computational	physicist	at	the	Naval
Research	Laboratory	for	21	years.	He	has	presented	his	research	in
numerous	scientific	papers	and	at	international	conferences.	He	has	also
written	many	popular	articles	on	science	and	its	history,	and	on	the	use	of
computers	in	research.	He’s	involved	with	science	education	and	outreach,
including	serving	on	the	Board	of	Directors	of	the	Friends	of	Arlington’s
Planetarium	and	maintaining	their	website.



About	the	Technical	Reviewer
James	Foster	is	an	applied	mathematician	with	a	doctorate	in	mathematical
optimization,	specializing	in	the	modeling	and	optimal	planning	of	energy
systems.	He	has	worked	across	industry	and	government,	and	taught	both
pure	and	applied	mathematics	courses	at	the	university	level.	An	enthusiastic
contributor	to	the	open	source	community,	he	is	particularly	involved	in	the
development	of	the	JuMP	modeling	language	for	optimization	in	Julia.	He
also	serves	as	a	Carpentries	instructor	and	lesson	maintainer,	teaching
foundational	computational	skills	to	researchers.



BRIEF	CONTENTS

Acknowledgments

Introduction

PART	I:	LEARNING	JULIA

Chapter	1:	Getting	Started

Chapter	2:	Language	Basics

Chapter	3:	Modules	and	Packages

Chapter	4:	The	Plotting	System

Chapter	5:	Collections

Chapter	6:	Functions,	Metaprogramming,	and	Errors

Chapter	7:	Diagrams	and	Animations

Chapter	8:	The	Type	System

PART	II:	APPLICATIONS

Chapter	9:	Physics

Chapter	10:	Statistics

Chapter	11:	Biology

Chapter	12:	Mathematics

Chapter	13:	Scientific	Machine	Learning

Chapter	14:	Signal	and	Image	Processing

Chapter	15:	Parallel	Processing

Index



CONTENTS	IN	DETAIL

ACKNOWLEDGMENTS

INTRODUCTION
Why	Is	Julia	Popular	with	Scientists?
What	Will	This	Book	Do	for	You?
How	to	Use	This	Book
Book	Overview

PART	I
LEARNING	JULIA

1
GETTING	STARTED
Installation	Guide

Hardware	Requirements
Prerequisites
Julia	Versions
Installation
Privacy	Note

The	Julia	Coding	Environment
The	Julia	REPL
Text	Editors
Jupyter	Notebooks
Pluto:	A	Better	Notebook
Integrated	Development	Environments

Recommendations

2
LANGUAGE	BASICS



The	Syntax:	Data	Types,	Expressions,	and	Blocks
Types	of	Numbers
Operations	and	Expressions
Logic
Looping:	while	Blocks
if	Blocks

Arrays
Ranges

Arrays:	Beyond	the	First	Dimension
Tuples
Membership

Strings	and	Characters
Characters
Strings

More	Looping:	for	Blocks
Functions

Composing	Functions
Creating	Anonymous	Functions
Broadcasting

Scope
Scoping	Rules	for	Functions
Scoping	Rules	for	Loops
Modification	of	Scoping	Rules	in	Interactive	Contexts

Mutability
Functions	That	Mutate	Their	Arguments
Strings	Are	Immutable

Comments	in	Code
Congratulations

3
MODULES	AND	PACKAGES
Modules

Understanding	Namespaces
Using	Installed	Modules



Selective	Importing	and	Renaming
Creating	Modules
Documenting	Functions	with	Docstrings

The	Package	System
How	to	Add	and	Remove	Packages
The	Load	Path
The	Nature	of	a	Package
The	Benefits	of	Packages
How	to	Create	Packages
Julia	and	Git
The	Relationship	Between	Package	Versions	and	Git	Commits
Version	Updating	and	Pinning
How	to	Find	Public	Packages

Conclusion

4
THE	PLOTTING	SYSTEM
Plots
The	Backend	System
Modes	of	Interaction	with	Plots
2D	Plots

Plotting	from	Vectors
Plotting	Functions
Plotting	Vectors	of	Vectors	or	Functions
Displaying	and	Mutating
Creating	Parametric	Plots
Making	Polar	Plots
Making	Scatterplots

Optional	and	Keyword	Arguments
Basic	Plot	Settings

Font	Attributes
The	Frame	Styles

Working	with	Plot	Settings
Aspect	Ratio	and	Title	Font	Size



Labels	and	Legend	Positioning
LaTeX	Titles	and	Label	Positioning	by	Data
Regression	Lines

Saving	Plots
Detail	Insets
3D	Plots

Surface	Plots
Heatmaps
Contour	Plots
3D	Parametric	Plots
Vector	Plots
3D	Scatterplots

Useful	Backends
UnicodePlots
PyPlot
PlotlyJS
PGFPlots	and	PGFPlotsX
HDF5
Gaston

Layouts
Making	Simple	Rectangular	Layouts
Using	grid()
Creating	Complex	Layouts	Using	@layout

Conclusion

5
COLLECTIONS
Controlling	Loop	Execution

The	break	Statement
The	continue	Statement

Comprehensions	and	Generators
More	Ways	to	Join	Strings
Nonstandard	String	Literals

Raw	Strings



Semantic	Version	Strings
Byte	Array	Literals

String	Searching	and	Replacing
String	Interpolation
Additional	Collection	Types

Dictionaries
Sets
Structs
Named	Tuples

Initializing	Arrays	with	Functions
The	repeat()	Function
The	fill()	Function
Mutability	with	the	fill()	and	repeat()	Functions
The	zeros()	and	ones()	Functions
The	reshape()	Function

Array	Manipulations	Useful	in	Numerical	Algorithms
General	Concatenation
Logical	Indexing
Adjoints	and	Transposes
Matrix	Multiplication

Enumeration	and	Zipping
The	enumerate()	Function
The	pairs()	Function
The	zip()	Function

Conclusion

6
FUNCTIONS,	METAPROGRAMMING,	AND	ERRORS
Functions	and	Their	Arguments

Concise	Syntax	for	Keyword	Arguments
The	Splat	and	Slurp	Operators
Destructuring
Operators	Are	Functions	Too
The	Mapping,	Filtering,	and	Reduction	Operators



do	Blocks
Symbols	and	Metaprogramming

Expression	Objects
Expression	Object	Interpolation

Macros
How	to	Create	Macros
Useful	Macros

Error	Handling
Types	of	Errors
The	Call	Stack
try...catch	Blocks
Using	throw()
The	finally	Clause

Conclusion

7
DIAGRAMS	AND	ANIMATIONS
Diagramming	with	Luxor
The	Graphs	Package

The	Adjacency	Matrix
Factor	Trees

Animations	with	Javis
Closures
Epicycle	Animation

Animations	with	Reel
Interactive	Visualizations	in	Pluto
Conclusion

8
THE	TYPE	SYSTEM
Types	in	Practice

“Big”	and	Irrational	Types
Type	Promotion
Collections



The	Type	Hierarchy
Type	Assertions	and	Declarations

Functions	and	Methods:	Multiple	Dispatch
Creating	Multiple	Methods
Extending	Built-in	Functions	with	New	Methods
Understanding	Union	Types	and	the	<:	Operator

User-Defined	Types
Creating	Abstract	Types
Creating	Composite	Types
Using	Composite	Types
Defining	structs	with	Base.@kwdef

Performance	Tips
Vanquish	Type	Instability
Avoid	Changing	the	Types	of	Variables

Type	Aliases
Parametric	Types
Plot	Recipes

The	Plotting	Pipeline
The	Series	Recipe
The	Plot	Recipe
Type	Recipes
User	Recipes
The	@userplot	Macro

Conclusion

PART	II
APPLICATIONS

9
PHYSICS
Bringing	Physical	Units	into	the	Computer	with	Unitful

Using	Unitful	Types
Stripping	and	Converting	Units
Typesetting	Units



Plotting	with	Units
Making	Plots	for	Publication

Error	Propagation	with	Measurements
Fluid	Dynamics	with	Oceananigans

The	Physical	System
The	Grid
The	Boundary	Conditions
The	Diffusivities
The	Equation	of	State
The	Model	and	Initial	Conditions
The	Simulation
The	Results

Solving	Differential	Equations	with	DifferentialEquations
Defining	the	Physics	Problem	and	Its	Differential	Equation
Setting	Up	the	Problem
Solving	the	Equation	System
Examining	the	Solutions
Defining	Time-Dependent	Parameters
Parametric	Instability
Combining	DifferentialEquations	with	Measurements

Conclusion

10
STATISTICS
Probability
Random	Numbers	in	Julia
The	Monty	Hall	Problem
Counting

Factorials
Binomial	Coefficients

Modeling	a	Pandemic
Common	Statistics	Functions
Distributions

The	Normal	Distribution



Probability	Density	Functions
Dealing	with	Data

Missing	Values
CSV	Files
Dataframes

Multivariate	Data
Other	Packages

JuliaDB	for	Out	of	Core	Datasets
RCall	for	Interacting	with	R
P-hacking

Conclusion

11
BIOLOGY
The	Julia	Biology	Ecosystem
Simulating	Evolution	with	Agent-Based	Modeling
Overview	of	the	Simulation	Problem
The	Predator	and	Prey	Agents

Constants	Defining	Model	Behavior
Utility	Functions
Model	Initialization

Functions	to	Extract	Information	from	the	Model
Stepping	Through	the	Simulation
Running	the	Simulation
Visualizing	System	Behavior

Analyzing	the	Results
Conclusion

12
MATHEMATICS
Symbolic	Mathematics

Numerical-Symbolic	Modeling	with	Symbolics
Math	Manipulation	with	SymPy	and	Pluto

Linear	Algebra



Views
Linear	Algebra	Examples
The	LinearAlgebra	Package
Specialized	Matrix	Types
Equation	Solving	and	factorize()

Conclusion

13
SCIENTIFIC	MACHINE	LEARNING
Automatic	Differentiation	in	a	Physics	Problem

Differentiating	with	ForwardDiff
Calculating	Forces	from	Potentials

Probabilistic	Programming
Testing	for	Fairness	of	a	Coin
Inferring	Model	Parameters	from	Series	Observations

Conclusion

14
SIGNAL	AND	IMAGE	PROCESSING
Signals	in	Time

Exploring	a	Sound	Sample
Analyzing	Frequencies
Filtering

Image	Processing
Loading	and	Converting	Images
Counting	Cells	Using	an	Area	Fraction
Counting	Cells	by	Recognizing	Features
Applying	Advanced	Array	Concepts

Conclusion

15
PARALLEL	PROCESSING
Concurrency	Paradigms
Multithreading



Easy	Multithreading	with	Folds
Manual	Multithreading	with	@threads
Spawning	and	Synchronizing	Tasks

Multiprocessing
Easy	Multiprocessing	with	pmap
Networking	with	Machine	Files
Going	Manual	with	@spawnat
Multiprocessing	Threads	with	@distributed

Summary	of	Concurrency	in	Julia
Conclusion

INDEX



ACKNOWLEDGMENTS

This	book	obviously	could	not	exist	without	Julia,	and	for	Julia,	I’m	grateful
to	its	creators,	Jeff	Bezanson,	Stefan	Karpinski,	Viral	B.	Shah,	and	Alan
Edelman.	Their	vision	for	a	new	language	for	scientific	computing	must
have	seemed	wildly	ambitious	at	the	time,	but	a	decade	later	it	has	more	than
delivered	on	all	its	promises.

Thanks	to	the	hundreds	of	developers	and	maintainers	of	Julia’s	packages
for	science,	mathematics,	and	graphics.	The	word	ecosystem	is	certainly
overused,	but	Julia’s	composability	eases	the	formation	of	symbiotic
combinations	that	place	unprecedented,	expressive	power	at	the	numericist’s
fingertips.

Thanks	to	my	children,	Gianna	and	Maxwell,	to	whom	this	volume	is
dedicated,	for	suffusing	my	long	nights	of	research	and	writing	with	a
sustaining	glow	of	pride.

To	my	fellow	physicist,	author,	and	man-about-town	Kevin	Jensen,	your
willingness	to	share	a	three-hour	cup	of	coffee	whenever	our	coordinates
happen	to	intersect,	your	constant	friendship,	lively	interest	in	my	projects,
and	bottomless	well	of	tolerance	added	more	leavening	to	my	toils	than	you
suspect.	And	to	Janet,	for	graciously	suffering	the	combined	effect	of	both	of
us	in	her	house	at	the	same	time.

Karina	Mejía,	I’ve	never	known	anyone	both	so	kind	and	so	unwilling	to
take	a	single	molecule	of	crap	from	anyone.	You	never	stop	challenging	me
nor	infecting	me	with	your	certitude	that	the	success	of	my	endeavors	is	as
inevitable	as	the	next	astonishing	Tegucigalpa	sunset.	I	am	sincerely	grateful
to	both	you	and	Kevin	for	getting	my	jokes.

My	teacher	and	friend	Monica	Toro	helped	me	punctuate	the	completion
of	writing	with	a	magical	vacation	in	Medellín.	I’ll	never	forget	her
hospitality	and	companionship.	She	also	forced	me	to	describe	this	book	in
Spanish	during	our	lessons.

My	editor	at	No	Starch	Press,	Jill	Franklin,	is	responsible	for	putting	the
publisher	and	me	together.	Although	we	don’t	always	agree	on	the	minutiae
of	punctuation,	her	devotion	to	detail	and	clarity	made	this	a	better	book.
And	that’s	not	always	an	easy	thing	for	an	author,	by	nature	a	member	of	a



species	with	an	overdeveloped	ego,	to	admit.
Dr.	James	Foster	contributed	the	benefit	of	his	experience	and	expertise

to	provide	a	superb	technical	review,	improving	both	the	code	and	the
exposition	in	countless	instances.	I	was	lucky	to	have	him	looking	over	my
shoulder.

Despite	the	vigilant	attention	of	the	two	aforementioned	guardians	of
quality,	we	all	know	that	errors	are	inevitable.	Any	dropped	balls	that	remain
on	the	ground	are	entirely	my	responsibility,	although	the	sun	was	in	my
eyes.

Thanks	to	Bill	Pollock	for	creating	and	maintaining	a	commodious	home
for	such	an	excellent	library	of	books,	and	for	inviting	me	in.	I’m	proud	to	be
part	of	the	family.

For	their	comradeship,	hospitality,	and	occasional	reminders	to	get	back
to	work	by	innocently	asking,	“How’s	that	book	going?”	during	the	gestation
period,	I	am	grateful	to	my	sisters,	Melicia	and	Meredith,	and	their	families,
and	my	friends	Patricia	Munguía,	Mileisha	Zelaya,	and	Juán	Calderon.

Thanks	to	David	Harutunian	for	the	tour,	from	which	I	used	one
photograph	herein,	and	Wayne	Large	for	permission	to	use	his
photomicrograph.

I	am	indebted	to	the	editors	of	various	publications,	especially	Jake	Edge
of	LWN	and	Nathan	Mattise	at	Ars	Technica,	for	working	with	me	over	the
past	several	years	to	help	refine	my	approaches	to	writing	about	Julia.

I	depend	entirely	on	open	source	software	for	all	my	research,	computing,
and	document	preparation.	Aside	from	Julia	itself,	the	tools	in	my	workshop
that	I	use	throughout	each	day	are	Linux	and	the	GNU	userspace,	Vim	(and
Neovim),	ImageMagick,	TeX	and	LaTeX	and	the	associated	ecosystem,
Pandoc,	Mutt,	Git,	Rsync,	Zsh,	and	OpenSSH.

And	to	all	those	for	having	forgotten	to	mention	I	am	smacking	my	head
about	now,	I’ll	make	it	up	to	you.



INTRODUCTION

I	often	feel	that	the	American	programmer	would	profit	more	from
learning,	say,	Latin	than	from	learning	yet	another	programming

language.
—Edsger	Dijkstra

Julia	is	a	fairly	new	programming	language.	It	emerged	into	the	public
sphere	in	2012	after	two	and	a	half	years	of	research	by	four	computer
scientists	at	MIT.	Julia’s	creators	explained	why	they	needed	to	create	a	new
language:	they	were	“greedy.”

There	were	already	languages	that	were	fast,	such	as	C	and	Fortran.	They
were	well	suited	to	writing	programs	that	ran	on	giant	supercomputers	to
simulate	the	weather	or	design	airplanes.	But	their	syntax	was	not	the
friendliest;	programs	in	these	languages	demanded	a	certain	amount	of
ceremony.	And	they	didn’t	provide	an	interactive	experience;	one	could	not
improvise	and	explore	at	the	terminal,	but	had	to	submit	to	an	edit-compile-
run	discipline.

Other	languages	existed	that	dispensed	with	ceremony	and	that	one	could
use	as	interactive	calculators,	such	as	Python	and	MATLAB.	However,
programs	written	in	these	languages	were	slow.	Also,	such	languages	often
were	not	well	suited	to	keeping	large	programs	organized.

Julia’s	creators	were	greedy	because	they	wanted	it	all:	a	language	that
was	as	easy	to	use	as	Python	but	was	also	as	fast	as	Fortran.	The	solutions



that	people	bolted	on	to	Python	(for	example)	to	make	it	faster	often
involved	rewriting	the	time-consuming	parts	of	their	programs	in	a	faster
language,	such	as	C.	The	resulting	chimera	meant	maintaining	code	in	two
languages,	with	the	resulting	organizational,	personnel,	and	mental	overhead
issues.	This	is	called	the	“two	language	problem,”	and	one	of	the	motivations
behind	Julia	was	to	eliminate	it.

Julia	is	now	widely	acclaimed	as	a	real	solution	to	the	two-language
problem.	In	fact,	it’s	one	of	only	three	languages	that	belong	to	the	“petaflop
club,”	reaching	the	very	top	rank	of	performance	on	giant	number-
crunching	problems	(the	other	two	are	Fortran	and	C++).	Uniquely,	Julia
combines	this	high	level	of	performance	with	the	ability	to	serve	as	an
interactive	calculator,	whether	with	its	highly	polished	read-eval-print	loop
(REPL),	in	development	environments	of	various	kinds,	or	in	browser-based
notebooks.

For	those	who	have	worked	with	Python,	Octave,	MATLAB,	JavaScript
using	Node,	or	other	REPL-based	language	systems,	the	Julia	experience
will	be	familiar.	You	can	simply	type	julia	in	a	terminal,	and	you’ll	see	a	brief
startup	message	and	a	welcoming	interactive	prompt.	Now	you	can	type
expressions	and	get	immediate	results	printed	back	out	on	the	terminal.	You
can	define	variables	and	functions,	operate	on	arrays,	import	libraries	of
functions,	read	data	from	the	disk	or	the	network,	and	generally	use	the
language	as	a	sophisticated	calculator.	You	never	have	to	declare	the	types	of
variables	nor	spin	any	other	boilerplate	that	comes	between	you	and	your
work.

Those	are	the	similarities	to	other	interpreted	languages.	You’ll	also
encounter	some	differences.	You	might	notice	occasional	delays	of	a	few
seconds	that	usually	don’t	occur	with	languages	like	Python.	This	happens
because	Julia	isn’t	really	an	interpreted	language,	but	it	is	doing	both	pre-
compilation	of	code	and	just-in-time	(JIT)	compilation	behind	the	scenes.

As	you’ll	discover,	this	trade-off	is	worthwhile	when	your	calculations	get
big.	Your	experience	with	other	interactive	languages	may	cause	you	to
expect	things	to	grind	to	a	halt,	but	you	will	find,	instead,	that	your	code	will
execute	with	the	speed	of	a	compiled	language	like	Fortran.

As	you	explore	further,	you’ll	discover	that	Julia	is	not	like	other
languages	you	may	be	familiar	with.	At	first,	it	seems	superficially	the	same.
You	can	type	1 + 1	and	get	2	back.	But	you’ll	learn	that	Julia	is	neither	object



oriented	like	Python,	nor	traditionally	functional	like	Haskell,	nor	is	it	like
whatever	JavaScript	is.	The	language	is	organized	around	a	different
principle,	and	that’s	the	source	of	much	of	its	power.

Why	Is	Julia	Popular	with	Scientists?
Julia	is	organized	around	something	called	multiple	dispatch,	which	is
enabled	by	a	powerful	and	flexible	type	system.	Later,	you’ll	learn	more
about	what	these	things	mean	and	how	to	take	advantage	of	them	in	your
programs.	For	now,	file	this	idea	away	for	future	reference:	the	multiple
dispatch	system	is	as	important	a	reason	as	Julia’s	famous	interactivity	and
speed	for	its	success	in	the	scientific	world.	While	Julia	is	not	the	first
language	to	incorporate	this	feature,	it’s	the	first	one	to	combine	it	with	the
other	virtues	that	make	it	genuinely	useful	for	the	research	community.

It	is	this	design	feature	that	enables	an	unprecedented	level	and	ease	of
code	reuse	and	recombination.	This,	as	much	as	any	benchmark,	is	what
delights	the	researchers	who	have	adopted	Julia	as	their	computational	tool.
Julia	is	taking	off	with	scientists	largely	because	it	allows	them	to	use	each
other’s	code	and	recombine	libraries	to	create	new	functionalities	in	ways
not	envisioned	by	the	library’s	authors.	You’ll	see	many	examples	of	this	in
later	chapters,	especially	in	Part	II.	You’ll	also	see	how	the	type	system	and
Julia’s	metaprogramming	abilities	allow	you	to	bend	the	language	to	fit	your
problem	perfectly,	with	no	compromise	in	performance.

What	Will	This	Book	Do	for	You?
After	reading	Part	I,	and	whatever	interests	you	in	Part	II,	you’ll	be	able	to
take	full	advantage	of	Julia	to	solve	any	computational	problem	that
confronts	you.	You	will	know	how	to	explore	and	visualize	data,	solve
equations,	write	simulations,	and	use	and	create	libraries.	The	emphasis	here
is	on	applying	Julia	to	research	problems.	The	approach	is	direct	and
practical,	with	a	minimum	of	theoretical	computer	science.	I’ll	teach	you
how	to	write	efficient	code	that	runs	on	a	laptop	or	on	large	distributed
systems.	Whether	your	interest	is	in	scientific	research,	mathematics,
statistics,	or	just	fun,	you’ll	learn	how	to	make	intelligent	use	of	this	tool	and
how	to	enjoy	doing	so.



This	book	starts	at	the	beginning,	assuming	that	you	have	never	touched
Julia.	I	don’t	assume	any	particular	knowledge	of	numerical	methods	or
computational	techniques,	explaining	everything	of	this	sort	as	needed.	I
assume	only	that	you’ve	had	some	contact	with	basic	programming	concepts.
In	other	words,	when	I	describe	how	to	write	an	if	statement	in	Julia,	I’ll
expect	that	you’re	familiar,	in	a	general	sense,	with	the	concept	of	using
conditions.

How	to	Use	This	Book
The	material	in	Part	I	builds	sequentially,	so,	ideally,	you’ll	read	those
chapters	in	order.	The	chapters	in	Part	II,	by	contrast,	depend	only	on	the
material	in	Part	I,	not	on	each	other.	You	can	successfully	read	the	biology
chapter	without	looking	at	the	physics	chapter.	Of	course,	I	encourage
everyone	to	read	every	chapter!	Here’s	why:	some	particular	techniques	are
developed	in	application	chapters	in	which	they	are	most	likely	to	be
relevant.	However,	due	to	the	nature	of	scientific	research,	any	bit	of
computational	knowledge	can	potentially	find	application	in	any	discipline.
For	example,	a	biologist	may	find	the	material	in	the	physics	chapter	about
differential	equation	solvers	to	be	useful	in	modeling	population	dynamics.
Since	the	chapters	in	Part	II	are	not	in	any	particular	order,	however,	it	will
probably	be	most	natural	to	read	the	chapter	of	immediate	interest	to	you
first,	and	return	to	the	others	at	your	leisure.

The	book	has	an	extensive	index,	which	should	make	it	easy	to	root	out
any	subject,	no	matter	where	it	is	hiding.

In	order	to	get	the	most	out	of	a	book	such	as	this,	read	it	with	a	Julia
prompt	open,	so	you	can	try	things	out	as	you	encounter	them	in	the	text.
The	hands-on	approach	cements	ideas	far	more	effectively	than	simply
reading.	As	you	follow	along,	you’ll	find	that	you	want	to	try	out	variations
of	my	sample	code	and	learn	how	the	language	behaves	through	trial	and
error.	You	won’t	break	anything.	If	you	get	into	a	weird	state	that	you	don’t
know	how	to	fix,	you	can	simply	exit	the	REPL	and	start	it	up	again.	In
addition,	the	Julia	REPL	has	a	well-implemented	documentation	mode,
where	you	can	access	all	the	gruesome	details	about	any	particular	function
to	supplement	what’s	in	the	text.

This	book	has	a	companion	website	at	https://julia.lee-phillips.org	where

https://julia.lee-phillips.org


you	can	find	runnable	versions	of	all	the	major	code	listings	in	the	text,
datafiles	used	by	the	programs,	color	versions	of	the	illustrations,	example
animations,	and	videos	of	simulations.

Book	Overview
In	Part	I,	after	the	preliminaries	dealing	with	installation	and	the	coding
environment,	we	focus	on	learning	Julia:	the	syntax,	data	types,	concepts,
and	best	practices.	This	part	also	contains	chapters	about	the	module	and
package	system	and	visualization.

Chapter	1:	Getting	Started	Introduces	the	hardware	and	experience
needed	for	running	Julia	and	benefiting	from	this	book,	and	provides	a
guide	to	installation	on	various	operating	systems.	We	also	review	the
most	common	coding	environments	and	end	with	some
recommendations.

Chapter	2:	Language	Basics	Provides	an	introduction	to	the	concepts,
syntax,	and	data	types	of	Julia	that	will	equip	you	with	a	solid,	basic
understanding	of	the	language.

Chapter	3:	Modules	and	Packages	Describes	how	to	organize	your
Julia	programs,	how	to	incorporate	code	from	others	into	your	work,
and	how	you	can	be	a	part	of	the	Julia	community.

Chapter	4:	The	Plotting	System	Concentrates	on	Julia’s	powerful
Plots	package.	You’ll	learn	how	to	make	and	customize	every	common
type	of	2D	and	3D	plot	and	how	to	create	interactive	graphics	and
finished	illustrations	for	publication.

Chapter	5:	Collections	Introduces	data	types	such	as	sets,	strings,
arrays,	dictionaries,	structs,	and	tuples.	This	chapter	covers
comprehensions	and	generators,	operators	over	collections,	array
initialization	and	manipulation,	and	Julia’s	various	types	of	strings.

Chapter	6:	Functions,	Metaprogramming,	and	Errors	Delves
further	into	functions,	treating	different	ways	to	define	and	supply
arguments,	and	higher-order	functions.	It	includes	an	introduction	to
metaprogramming,	involving	the	use	of	symbols,	expression	objects,
and	macros	to	write	code	that	manipulates	code.



Chapter	7:	Diagrams	and	Animations	Shows	how	to	use	a	flexible
and	powerful	package	for	mathematical	and	other	diagrams,	and	a	more
specialized	tool	for	drawing	node-and-edge	graphs.	We’ll	explore	two
packages	providing	different	approaches	for	creating	animations,	and
we’ll	use	several	of	these	packages	in	later	chapters	to	create	illustrations
and	videos.

Chapter	8:	The	Type	System	Covers	more	details	about	Julia’s
different	kinds	of	numbers	and	other	objects,	the	type	hierarchy,	type
assertions	and	declarations,	and	how	to	create	our	own	types.	It	explains
how	to	use	the	type	system	in	concert	with	multiple	dispatch	to
organize	our	programs	and	the	connection	between	types	and
performance.	In	addition,	a	section	on	plotting	recipes	reveals	the
unique	power	of	Julia’s	plotting	system.

Part	II	contains	chapters	devoted	to	particular	fields	of	research,	plus	a
final	chapter	on	parallel	processing.	Each	chapter	uses	one	or	more
specialized	packages	widely	used	in	an	area	of	application,	and	tackles	at	least
one	interesting	problem	in	its	specialty.

Chapter	9:	Physics	Shows	how	to	enrich	numbers	with	units	and
uncertainties,	a	subject	of	potential	interest	to	scientists	in	many	fields.
A	detailed	example	of	thermal	convection	demonstrates	how	to	use	a
powerful	fluid	dynamics	package.	The	chapter	ends	with	an
introduction	to	a	state-of-the-art	package	for	solving	differential
equations.

Chapter	10:	Statistics	Discusses	concepts	in	statistics	and	probability
theory,	such	as	distributions,	and	relates	them	to	functions	and	types
provided	by	relevant	Julia	packages.	It	applies	these	ideas	to	the
simulation	of	the	spread	of	an	infection,	and	it	introduces	dataframes	by
slicing	and	dicing	real	data	about	COVID	cases.

Chapter	11:	Biology	Explores	agent-based	modeling	and	shows	how	to
use	Julia’s	Agents	package	to	simulate	the	evolution	of	creatures	who
learn	how	to	avoid	being	captured	by	predators.	It	builds	on	some	ideas
from	the	statistics	chapter	to	analyze	the	results.

Chapter	12:	Mathematics	Focuses	on	symbolic	mathematics
(computer	algebra)	and	linear	algebra.	It	describes	two	main	approaches
to	the	first	topic,	including	hybrid	numerical-symbolic	techniques.	It



covers	the	basic	use	of	linear	algebra	packages	to	solve	equations	and
efficiently	perform	matrix	operations	by	taking	advantage	of	the	type
system.

Chapter	13:	Scientific	Machine	Learning	Explores	concepts	and
techniques	in	a	relatively	new	area	that	exploits	ideas	from	machine
learning	to	infer	properties	of	models.	It	shows	how	to	use	automatic
differentiation	in	several	contexts,	and	introduces	probabilistic
programming	through	Julia’s	Turing	package.

Chapter	14:	Signal	and	Image	Processing	Focuses	on	signals	and
images.	The	signal	section	covers	Fourier	analysis,	filtering,	and	related
topics,	using	a	bird	call	as	the	working	example.	The	image	section	uses
feature	recognition	in	the	problem	of	counting	blood	cells	and	examines
several	techniques	for	image	resizing,	smoothing,	and	other
manipulations.	In	this	context	it	delves	further	into	advanced	array
concepts.

Chapter	15:	Parallel	Processing	Explains	how	to	run	our	programs
on	more	than	one	CPU	core	or	computer.	The	chapter	discusses	the
different	concurrency	paradigms	and	how	to	take	advantage	of
multithreading	and	multiprocessing.	We’ll	see	how	to	run	our	programs
on	a	network	with	machines	all	over	the	world,	with	no	change	to	the
code.

FURTHER	READING

For	details	on	the	inspiration	for	the	Julia	language,	see	“Why	We
Created	Julia”:	https://julialang.org/blog/2012/02/why-we-created-
julia/.
My	article	in	Ars	Technica,	“The	Unreasonable	Effectiveness	of
the	Julia	Programming	Language,”	explains	the	underlying
reasons	for	Julia’s	wide	adoption	among	scientists:
https://arstechnica.com/science/2020/10/the-unreasonable-effectiveness-
of-the-julia-programming-language/.
If	you’re	a	Python	programmer	and	want	a	very	brief	rundown	of
the	differences	in	syntax,	see	“Julia	for	Python	Programmers”	by

https://julialang.org/blog/2012/02/why-we-created-julia/
https://arstechnica.com/science/2020/10/the-unreasonable-effectiveness-of-the-julia-programming-language/


Dr.	John	D.	Cook,	at
http://www.johndcook.com/blog/2015/09/15/julia-for-python-
programmers/.
If,	instead,	you	come	from	Lisp,	take	a	look	at	“A	Lisper’s	First
Impression	of	Julia”	by	Pascal	Costanza	at	https://p-
cos.blogspot.com/search?q=first+impression+of+Julia.	It’s	from	2014,
but	still	of	interest.
For	the	original	theoretical	justification	explaining	the	need	of	a
new	language	and	how	Julia’s	design	decisions	meet	that	need,	see
“Julia:	A	Fresh	Approach	to	Numerical	Computing,”	authored	by
Julia	creators	Jeff	Bezanson,	Alan	Edelman,	Stefan	Karpinski,	and
Viral	B.	Shah	(http://arxiv.org/abs/1411.1607).
For	another	version	of	Julia’s	creation	story,	see	Klint	Finley’s
“Out	in	the	Open:	Man	Creates	One	Programming	Language	to
Rule	Them	All”	(https://www.wired.com/2014/02/julia/).
“Julia	Joins	Petaflop	Club”	from	Julia	Computing	is	an
astronomical	(in	both	senses)	application	of	Julia
(https://cacm.acm.org/news/221003-julia-joins-petaflop-club/fulltext).
“Julia	Update:	Adoption	Keeps	Climbing;	Is	It	a	Python
Challenger?”	by	John	Russell
(https://www.hpcwire.com/2021/01/13/julia-update-adoption-keeps-
climbing-is-it-a-python-challenger/)	provides	some	interesting
historical	perspective.
“Why	I	Switched	to	Julia”	by	Bradley	Setzler	is	a	case	study	of
Julia	used	in	econometrics	that	shows	a	100-fold	speed	increase
over	Python	with	NumPy:
https://juliaeconomics.com/2014/06/15/why-i-started-a-blog-about-
programming-julia-for-economics/.

http://www.johndcook.com/blog/2015/09/15/julia-for-python-programmers/
https://p-cos.blogspot.com/search?q=first+impression+of+Julia
http://arxiv.org/abs/1411.1607
https://www.wired.com/2014/02/julia/
https://cacm.acm.org/news/221003-julia-joins-petaflop-club/fulltext
https://www.hpcwire.com/2021/01/13/julia-update-adoption-keeps-climbing-is-it-a-python-challenger/
https://juliaeconomics.com/2014/06/15/why-i-started-a-blog-about-programming-julia-for-economics/


PART	I
LEARNING	JULIA



1
GETTING	STARTED

You	don’t	have	to	see	the	whole	staircase,	just	take	the	first	step.
—Dr.	Martin	Luther	King	Jr.

As	mentioned	in	the	introduction,	to	learn	a	programming	language,	it’s	not
enough	to	read	a	book—not	even	one	as	good	as	this.	Experimenting	and
writing	programs	yourself	is	essential.	After	absorbing	a	key	concept	in	the
book	or	running	a	code	sample,	try	to	construct	variations	of	the	code	and
run	them.	Writing	your	own	variations	will	help	you	achieve	fluency	in	the
language.

This	chapter	first	covers	how	to	install	Julia	on	all	the	major	operating
systems,	and	then	discusses	the	various	types	of	coding	environments.	We’ll
see	how	to	install	each	one,	and	explore	their	unique	features,	advantages,
and	disadvantages.

Installation	Guide
Of	course,	to	be	able	to	do	any	of	this	you	will	need	access	to	a	Julia	system.
If	you’re	already	set	up	to	run	Julia	code,	you	can	safely	skip	this	whole
section.	If	not,	you	can	skip	the	subsections	covering	installation	on
operating	systems	that	you	don’t	use,	but	you	should	probably	read



everything	else.

Hardware	Requirements
For	learning	Julia,	almost	any	computer	will	be	sufficient.	It	should	have	at
least	2GB	of	RAM,	but	twice	that	amount	will	be	more	comfortable.	You’ll
need	about	0.5GB	of	free	disk	space	to	install	Julia,	but	you	should	have	at
least	3GB	of	additional	space	for	the	packages	that	you’ll	install	for	plotting
and	other	purposes.

These	modest	requirements	are	fine	for	learning	the	language	and	even
for	doing	many	real	calculations,	although	you	may	require	beefier	hardware
for	larger-scale	projects.	Julia	is	used	for	calculations	at	every	scale,	and	it
can	make	efficient	use	of	all	types	of	hardware	from	laptops	to	GPU	array
processors	to	the	world’s	largest	supercomputers	(see	“Further	Reading”	on
page	23	for	an	example).	I	have	run	every	example	calculation	in	this	book
on	a	very	modestly	powered	laptop,	so	all	of	the	code	here	should	run	with
no	problems	on	any	machine	that	you’re	likely	to	be	using.

Julia	runs	on	Linux,	FreeBSD,	macOS,	and	Windows.	At	the	time	of
writing,	Julia	is	fully	supported	on	these	systems:

Linux	2.6.18+:	x86-64	(64-bit),	i686	(32-bit),	and	ARMv8	(64-bit)
FreeBSD	11.0+:	x86-64	(64-bit)
macOS	10.9+:	x86-64	(64-bit)
Windows	7+:	x86-64	(32-	and	64-bit)

These	installation	requirements	may	change,	so	check
https://julialang.org/downloads/	for	up-to-date	information.

Julia	also	runs	on	some	system	versions	and	architectures	not	listed	here,
but	with	reduced	support,	weaker	guarantees,	or	possibly	hampered
functionality.	It	can	also	take	advantage	of	more	specialized	hardware—for
example,	graphical	processing	unit	array	processors,	which	we’ll	discuss	in
later	chapters.

Prerequisites
To	use	Julia	effectively,	you	need	to	know	a	few	things	about	how	to	operate
your	computer.	You	need	a	basic	knowledge	of	the	terminal	and	the
command	line:	how	to	create	and	change	directories	(folders),	view	a	list	of

https://julialang.org/downloads/


files,	find	out	how	much	storage	space	is	available	on	your	hard	drive,	and
delete	files.

Every	operating	system	has	various	graphical	utilities	for	accomplishing
those	tasks,	both	built-in	and	as	third-party	software,	but	it	is	a	good	idea	for
the	computational	scientist	to	become	familiar	with	the	command	line	and
use	it	routinely.	There’s	a	good	chance	you’ll	find	yourself	in	a	remote
computing	situation	some	day,	where	the	command	line	may	be	the	only
way	to	communicate	with	the	remote	machine.

It’s	also	a	good	idea,	even	if	your	personal	computer	uses	some	other
operating	system,	to	learn	how	to	perform	these	rudimentary	tasks	on	Linux,
as	that	is	by	far	the	most	common	frontend	OS	on	compute	servers	for
scientific	work.	If	your	daily	driver	comes	from	Apple,	that	won’t	be	a
problem,	as	the	basic	commands	in	the	macOS	BSD-derived	terminal	are
nearly	the	same	as	on	Linux.	If	you’re	accustomed	to	Windows,	you	may
need	to	learn	some	translations;	however,	that	is	beyond	the	scope	of	this
book,	and	you	won’t	need	to	know	the	Linux	dialect	to	use	Julia	on	your
personal	computer.

You’ll	also	need	to	be	familiar	with	an	editor	on	your	system	that	can	save
files	in	a	plaintext	format.	Most	programmers	use	Vim,	Emacs,	or	a	more
elaborate	integrated	development	environment	(IDE)—options	that	we	will
discuss	further	in	the	next	section.	You	can	use	any	editor	you’re	familiar
with,	but	graphical	editors	such	as	Word	are	not	the	best	choice.	However,	if
you	really	want	to	use	such	programs,	they’ll	work.	Just	be	sure	to	save	your
creations	as	plaintext	files,	and	use	a	monospaced	font,	which	will	work
better	for	writing	code.

Julia	Versions
Most	people,	no	matter	their	platform,	will	download	Julia	from	the	official
Julia	website	at	https://julialang.org/downloads/.	Whether	you	get	it	there	or
somewhere	else,	keep	in	mind	that	Julia,	although	it’s	been	stable	for	several
years,	is	still	undergoing	rapid	development.	Stable	in	this	context	means	that
you	can	expect	no	breaking	changes:	programs	that	you	write	now,	or	have
written	using	any	version	of	Julia	from	v1.0	onward,	will	continue	to	work	as
you	upgrade	your	Julia	installation	in	the	future,	with	few	exceptions.
However,	rapid	development	means	that	the	particular	version	you	have
installed	can	make	a	substantial	difference.

https://julialang.org/downloads/


Regarding	the	language	implementation	itself,	the	Julia	team	has	made
continuous	progress	in	speed	and	responsiveness	since	the	first	public
release,	and	that’s	likely	to	continue,	which	is	reason	enough	to	recommend
using	the	most	recent	stable	language	version.	Regarding	the	ecosystem
generally,	many	important	packages,	which	are	libraries	of	Julia	code	that
you	can	use	in	your	own	programs,	are	also	progressing	rapidly,	and	new
ones	are	emerging	every	month.	Older	Julia	versions	may	not	be	compatible
with	new,	or	newer	versions	of,	important	packages.

In	the	download	section	of	the	Julia	website,	you	will	find	downloads
corresponding	to	various	“releases,”	or	recent	versions,	of	Julia.	Most	people
will	be	best	served	by	the	one	identified	as	“Current	stable	release.”
“Upcoming	release”	is	a	beta	version	of	the	next	stable	release.	It	will	have
more	recently	added	features,	but	it	will	also	have	slightly	more
compatibility	problems	with	various	packages	and	may	be	afflicted	with	some
minor	bugs.	Depending	on	when	you	are	reading	this,	the	“Long-term
support”	release	may	or	may	not	have	all	of	the	features	this	book	uses.	In
general,	to	avoid	any	confusion	arising	from	possibly	different	behavior	from
the	code	samples	here,	ensure	that	you	install	Julia	v1.6.0	or	greater	and
avoid	beta	releases.

Installation
This	section	contains	instructions	for	various	options	to	install	Julia	on	every
OS	for	which	it	is	available.	You	only	need	to	pay	attention	to	the	sections
that	apply	to	you.

As	an	alternative	to	these	instructions,	which	leave	you	with	a	Julia	binary
ready	to	run,	you	can	download	the	Julia	source	code	at	the	same	location	as
the	other	download	links.	As	Julia	is	completely	free	and	open	source
software,	the	source	is	always	available	for	experts	to	inspect	and	compile
themselves.	If	you	want	to	run	Julia	on	an	unusual	system	for	which	a	binary
is	not	supplied,	this	is	your	only	option.

On	Linux	and	FreeBSD
Almost	every	Linux	distribution	has	its	own	package	management	system:	an
official	mechanism	for	installing	programs	and	keeping	them	updated.	Using
the	official	package	manager	has	two	advantages.	First,	it	is	integrated,
meaning	that	dependencies	among	all	the	installed	programs	should	be



automatically	resolved	and	everything	will	work	together.	The	second
benefit	is	security:	packages	in	the	official	repositories	are	generally	vetted
and	unlikely	to	contain	malicious	code.

Unfortunately,	it	takes	considerable	time	for	software	to	be	packaged	and
included	in	the	official	repositories	of	most	Linux	distributions.	Projects
such	as	Julia	that	are	undergoing	rapid	development	should	generally	not	be
installed	using	the	package	manager.	The	distribution’s	version	will	lag	too
far	behind	the	current	versions	that	you	can	get	directly	from	the	Julia
project.	This	is	less	of	a	problem	for	certain	Linux	distributions	that	employ
a	rolling	release	schedule	and	keep	their	packages	up	to	date,	but	it	makes
the	use	of	the	package	manager	in,	for	example,	Debian-based	distributions	a
poor	choice	for	Julia.

For	these	reasons,	if	you	are	on	Linux,	the	best	strategy	is	to	go	to	the
Julia	download	page	at	https://julialang.org/downloads/.	Look	for	the	heading
“Current	stable	release”	and,	under	that,	find	the	entry	for	your	machine’s
architecture.	Most	people	will	want	the	64-bit	download	for	“Generic	Linux
on	x86.”	Clicking	the	download	link	copies	a	file	to	your	computer	with	the
extension	.tar.gz.	It	will	be	a	little	more	than	100MB.

The	default	location	for	browser	downloads	for	most	people	is	the
Downloads	directory	inside	their	home	directory,	but	your	browser	may	be
configured	differently.	After	you	have	found	the	download	location,	you
should	see	the	file	you	just	acquired,	named	something	like	julia-1.X.0-linux-
x86_64.tar.gz,	which	indicates	v1.X.0	of	Julia,	built	for	Linux	systems	with
the	x86,	64-bit	architecture.	The	double	extension	indicates	that	this	is	a
compressed	tarfile.	You	can	uncompress	and	un-archive	the	file	with	a	single
command	(substituting	the	actual	downloaded	filename):

tar zxvf julia-1.X.0-linux-x86_64.tar.gz

The	tar	command	should	already	be	installed	on	any	normal	Linux
system.	After	entering	this	command,	you	should	see	the	names	of	a	bit	more
than	2,000	files	scroll	by	in	your	terminal,	indicating	the	creation	of
subdirectories	and	the	un-archiving	of	the	files	needed	for	an	initial
installation	of	Julia	to	work.	You	won’t	need	to	do	anything	directly	with	any
of	these	files	except	one.	After	the	process	is	complete,	which	should	take
under	a	minute,	you’ll	have	a	new	directory	with	a	name	taken	from	the
beginning	of	the	archive’s	name.	For	the	example	julia-1.X.0-linux-

https://julialang.org/downloads/


x86_64.tar.gz	download	file,	that	directory	is	julia-1.X.0.	The	installation
will	take	up	about	four	times	the	space	of	the	tarfile,	which	you	can	delete
after	the	tar	command	completes	successfully.

The	next	step	is	to	set	up	your	system	so	that	entering	julia	in	the
terminal	starts	the	Julia	program	that	you	just	installed.

To	make	the	final	installation	step,	first	check	your	path	by	entering	echo
$PATH.	If	/usr/local/bin	is	listed,	navigate	there.	If	it’s	not,	but	there’s	another
directory	in	your	path	where	you	like	to	keep	local	commands,	go	there.
Otherwise,	it’s	a	good	idea	to	establish	such	a	directory,	which	can	be
/usr/local/bin	or	something	else.	The	method	for	doing	that	varies	a	bit
depending	on	your	shell.	For	the	most	common	case	of	bash	and	bash-
compatible	shells,	add	this	line	to	your	.bash_profile	startup	file	(which	you
can	find	in	your	home	directory):

PATH=/usr/local/bin:$PATH; export PATH

After	you	have	navigated	to	/usr/local/bin	or	to	your	local	command
directory	of	choice,	make	a	symbolic	link	to	the	file	/bin/julia	within	your
new	Julia	installation	directory,	and	call	it	julia.	For	our	example,	the
command	is:

ln -s $HOME/Downloads/julia/julia-1.X.0/bin/julia julia

To	create	the	link	you	need	to	be	root,	or	use	sudo.
You	can	keep	your	downloaded	Julia	installation	anywhere,	but	you’ll

need	to	update	the	link	set	in	the	command	if	you	move	it.
To	check	that	your	new	Julia	installation	is	working,	open	a	fresh	shell

and	enter	julia.	An	interactive	prompt	should	appear,	waiting	for	you	to	type
your	first	line	of	Julia	code.

On	macOS
You	can	install	Julia	on	your	Apple	computer	the	same	way	you	install	any
other	application.	Navigate	to	the	Julia	download	page,	find	the	section	for
your	desired	version,	and	click	the	64-bit	link	in	the	table.	A	normal
macOS.dmg	file	will	be	downloaded	to	your	system,	which	should	open
itself.	You	should	see	the	Julia	icon	of	red,	green,	and	purple	circles	arranged
in	a	pyramid.	Drag	this	to	your	Applications	folder	as	usual.



When	you	double-click	this	icon,	a	terminal	should	open	with	the	Julia
interactive	prompt	ready	for	your	first	command.

The	next	step	is	to	make	arrangements	so	you	can	start	Julia	from	the
terminal	command	line	and	not	need	to	click	the	icon,	which	will	be
convenient	later	on.	These	preparations	also	will	allow	you	to	run	saved	Julia
programs	without	using	the	REPL.

Enabling	this	behavior	requires	two	steps.	If	the	Julia	interactive	prompt
is	still	waiting	for	you,	press	CTRL-D	to	quit	the	REPL	or	enter	exit().	Next,
at	the	shell	command	line,	enter	the	following	command	to	delete	any
existing	julia	command	that	might	be	left	over	from	a	previous	installation:

rm -f /usr/local/bin/julia

Then	enter	the	following	(change	Julia-1.X.app	to	match	the	version	that
you	have	installed):

ln -s /Applications/Julia-1.X.app/Contents/Resources/julia/bin/julia /usr/local/bin/julia

You	may	also	want	to	check	for	the	presence	of	julia	commands
elsewhere	in	your	path,	such	as	in	/usr/bin,	and	delete	them	or	move	them
out	of	the	command	path,	so	that	you	don’t	inadvertently	invoke	an	older
executable	from	a	previous	installation.

This	command	creates	what’s	known	as	a	symbolic	link	to	the	actual	Julia
binary	program	stored	deep	within	your	Applications	folder.	Now	you	can
type	julia	in	any	terminal	to	start	the	interactive	Julia	shell	or	to	run	Julia
programs.

On	Windows
Some	installations	of	Windows	do	not	have	a	modern	terminal	set	up.	You
will	need	such	a	program	to	run	Julia	effectively	and	to	follow	the	examples
in	this	book.	If	you	don’t	already	have	a	good	terminal	installed,	a	reasonable
option	is	the	Windows	Terminal,	a	free	program	available	from	the
Microsoft	Store.	Before	doing	anything	else,	install	this	terminal	or
something	equally	capable	and	make	sure	that	you	know	how	to	start	and	use
it.

Navigate	to	the	Julia	download	page	and	find	the	section	for	your	desired
version	(see	“Julia	Versions”	on	page	5).



If	you	know	you’re	on	a	64-bit	version	of	Windows,	click	the	64-bit
download	link.	If	you’re	on	32-bit	or	are	not	sure	of	the	architecture,	click
the	32-bit	link.	This	will	get	you	a	Julia	install	that	will	work	on	both
architectures,	but	using	the	64-bit	build	has	some	advantages	if	you	know
you	can	use	it.

This	will	download	a	.exe	installer,	which	you	should	run	next.	It	will
inform	you	of	the	installation	directory;	be	sure	to	make	a	note	of	it.

The	following	instructions	to	set	up	Julia	to	run	from	a	terminal	will
work	for	recent	versions	of	Windows.	If	you’re	running	Windows	8	or
earlier,	you’ll	find	specific	installation	instructions	linked	from	the	Julia
download	page.

Recent	versions	of	the	installer	offer	a	checkbox	for	setting	the	Julia	path.
If	yours	doesn’t,	or	you	prefer	to	choose	the	path	yourself,	follow	this
procedure:

1.	 Open	Run	by	pressing	Windows	key-R	and	enter	the	following
command	to	open	the	System	Variables	window	so	you	can	edit	the
path:

rundll32 sysdm.cpl,EditEnvironmentVariables

2.	 Click	New	and	enter	(or	paste)	the	path	the	installer	told	you	about
(you	copied	that	information,	right?).	If	you’ve	lost	the	path,	look	for	a
program	with	“julia”	in	the	name	in	C:\Users\
<your_username>\AppData\Local\Programs.

3.	 Click	OK,	open	a	terminal,	and	enter	julia	to	test	your	setup.	You
should	see	a	terminal-flavored	rendering	of	the	Julia	logo,	a	brief
message,	and	an	interactive	prompt,	waiting	for	your	first	line	of	Julia
code.

Another	option	on	Windows	is	provided	by	package	managers.	The	open
source	edition	of	the	popular	Chocolately	package	manager,	for	example,
installs	a	reasonably	up-to-date	Julia	version.

Using	Docker
Read	this	section	if	you	know	what	Docker	is	and	you	are	sure	that	you	want



to	install	Julia	by	using	a	Docker	image.
If	that’s	you,	you	are	fortunate	that	a	Docker	community	exists	for	Julia.

Go	to	https://hub.docker.com/_/julia,	which	contains	a	description	of	the	image
for	using	Julia.	I	won’t	list	the	details	of	what	systems	and	versions	are
supported,	because	those	are	likely	to	change	frequently.	The	page	has	up-
to-date	information	for	installing	and	using	the	Julia	container	on	your
machine.	Aside	from	that,	everything	else	in	this	book	applies	identically	to
Julia	run	from	within	a	Docker	container	and	Julia	installed	in	the
conventional	way.

Privacy	Note
The	Julia	team	is	scrupulous	in	pointing	out	a	privacy	issue	that,	although	of
no	concern	to	most	people,	and	something	that	most	would	take	for	granted
in	any	case,	deserves	to	be	mentioned.	Julia’s	package	management	system
(something	we’ll	discuss	in	later	chapters)	is	designed	with	the	expectation
that	you	are	connected	to	the	internet,	and	it	will	download	software	as
needed	for	you	to	complete	your	tasks.	This	means	that,	of	necessity,	your
IP	address,	what	you	downloaded,	and	when,	are	stored	on	a	server
somewhere,	at	least	for	a	while.

The	Julia	Coding	Environment
With	the	basic	Julia	system	installed,	let’s	turn	to	the	various	options	for
interacting	with	it.	Different	methods	of	talking	to	Julia	are	best	suited	for
different	situations.	Also,	if	you	have	a	favorite	editor	or	IDE,	this	section
will	explain	how	you	can	program	in	Julia	without	changing	your	workflow.

Table	1-1	is	a	brief	table	of	the	coding	environments	discussed	next	and
their	salient	advantages	and	disadvantages:

Table	1-1:	Coding	Environment	Comparison

Environment Advantages Disadvantages

REPL Nothing	to	install,	quick,	useful
modes

Graphics	in	separate
windows,	repetitive
entry

https://hub.docker.com/_/julia


Text	editors File	organization,	editing
convenience,	REPL	integration

No	graphics,	limited
interactivity

Jupyter Huge	community,	inline	graphics,
interactivity,	multiple	languages,
good	for	sharing

Poor	organization,	no
version	control,
hidden	state,	browser
text	entry

Pluto Inline	graphics,	sophisticated
interactive	controls,	reactive	and
consistent,	full	REPL	integration,
backed	by	normal	Julia	file

Julia	only,	browser
text	entry

VS	Code Integrated	editor,	REPL,	graphics,
good	language	support

Less	powerful	as	an
editor	than	Vim	or
Emacs

Let’s	take	a	more	detailed	look	at	each	of	these	options.

The	Julia	REPL
When	you	enter	julia	in	the	terminal,	you	enter	the	REPL,	or	read-eval-print
loop.	You’ll	see	a	welcome	message	and	the	prompt	will	change	from	your
system’s	shell	prompt	to	Julia’s.

REPL	Modes
The	REPL	has	several	modes.	The	initial	mode,	with	the	julia>	prompt,	is
the	normal	mode	in	which	you	will	spend	most	of	your	REPL	time.	Here
you	can	enter	any	Julia	expression,	press	ENTER,	and	Julia	will	print	the
result	of	the	expression.	Even	if	you	don’t	know	any	Julia	yet,	try	it	out	to
make	sure	everything	is	working	correctly.	Enter	an	arithmetic	expression
such	as	1 + 1,	and	you	should	see	the	result	immediately	after	pressing
ENTER.

This	mode	of	operation	will	be	familiar	to	you	if	you’ve	used	Python,
Node,	APL,	or	any	other	REPL-based	language.	Unlike	Python,	Julia	is
compiled	rather	than	interpreted.	This	difference	will	have	implications	in
how	you	use	the	REPL	in	later	chapters,	but	for	now,	you	can	use	the	Julia



interactive	interface	just	like	any	other	REPL	you	may	have	used	before.
The	Julia	REPL’s	normal	mode	is	a	sophisticated	environment	with	a	few

tricks	up	its	sleeve	to	make	your	work	easier.	It	has	a	“paste	mode”	that	lets
you	paste	in	code	samples	you	may	have	copied,	for	instance,	from	a	web
page,	and	that	may	be	littered	with	the	julia>	prompt	and	have	code
interleaved	with	explanatory	text.	The	REPL	will	know	to	just	execute	the
actual	code	on	any	line	starting	with	julia>,	provided	the	first	line	pasted
starts	with	it.	(At	the	time	of	writing,	paste	mode	does	not	work	on
Windows.)

The	REPL	is	fully	readline	capable.	This	means	you	can	use	the	up	arrow
and	down	arrow	to	recall	earlier	commands	and	edit	them	before	repeating
them.	This	feature	even	works	well	for	multiline	code	blocks	such	as
function	definitions.	To	search	for	a	previous	command,	you	can	press
CTRL-R	and	type	some	text	contained	within	that	command.	Your
command	and	code	history	is	saved	between	REPL	sessions,	so	you	can	quit
the	REPL,	come	back	the	next	day,	and	still	recall	your	commands	with	the
arrow	keys.	The	history	is	stored	in	the	.julia/logs/repl_history.jl	file	within
your	home	directory.	This	file	contains	all	the	code	you	enter,	and	it	even
timestamps	each	entry,	but	it	does	not	record	the	results	Julia	returns.

Another	useful	REPL	mode	is	the	help	mode.	Press	?,	and	the	prompt
will	change	to	help?>.	Enter	any	Julia	function,	data	type,	operator,	or	library,
and	you	will	see	a	nicely	formatted	description	of	the	item	you	entered,	often
with	a	useful	collection	of	examples.

help?> Base
search: Base basename AbstractSet AbstractSlices Broadcast broadcast broadcast! AbstractString
AbstractDisplay

  Base

  The base library of Julia. Base is a module that contains basic functionality
  (the contents of base/). All modules implicitly contain using Base, since this is needed
  in the vast majority of cases.

Later	on	you’ll	learn	how	to	document	your	own	functions	in	a	way	that
hooks	into	the	REPL	help	system.

The	REPL	also	has	a	shell	mode,	activated	by	pressing	;,	that	allows	you
to	enter	system	shell	commands	from	within	the	REPL	session:



julia> ilj = "I love Julia"
"I love Julia"

# Enter ";" here to switch to shell mode.

shell> echo $ilj
I love Julia

We	can	use	shell	mode	for	simple	commands.	As	the	listing	shows,	we
can	interpolate	Julia	variables,	but	piping	and	redirection	won’t	work.

Another	REPL	mode	you	will	use	often	is	the	package	mode,	activated	by
pressing	],	which	we’ll	cover	in	Chapter	3	when	we	explore	how	to	use
packages	and	modules.	For	now,	just	be	aware	that	the	package	system	in
Julia	is	an	integral	part	of	the	language	and	environment,	so	much	so	that	it’s
built	into	the	REPL.	Julia	developers	don’t	need	to	wrestle	with	several
competing	third-party	package	systems,	nor	with	the	inevitable	“dependency
hell”	that	afflicts	some	other	languages.

To	exit	out	of	any	of	these	modes	back	into	the	normal	(sometimes	called
“Julian”)	REPL	mode,	press	BACKSPACE	while	the	cursor	is	at	the	starting
position.

TAB	works	in	any	REPL	mode	to	generate	context-aware	completions.	If
there	is	a	unique	completion,	it	is	entered	for	you	at	the	cursor;	otherwise,
the	REPL	presents	you	with	a	list	of	options.

REPL	Colors
To	help	you	to	know	which	mode	you’re	in,	the	REPL	colors	each	of	its
prompts	differently.	The	colors	help	visually	separate	the	prompts	from	the
expressions	you	enter	and	their	results.	The	REPL	also	uses	colors	in	certain
types	of	output,	such	as	help	output,	to	distinguish	elements	like	keywords
and	variables	from	normal	text.	The	default	colors	work	well	when	using	a
terminal	with	a	black	or	dark	background,	which	is	the	most	popular	choice.
However,	they	are	too	light	to	be	easily	legible	on	a	white	or	very	light
background.	I	use	such	a	background	for	the	illustrations	in	this	book,	as	it
prints	better	than	the	black	background	I	usually	use	on	my	computer.	If	you
use	a	light	terminal	background,	or	simply	prefer	a	different	appearance
from	the	default,	you	can	edit	a	configuration	file	to	change	any	of	the
REPL	colors.

In	your	home	directory,	you	will	find	a	directory	called	.julia	(note	the



dot:	in	most	people’s	shells,	as	they	are	typically	configured,	this	directory
will	not	be	listed	using	the	usual	commands	unless	you	add	a	flag	to	request
listing	of	“invisible	files,”	and	graphical	file	management	tools	may	or	may
not	show	the	directory	by	default).	Within	.julia,	there	may	already	be	a
config	directory;	if	not,	create	one.	Enter	the	config	directory	and	edit	the
startup.jl	file	(or	create	it	if	it	doesn’t	exist).	Add	the	following	to	startup.jl:

function customize_colors(repl)
    repl.prompt_color = Base.text_colors[28]
    repl.help_color = Base.text_colors[178]
end

atreplinit(customize_colors)

You	have	just	written	your	first	Julia	function.	Julia	runs	the	startup.jl	file
every	time	the	REPL	starts	(the	.jl	extension	is	used	for	Julia	programs).
This	function	simply	defines	two	variables:	one	for	the	color	of	the	prompt
in	normal	mode	and	the	other	for	help	mode.	The	two	numbers	in	square
brackets	are	ANSI	color	codes,	which	are	understood	by	most	modern
terminal	programs.	I’ve	chosen	two	colors	that	work	well	on	my	monitor
when	using	a	white	terminal	background.	If	you	want	to	pick	your	own
colors,	you	can	find	tables	of	the	256	ANSI	colors	and	their	codes	by
searching	the	web	for	“ANSI	color	codes.”	I’ve	redefined	only	these	two
colors	because	the	other	defaults	happened	to	work	well.	If	you	want	to
change	some	other	colors,	you	can	define	the	repl.shell_color,	repl.input_color,
and	repl.answer_color	variables	as	well.

Julia	also	understands	several	color	names,	but	too	few	to	allow	an	ideal
selection.

Unicode	Characters
Julia	allows	the	use	of	Unicode	characters	in	variable	names	and	for	other
identifiers.	This	means	you	can	make	formulas	in	your	Julia	programs	look
more	like	real	math,	using,	for	instance,	Greek	letters	and	subscripts.	Some
people	have	set	up	their	systems	to	allow	them	to	type	such	characters	easily.
Even	if	you	haven’t,	you	can	still	use	these	characters	thanks	to	a	Unicode
input	mode	provided	by	the	REPL.	If	you	enter	a	backslash	(\)	followed	by	a
string	of	ASCII	characters,	then	press	TAB,	one	of	three	things	will	happen.
If	the	REPL	recognizes	the	string	as	one	of	its	codes	for	a	Unicode



character,	the	entire	entry,	beginning	with	the	backslash,	will	be	replaced	by
that	character.	If	the	code	you	typed	is	the	beginning	of	a	character	code	or
one	of	several	possible	codes,	the	tab	completion	mechanism	will	work	in	the
normal	way.	If	the	REPL	does	not	recognize	what	you	typed,	it	will	do
nothing.

A	complete	list	of	the	Unicode	character	codes	recognized	by	the	REPL
is	maintained	at	https://docs.julialang.org/en/v1/manual/unicode-input/.	Those
familiar	with	LaTeX	syntax	will	be	happy	to	know	that	all	the	Greek	letters
and	some	other	symbols	that	have	LaTeX	commands	are	on	the	list
unchanged.	For	example,	to	input	α	in	the	REPL,	type	\alpha	and	then	press
TAB.	There	is	much	more—even	a	wide	selection	of	emoji.

If	you	want	to	know	the	LaTeX-style	abbreviation	for	a	particular
Unicode	character,	perhaps	one	that	you’ve	copied	from	the	documentation,
enter	the	help	mode	in	the	REPL,	paste	in	the	character,	and	press	ENTER.	If
an	abbreviation	exists,	the	help	system	will	tell	you	what	it	is.

Figure	1-1	shows	a	simple	example	of	what	you	can	do	with	an	expanded
character	set.

Figure	1-1:	Using	Unicode	in	the	REPL

This	is	more	than	just	fun	and	games.	The	ability	to	employ	a	wider

https://docs.julialang.org/en/v1/manual/unicode-input/


collection	of	characters,	including	Greek	letters	and	subscripts,	allows	us	to
make	our	code	more	concise	and	expressive.

Text	Editors
Julia	programmers	use	text	editors	routinely,	either	in	addition	to	or	in
coordination	with	the	REPL.	I’ll	go	over	some	of	the	relevant	features	of	the
most-used	programmer’s	editors	here.	If	you	use	something	else,	be	sure	to
search	for	any	enhancements,	either	built-in	or	in	the	form	of	third-party
plug-ins,	specific	to	Julia.	These	enhancements	typically	include	syntax
highlighting,	which	helps	immensely	in	avoiding	typos	in	your	code,	and	can
include	more	sophisticated	features,	such	as	code	formatting	and	execution.

Vim
Vim	is	an	excellent	editor	for	programming	in	any	language,	and	it	has
valuable	Julia	support.	I	recommend	installing	the	julia-vim	plug-in,	available
at	https://github.com/JuliaEditorSupport/julia-vim,	where	you	will	also	find	its
documentation.	The	plug-in	requires	Vim	version	7.4	or	greater.	To	take
the	best	advantage	of	julia-vim,	ensure	that	the	built-in	matchit	plug-in	is
enabled	by	executing	the	:runtime macros/matchit.vim	Vim	command,	which
should	be	in	your	Vim	startup	file.	This	plug-in	adds	a	Julia	file	type	with
syntax	coloring	and	awareness	of	the	block	structure	of	Julia	syntax.	It
extends	the	matchit	operation	by	allowing	you	to	jump	to	the	end	or
beginning	of	function	definitions	and	other	blocks	by	entering	%.	You	can
also	select	or	delete	blocks,	or	the	bodies	of	blocks,	in	the	same	way	that	Vim
allows	you	to	operate	on	other	text	objects.

The	plug-in	also	emulates	the	REPL’s	LaTeX-style	entry	of	Unicode
characters.	For	this	it	provides	two	options:	you	can	have	it	wait	for	you	to
press	TAB,	as	the	REPL	does,	or	it	can	expand	the	entry	on	the	fly	as	soon
as	it	sees	a	character	(usually	a	space)	that	seems	to	indicate	the	end	of	the
entry	(the	on-the-fly	mode	does	not	support	emoji,	however).

Another	option	for	recent	versions	of	NeoVim	or	Vim	is	to	install
language	support	for	tree-sitter,	which	adds	syntax-aware	highlighting	and
other	features	to	the	editor.	If	you	have	Vim	version	8.0	or	greater,	which	I
highly	recommend,	or	the	NeoVim	fork,	you	can	interact	with	any	REPL
directly,	including	the	Julia	REPL.	By	“interact,”	I	mean	that	you	can
remain	in	an	editing	buffer	containing	your	Julia	program	and	send	selected

https://github.com/JuliaEditorSupport/julia-vim


lines,	expressions,	or	blocks	directly	to	the	REPL	for	execution.	The
execution	is	asynchronous,	so	you	can	continue	editing	while	Julia	is
churning	through	a	time-consuming	command.	Communication	with	the
REPL	is	two-way,	so	you	can	also	send	results	printed	in	the	REPL	back
into	the	editing	buffer.	The	following	instructions	apply	to	Vim,	but
NeoVim	users	should	be	able	to	adapt	them	to	that	program.

First,	install	the	vim-sendtowindow	plug-in,	which	lives	at
https://github.com/karoliskoncevicius/vim-sendtowindow.	After	opening	the
editing	buffer	of	choice,	execute	the	:term julia	Vim	command.	If	you	have
the	julia	command	set	up	properly	(see	“Installation”	on	page	6),	a	new	Vim
buffer	should	open	with	the	Julia	REPL	running	within	it,	below	the	editing
window.

Now	you	can	select	any	text	in	the	editing	window	and	press	the	spacebar
followed	by	j	to	send	it	to	the	REPL.	If	you’d	prefer	some	other	shortcut	for
this	operation,	the	vim-sendtowindow	web	page	explains	how	to	set	it	up.	You
can	also	define	shortcuts	for	sending	text	to	the	right,	left,	and	up,	which	is
handy	for	sending	text	from	the	REPL	and	in	case	you	prefer	to	split	your
windows	vertically.	The	:term	command,	with	its	asynchronous	execution	of
commands,	is	built	into	Vim.	The	plug-in	provides	a	convenient	way	to	send
text	back	and	forth	between	the	editing	and	terminal	buffers.	The	author	of
vim-sendtowindow	maintains	a	list	of	plug-ins	with	similar	functionality	on	its
website.

Similar	REPL	interactions	are	possible	with	earlier	versions	of	Vim,	using
plug-ins	such	as	ScreenSend,	but	the	term	command	in	version	8	makes	REPL
interaction	smoother	and	less	error	prone.

Emacs
Emacs	is	a	powerful	programmer’s	editor	with	sophisticated	Julia	support
available.	The	official	Julia	major	mode	for	Emacs,	called	julia-emacs,	is
developed	on	GitHub	at	https://github.com/JuliaEditorSupport/julia-emacs.
The	creators	of	the	Julia	language	are	contributors	to	the	project,	which	is
probably	one	of	the	reasons	that	a	deep	and	detailed	knowledge	of	the
language’s	structure	and	syntax	is	built	into	the	mode.	Once	installed,	Emacs
will	display	Julia	code	using	a	variety	of	colors	and	font	styles	to	clarify	its
syntax.	It	also	provides	movement	among	and	manipulation	of	code
structures	such	as	blocks.

https://github.com/karoliskoncevicius/vim-sendtowindow
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To	install	julia-emacs,	first	enable	the	MELPA	repository
(https://melpa.org)	and	add	(require 'julia-mode)	to	your	Emacs	initialization
file.	For	most	people,	this	will	be	.emacs	in	their	home	directory.	For	a
smooth	experience,	you	should	be	running	a	version	of	Emacs	that	is	at	least
24.1.	If	your	version	is	earlier,	an	upgrade	would	be	advisable	for	using
Emacs	and	Julia	together.

Emacs	shines	at	interacting	with	REPL-based	languages,	and	Julia	is	no
exception.	Several	minor	modes	are	available	specifically	for	Julia
interaction.	One	of	the	most	popular	is	julia-repl,	also	developed	on	GitHub
and	available	at	https://github.com/tpapp/julia-repl.	It’s	designed	to	work	with
the	aforementioned	julia-emacs,	and	you	must	have	at	least	version	25	of
Emacs	installed.

To	install	julia-repl,	edit	your	.emacs	initialization	file,	adding	the
following	lines:

(add-to-list 'load-path path-to-julia-repl)
(require 'julia-repl)
(add-hook 'julia-mode-hook 'julia-repl-mode)

Now	you	can	start	a	Julia	REPL	right	from	within	Emacs.	It	will	run	in
an	ANSI	terminal,	with	the	full	complement	of	text	colors	and	formatting.	A
table	of	keyboard	shortcuts	is	available	on	the	mode’s	GitHub	page.	You	can
perform	the	usual	sending	of	fragments,	whole	blocks,	or	the	entire	buffer	to
the	REPL	for	execution.	In	addition,	the	built-in	knowledge	of	Julia	allows
the	mode	to	do	such	things	as	listing	all	the	methods	of	a	function,	which
will	make	more	sense	after	you	read	Chapter	8.

Jupyter	Notebooks
You	can	use	Julia	from	within	a	web	browser,	in	two	main	ways,	in	what	is
referred	to	as	a	notebook	interface.	The	older	way	is	the	Jupyter	Notebook.
Jupyter	popularized	the	notebook	concept	in	the	free	software	arena,	and	it’s
widely	used	in	the	Julia,	Python,	and	R	communities.	In	fact,	the	word
Jupyter	is	a	mashup	of	the	names	of	those	three	programming	languages.

If	you	want	to	use	or	explore	a	notebook	interface	and	do	not	have	a
particular	reason	to	use	Jupyter,	proceed	directly	to	the	next	section	and
learn	about	Pluto.	Pluto	offers	the	same	style	of	notebook	interactivity	as
Jupyter	while	improving	on	the	concept.	For	those	who	need	to	use	Jupyter
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to	collaborate	with	others	using	the	system,	who	want	to	use	other	languages
(besides	Julia)	with	the	same	notebook	interface,	or	who	desire	to	explore
existing	Jupyter	Notebooks,	this	section	is	designed	to	get	you	started.

If	you	already	have	Jupyter	set	up	and	working	on	your	computer,	you
merely	need	to	install	the	Julia	backend.	In	the	Julia	REPL,	press	]	to	enter
the	package	mode	(see	page	11).	Make	sure	you’re	connected	to	the	internet,
and	enter	the	add IJulia	command	to	download	and	install	the	Julia	backend
for	the	notebook	and	the	packages	that	it	depends	on.	This	is	a	fairly	big
install	and	will	take	some	time,	but	the	REPL	will	keep	you	informed	with
an	animated	display	showing	the	progress	of	the	downloads	and	the
precompilation	of	modules.	When	the	process	is	complete,	enter	jupyter
notebook	either	at	a	separate	system	shell	prompt	or	using	the	REPL	shell
mode	to	launch	the	notebook.

If	you	don’t	already	have	Jupyter	installed,	after	the	installation	described
earlier	is	complete,	enter	the	following	lines	in	the	Julia	REPL:

using IJulia
notebook()

Julia	will	ask	if	you	want	to	install	Jupyter	using	the	Conda	package.	Answer
in	the	affirmative.	This	next	phase	of	installation	should	be	quicker	than	the
IJulia	install,	but	may	still	take	some	time.	When	the	software	is	ready,	Julia
will	open	a	window	or	tab	in	your	default	browser	with	the	starting	Jupyter
page.	To	start	up	Jupyter	in	future	sessions,	repeat	these	commands	in	a	Julia
REPL.

When	the	Jupyter	Notebook	page	opens,	you’ll	have	a	drop-down	list	of
installed	kernels,	or	language	backends.	Choose	the	Julia	kernel,	and	a	new
tab	or	window	will	open.	On	that	page,	you	can	enter	Julia	expressions	in
“cells.”	When	you	press	CTRL-ENTER	while	the	cursor	is	in	a	cell,	Julia	will
evaluate	the	expression	and	print	the	result	in	an	output	cell	underneath	it.

Because	we	are	in	a	web	browser,	the	system	can	take	advantage	of	the
ability	to	format	text	and	display	graphics.	Figure	1-2	shows	a	Jupyter
Notebook	after	I’ve	executed	a	few	cells.



Figure	1-2:	Using	Jupyter	with	Julia

The	last	cell	is	a	command	to	create	a	surface	plot,	which	directly	embeds
the	plot	in	the	page.

You	don’t	need	to	worry	about	saving	your	work	with	Jupyter,	as	it	makes
frequent	autosaves,	as	indicated	with	the	notice	near	the	top	of	the	page	in
Figure	1-2.

Sharing	your	work	is	as	simple	as	sending	the	on-disk	form	of	the
notebook	to	your	colleagues.	Everything	is	in	one	file,	including	the	graphs
and	other	images,	which	by	default	are	encoded	as	SVG.	Jupyter	Notebook



files	have	the	.ipynb	extension,	and	are	stored	in	the	directory	where	you
started	the	REPL.

If	you	are	going	to	use	Jupyter	extensively,	consult	the	detailed
documentation	at	https://jupyter.org	to	learn	more	about	all	of	its	features.

Pluto:	A	Better	Notebook
Pluto	is	a	notebook	interface	to	Julia	that	uses	a	web	browser,	similarly	to
Jupyter.	Although	it’s	a	young	project,	it’s	already	used	routinely	by	a	large
community	and	has	significant	advantages	over	Jupyter.	Its	only	shortcoming
is	that	it	is	Julia-only,	but	this	specialization	allows	Pluto	to	take	better
advantage	of	what	Julia	has	to	offer	than	frontends	that	support	multiple
kernels.

Pluto	does	not	depend	on	anything	aside	from	a	modern	web	browser	and
Julia.	To	install	it,	press	]	to	enter	the	package	mode	in	the	Julia	REPL	and
execute	the	add Pluto	command.	After	everything	downloads	and	installs,
press	BACKSPACE	to	exit	the	package	mode,	and	execute	this	code	in	the
REPL:

using Pluto
Pluto.run()

A	new	window	or	tab	will	open	in	your	default	web	browser	with	the
Pluto	welcome	page,	which	looks	like	Figure	1-3.

https://jupyter.org


Figure	1-3:	The	Pluto	welcome	page

Here	you’ll	see	links	for	opening	a	fresh	notebook,	continuing	work	on
an	existing	one,	or	examining	sample	notebooks.	The	sample	notebooks
cover	a	variety	of	subjects	and	are	well	done	and	instructive.

A	Pluto	notebook	is	a	web	page	where	you	can	enter	Julia	expressions	in
“cells.”	Pressing	CTRL-ENTER	while	the	cursor	is	in	a	cell	will	cause	Julia	to
execute	the	code	in	that	cell	as	well	as	all	the	cells	that	depend	on	it.	If,	for
example,	you	define,	or	redefine,	a	variable	in	a	cell	and	execute	it,	and	you
have	a	second	cell	that	uses	that	variable,	Pluto	will	execute	that	second	cell
after	the	first	one	is	done.	If	a	third	cell	depends	on	the	result	from	the



second	cell,	Pluto	will	execute	that	one	next,	and	so	on.	After	each	cell	is	run,
its	result	is	displayed	above	the	input	cell.	You	can	watch	the	progress	of
execution	passing	from	cell	to	cell	by	observing	the	animated	progress	bars
on	their	left	borders.

Pluto	determines	the	order	of	execution	by	calculating	a	dependency	graph
for	all	the	cells	on	the	page.	Using	the	dependency	graph	means	that	the
results	shown	on	the	page	are	independent	of	the	visual	order	in	which	they
are	arranged,	and	of	the	order	in	which	you	decide	to	execute	cells.	What
you	see	is	completely	determined	by	the	code	in	the	cells,	so	you	can	share
your	notebooks	with	collaborators	and	everyone	will	see	the	same,	consistent
notebook.	This	is	the	major	advance	over	other	notebooks,	such	as	Jupyter,
where	the	results	displayed	on	the	page	are	the	consequence	of	the	order	in
which	the	cells	were	run	and	may	even	depend	on	cells	that	have	been
deleted.

Pluto’s	behavior	is,	in	some	ways,	similar	to	a	spreadsheet,	and	offers	the
same	live,	reactive	experience.	Even	die-hard	terminal	users	such	as	myself
enjoy	using	Pluto	for	certain	kinds	of	exploratory	computation.	Its	ability	to
embed	graphics	and,	as	we’ll	see	in	later	chapters,	incorporate	graphical
controls	such	as	sliders	and	color	pickers	creates	a	rich	environment	for
experimenting	with	code	and	data.

Figure	1-4	shows	a	Pluto	page	with	a	simple	matrix	calculation.	I	created
it	by	clicking	the	link	to	start	a	new	notebook	in	the	welcome	page.	Pluto
opened	a	new	tab	and	the	browser	switched	to	it,	and	I	entered	expressions
in	three	cells	and	pressed	CTRL-ENTER	to	evaluate	them.



Figure	1-4:	Matrix	calculations	in	the	Pluto	notebook

Figure	1-4	shows	the	main	elements	of	the	Pluto	interface.	At	the	top	is
the	path	of	the	notebook	file.	Until	you	type	this	in,	a	message	in	that	space
will	invite	you	to	do	so.	To	the	right	of	that	is	a	save	button,	but	you	only
need	to	use	it	if	you	change	the	location	of	the	file	and	want	to	save
immediately.	Every	time	you	execute	a	cell,	Pluto	saves	your	work
automatically.

In	the	first	two	code	cells	I’ve	defined	two	small	matrices,	m	and	n,	and	in
the	third	cell,	I	asked	for	their	matrix	product.	(This	is	a	preview	of	the	array



operations	that	we’ll	explore	in	Chapter	2.)	Keep	in	mind	that	in	Pluto,	the
results	are	printed	above	the	input	cells.

So	far,	we	could	have	done	this	the	same	way	in	the	REPL.	The
difference	here	is	that	if	we	change	any	of	the	numbers	in	m	or	n	and	run	the
cell	with	its	new	definition,	the	matrix	product	is	instantly	recalculated	and
the	revised	result	replaces	the	old	one	without	any	further	action	by	the	user.
In	the	REPL,	we	would	have	to	type	m * n	again,	and	the	new	result	would	be
printed	below	that,	possibly	scrolling	other	information	off	the	screen.

In	Pluto,	because	the	results	displayed	are	independent	of	the	order	in
which	they	appear	on	the	page,	we	can	rearrange	the	cells	to	provide	a	good
exposition,	without	worrying	about	affecting	the	calculations.	We	can
combine	Julia	expressions	with	text	formatted	using	Markdown	or	HTML,
and	turn	our	notebook	into	an	article	or	a	live	explanatory	text.

In	the	final	cell,	I’ve	entered	a	question	mark	(?)	followed	by	the	name	of
a	data	type,	Matrix.	As	soon	as	you	enter	the	question	mark	and	begin	typing,
a	live	help	window	opens,	displaying	documentation	about	what	you’ve
typed	so	far.	As	you	add	letters,	the	documentation	changes	to	reflect	what
you’ve	typed,	and	you	can	stop	when	you	see	what	you	want.

The	help	window	stays	there,	displaying	documentation	about	whatever
you	type	into	any	cell,	whether	or	not	you	ask	for	help.	If	it	becomes
distracting,	click	the	little	down	arrow	to	tuck	the	window	away.	Because	of
Pluto’s	close	integration	with	Julia,	it	has	other	conveniences,	such	as	tab
completion,	that	work	the	same	way	as	in	the	REPL.

The	text	file	that	backs	the	notebook	page,	stored	at	the	location	you
entered	at	the	top,	is	a	normal	Julia	module	file.	You	can	import	it	into	other
Julia	programs,	edit	it	directly,	and	put	it	into	version	control.	You	are	not
locked	into	the	Pluto	notebook,	but	can	use	the	code	you	develop	there	in
other	Julia	projects.

Pluto	is	a	new	and	innovative	way	to	develop	programs	and	carry	out
exploratory	computation	that	is	fun	to	use.	Even	if	you	turn	to	it	only	now
and	then,	you	should	install	it	and	become	familiar	with	the	interface.	Follow
Pluto	developments	and	find	more	documentation	at
https://github.com/fonsp/Pluto.jl.

Integrated	Development	Environments
Both	Vim	and	Emacs	can	serve	as	capable	IDEs	for	Julia	by	installing	the

https://github.com/fonsp/Pluto.jl


plug-ins	described	in	their	respective	sections	earlier.	Traditional	IDEs	don’t
afford	as	much	of	a	critical	advantage	for	languages	like	Julia	as	they	might
for	more	verbose	and	ceremony-laden	languages	such	as	Java	or	C++,	where
many	developers	consider	them	essential.	A	text	editor	is	all	you	need	for
writing	Julia	programs.

However,	some	users	prefer	a	“real”	IDE	or	may	already	be	accustomed
to	one.	The	Julia	IDE	situation	is	in	flux	at	the	moment	of	writing.	An	IDE
called	Juno,	consisting	of	a	plug-in	for	the	Atom	editor,	was	essentially	the
official	IDE	for	Julia,	but	work	on	it	has	ceased.	As	the	language	moves
forward,	Juno	will	not	keep	up.	IDE	development	for	Julia	has	shifted	to	a
plug-in	for	VS	Code,	a	popular	IDE	from	Microsoft.

You	can	download	VS	Code	from	its	GitHub	repository	at
https://github.com/microsoft/vscode	and	compile	for	your	system.	A	quicker
route	for	Linux,	macOS,	or	Windows	is	to	download	the	appropriate
package	file	from	https://code.visualstudio.com/Download	and	follow	your
system’s	normal	install	procedure.	Microsoft	also	offers	branded	versions	as
binary	downloads.	These	may	contain	small	enhancements,	and	are	released
under	a	Microsoft	product	license.

After	installing	the	base	VS	Code	program,	you	will	install	the	Julia	plug-
in,	which	you	can	do	from	within	the	IDE.	Figure	1-5	illustrates	how	to	do
this.

https://github.com/microsoft/vscode
https://code.visualstudio.com/Download


Figure	1-5:	Installing	the	Julia	plug-in	within	VS	Code

The	screenshot	shows	the	left-hand	area	of	the	VS	Code	window,	with
the	extension	icon	selected.	I’ve	entered	“Julia”	into	the	extension	search	box
at	the	top,	and	the	program	is	displaying	a	list	of	publicly	available
extensions	that	match.	When	you	perform	this	search,	the	list	will	likely	look
different,	but	you	want	the	extension	titled	simply	“Julia,”	which,	in	this
case,	is	at	the	top	of	the	list.	Click	the	blue	Install	button	to	download	and
install	the	plug-in.

Quit	VS	Code	and	restart	it	after	installing	the	plug-in.	If	you	have	set
your	path	properly,	as	described	in	“Installation”	on	6,	press	CTRL-SHIFT-P
(CMD-SHIFT-P	on	macOS)	to	open	a	command	window	and	execute	the	Julia:



Start REPL	command.	A	Julia	REPL	should	open	in	a	pane	at	the	bottom	of
the	window.	It	behaves	just	like	the	normal	REPL	described	on	page	10,
with	all	REPL	modes	available,	and	using	your	color	and	other
customizations.

In	addition	to	typing	directly	in	the	REPL,	you	can	open	an	existing	or
new	file	for	editing.	Julia	code	is	syntax	colored,	and	there	are	syntax-aware
commands	for	moving	through	the	code	and	manipulating	its	structures.
The	documentation	at	https://www.julia-vscode.org/docs/stable/	consists	largely
of	blank	pages	at	the	time	of	writing,	but	I	expect	this	situation	to	be
improved	soon.	Open	the	command	window	and	type	Julia:	to	discover
Julia-specific	commands	and	then	scroll	through	the	list.	If	you	see	a
command	you’ll	be	using	often,	this	list	contains	buttons	next	to	each
command	that	allow	you	to	define	keyboard	shortcuts.

I	recommend	defining	a	shortcut	for	the	“Send	Current	Line	or	Selection
to	REPL”	command.	This	allows	you	to	send	any	expression	or	statement
directly	from	the	editor	to	the	REPL	for	execution.

If	you	execute	a	plot	command	in	the	REPL,	the	plot	appears	in	its	own
dedicated	pane	within	the	VS	Code	window.	Figure	1-6	shows	the	main	part
of	the	window	as	it	appears	on	my	laptop,	with	the	light	background	selected
from	among	VS	Code’s	three	appearance	options.

https://www.julia-vscode.org/docs/stable/


Figure	1-6:	Using	the	Julia	plug-in	in	VS	Code

In	the	top	pane,	I’m	editing	a	file	with	a	few	lines	of	Julia	code,	which	I’ve
sent	directly	to	the	REPL	in	the	bottom	pane.	Although	you	may	not
understand	all	the	language	syntax	yet,	you	may	be	able	to	form	an	idea	of
what	the	expressions	are	intended	to	return.	After	trying	some	arithmetic	to
see	if	the	setup	is	working,	I	define	a	range	of	numbers,	assigned	to	the	x
variable,	and	then	plot	a	function	applied	to	each	value	in	the	list.	At	the	top
right,	the	plot	window	has	appeared.

Recommendations



As	the	choice	of	tools	is	a	matter	of	personal	preference,	I’ve	tried	to	provide
enough	information	about	all	the	main	ways	of	interacting	with	Julia	and
editing	Julia	programs	to	allow	you	to	choose	the	methods	that	most	appeal
to	you.	If	you	are	already	in	the	habit	of	using	Vim,	Emacs,	or	any	other	tool
for	programming,	you	don’t	need	to	learn	anything	new	or	change	your
workflows	to	use	Julia.	Use	what	you	are	familiar	with,	as	Julia	can	easily
adapt	to	it.

If,	however,	you’re	not	yet	committed	to	any	specific	tooling,	I	have	a
recommendation.	I	suggest	that	you	install	Vim,	along	with	the	Julia-specific
plug-ins	described	in	“Text	Editors”	on	page	14.	Vim	takes	some	getting
used	to,	but	the	long-term	rewards	are	worthwhile,	as	it	is	an	efficient	and
flexible	editor,	and	it	makes	working	alongside	the	REPL	easy.

If	Vim	is	new	to	you,	to	ease	the	burden	of	learning	both	a	new	language
and	an	unfamiliar	editor	simultaneously,	consider	working	through	Pluto,	as
well	as	in	the	REPL	directly,	while	you	take	your	time	to	become
comfortable	with	a	new	editor.

Be	aware	that	this	reflects	my	personal	preferences,	and	you	may	prefer	a
different	environment.	For	example,	if	you	find	working	in	a	browser-based
notebook	appealing,	there	is	no	reason	you	can’t	do	all	of	your	Julia	work
within	Pluto.	My	only	negative	recommendation	is	not	to	stick	with	a
primitive	editor	that	has	no	REPL	or	language	support,	as	doing	so	will	hold
you	back	in	the	long	run.

FURTHER	READING

My	article	“The	Scientist’s	Linux	Toolbox”	in	Linux	Pro	Magazine
(https://www.linuxpromagazine.com/Issues/2020/241/Scientist-s-
Toolbox)	provides	more	information	about	Julia	and	other	software
useful	to	scientists	computing	on	Linux.
In	“An	Introduction	to	Pluto”	(https://lwn.net/Articles/835930/),	I
describe	the	development	of	the	Pluto	notebook,	give	some
examples	of	its	use,	and	contrast	it	with	the	popular	Jupyter
Notebook	interface.
A	useful	ANSI	color	code	table	is	available	at
https://misc.flogisoft.com/_media/bash/colors_format/256_colors_bg.png.

https://www.linuxpromagazine.com/Issues/2020/241/Scientist-s-Toolbox
https://lwn.net/Articles/835930/
https://misc.flogisoft.com/_media/bash/colors_format/256_colors_bg.png


Go	to	https://gitforwindows.org	for	a	Windows	solution	that
provides	Git,	a	terminal	program,	and	some	more	conveniences.

https://gitforwindows.org


2
LANGUAGE	BASICS

Learning	another	language	is	not	only	learning	different	words	for	the
same	things,	but	learning	another	way	to	think	about	things.

—Flora	Lewis

Sometimes	people	new	to	programming	ask	why	there	are	so	many
computer	languages.	They	all	have	different	syntaxes.	Some	use	braces	and
semicolons,	like	C	and	JavaScript;	some	use	whitespace,	like	Python;	some
are	notorious	for	a	proliferation	of	parentheses,	like	the	Lisp	family;	and
some	use	keywords,	like	Julia.

However,	differences	in	syntax	are	not	the	real	reason.	With	experience,
variations	in	language	punctuation	become	trivialities.	It’s	also	true	that
some	languages	are	faster	than	others,	or	have	different	demands	on
memory,	although	these	are	often	properties	of	implementations	rather	than
the	languages	themselves,	but	performance	is	not	the	real	reason	either.

The	fundamental	reason	for	the	persistence	of	different	languages	and
language	families	is	that	they	are	based	on	different	ideas.	Each	language
represents	a	unique	conceptual	framework	in	which	to	express	computations.
When	we	write	a	program,	we	are	not	simply	telling	a	machine	what	to	do.
If	that	were	the	case,	we	would	all	write	in	the	machine	code	into	which	our
programs	are	ultimately	translated.	Instead,	we	are	telling	people,	including



ourselves,	about	a	computation.	Computer	languages	are	human	languages.
As	you	begin	your	journey	through	Julia,	it’s	important	to	keep	this	in

mind.	You	are	not	learning	merely	a	collection	of	incantations	for	getting
the	computer	to	do	what	you	want.	You	are	learning	a	way	of	thinking:	a	set
of	concepts	that	you	can	use	to	organize	computational	ideas.	If	you	master
these	ideas,	your	programs	will	do	what	you	expect,	will	perform	well,	and
will	be	clear	to	others	and	even	to	your	future	self.

That	being	said,	most	of	these	overarching	ideas	will	come	out	in	the
application	chapters	in	Part	II.	In	this	chapter,	we	cover	the	nitty-gritty:	the
bricks	and	stones	out	of	which	you	will	build	your	cathedrals.

These	elements	are	the	blocks	with	which	you	structure	your	Julia
programs—functions,	loops,	and	decisions—and	the	data	types	they	interact
with,	such	as	strings,	various	kinds	of	numbers,	and	collections.	After	you
finish	this	chapter,	you	will	know	enough	about	Julia	to	write	your	first
programs.

The	Syntax:	Data	Types,	Expressions,	and	Blocks
In	this	section	we’ll	learn	about	the	fundamentals	of	Julia	syntax	for	creating
the	basic	structures	used	in	almost	every	Julia	program.	We’ll	also	be
introduced	to	our	first	Julia	data	types.

Throughout	this	chapter	I’ll	refer	to	the	REPL,	but	these	references
apply	equally	well	to	any	interactive	environment	for	Julia,	such	as	Pluto	or
VS	Code.

Types	of	Numbers
All	values	in	Julia	have	a	type,	just	as	in	almost	all	programming	languages.
One	of	the	basic	types	is	that	of	a	number,	but,	just	as	in	mathematics,	there
are	different	types	of	numbers.	In	math	we	have	positive	and	negative
numbers,	integers	and	real	numbers,	and	more	exotic	varieties	such	as
complex	numbers	and	quaternions.	Positive	integers,	or	counting	numbers,
have	been	with	us	since	before	recorded	history,	but	somebody	had	to	invent
all	the	other	kinds	of	numbers.	In	“User-Defined	Types”	on	page	234,	you’ll
learn	how	you	can	invent	your	own	kinds	of	Julia	numbers	if	you	want	to,
but	for	now,	let’s	look	at	some	of	the	built-in	types.



NOTE

Perhaps	more	than	any	other	chapter	in	this	book,	it	is	important	to	read	this
one	with	the	Julia	REPL	open	and	try	things	out	as	you	read	about	them.
Experiment	with	variations	of	the	examples	in	the	chapter	until	you	feel
comfortable	with	the	syntax.	You	will	use	everything	in	this	chapter	repeatedly
in	all	your	programs,	so	making	these	details	second	nature	now	will	be	helpful.

If	you	type	a	number	without	a	decimal	point	into	the	REPL	and	press
RETURN	or	ENTER,	Julia	will	give	you	the	same	number	back.	A	number	by
itself	is	an	expression,	which	means	something	that	returns	a	result.	Since	the
result	of	evaluating	a	plain	number	is	the	number	itself,	that’s	what	you	get.
These	whole	numbers,	by	default,	are	given	the	type	of	Int64,	which	just
means	an	integer	that	takes	up	64	bits	of	storage.	(I’m	assuming	a	64-bit
system,	which	is	a	pretty	safe	assumption	these	days.	If	you	are	using	a	32-bit
system,	replace	Int64	with	Int32	throughout	this	chapter.)

A	number	with	a	decimal	point	has	the	type	Float64.	The	numbers	1	and
1.0	may	have	the	same	values,	but	they	are	different	to	the	computer.	The
first	is	an	Int64,	and	the	second	is	a	Float64.	This	difference	has	various
repercussions	that	will	appear	in	our	later	work.

Since	Julia	is	intended,	among	other	things,	for	scientific	calculation,
naturally	it	can	deal	with	complex	numbers	as	well.	The	syntax	for	entering
complex	numbers	uses	im	for	the	imaginary	unit	(the	square	root	of	–1).	So	to
enter	the	number	3	+	4i,	you	write	3 + 4im.	The	type	of	that	number	is	called
Complex{Int64},	because	the	numerical	parts	happen	to	be	integers.	The	type	of
3.4 + 1.1im	is	called	Complex{Float64}.	This	notation	means	that	it’s	a	Complex	type
that	has	Float64	parts.

You	can	write	very	big	or	small	numbers	using	the	usual	computer
version	of	scientific	notation:	6.02e23	means	6.02	×	1023.	Numbers	written	in
this	way	are	Float64s,	even	if	you	write	the	mantissa	as	an	integer.	The
exponent	must	be	an	integer,	and	if	you	prefer,	you	can	use	an	uppercase	E.

Julia	will	rewrite	your	entry	in	“proper”	scientific	notation.	For	example,
if	you	enter	1234e19	in	the	REPL,	it	will	repeat	the	value	as	1.234e22.	And
apparently,	it	prefers	the	lowercase	e.

There	are	a	few	other	numerical	types,	such	as	the	unsigned	integer
UInt64,	but	this	is	enough	for	now.	We’ll	go	deeper	into	the	type	system	in



Chapter	8.

Operations	and	Expressions
Addition,	subtraction,	and	multiplication	work	as	you	would	expect	on	all
these	types	of	numbers.	The	order	of	operations	is	the	same	as	in
mathematics	and	is	similarly	overridden	using	parentheses.

Julia	performs	obvious	type	promotion	when	needed.	The	expression	1 + 1
involves	only	integers,	and	the	result	will	be	the	integer	2;	there	is	no	reason
to	return	any	other	type.	But	the	expression	1.0 + 1	involves	a	floating-point
number,	so	it	will	return	the	Float64	result	2.0.

Try	some	arithmetic	in	the	REPL	involving	operands	of	various	types,
including	complex	numbers,	to	make	sure	you	understand	how	promotion
works.	Integers	are	promoted	to	floats,	and	both	of	those	are	promoted	to
complex	numbers,	as	needed.

Division	and	Rational	Numbers
Julia	has	three	kinds	of	division.	Every	language	has	to	decide	what	to	do
about	expressions	such	as	1/2.	The	problem	is	that	both	operands	are
integers,	but	the	result	is	not.	Some	languages,	such	as	Fortran	and	Python
2,	evaluate	that	expression	to	be	zero,	because	that	is	the	result	of	taking	the
integer	part	before	the	decimal	point	in	the	answer.	Other	languages	will
promote	the	result	into	a	float	and	return	0.5;	that’s	what	Julia	does.

If	you	want	a	form	of	division	that	behaves	like	Fortran,	you	can	use	the
division	symbol	(÷):	1	÷	2	gives	0	and	4	÷3	gives	1.	To	enter	this	operator	in	the
REPL,	enter	\div	followed	by	TAB	(see	“Unicode	Characters”	on	page	13).

The	third	form	of	division	uses	the	//	operator	to	define	Rational	numbers,
which	are	ratios	of	two	integers.	Using	this	data	type,	you	can	perform	exact
arithmetic	on	rationals	without	converting	the	results	into	floats.	For
example,	the	expression	1//2 + 1//3	evaluates	to	5//6.	Julia	reduces	rational
numbers	to	their	simplest	form,	so	if	you	enter	4//6	in	the	REPL,	it	will
return	the	result	2//3.

What	do	you	think	you	get	if	you	enter	1//2 + 1//2	in	the	REPL?	If	you
tried	it,	you	may	have	been	surprised	to	find	the	result	printed	as	1//1	rather
than	simply	1.	The	result	of	expressions	involving	only	Rational	numbers	is	a
Rational	number.	If	instead	you	evaluate	1//2 + 0.5,	you	get	the	Float64	number



1.0.

Exponentiation	and	Infinities
To	raise	a	number	to	a	power,	use	the	^	operator.	Here	are	the	results	of
exponentiation	of	various	types	of	numbers:

julia> 2^3
8

julia> 2^0.5
1.4142135623730951

julia> 2^-1
0.5

julia> (1 + im)^2
0 + 2im

julia> (1 + im)^(1 + im)
0.2739572538301211 + 0.5837007587586147im

julia> 0^-1
Inf

julia> (0//1)^-1
1//0

All	of	those	results	should	be	as	expected,	but	the	last	two	infinite	results
merit	some	discussion.	Division	by	zero,	as	in	the	next-to-last	expression
shown	or	the	equivalent	1/0,	evaluates	to	Inf,	which	has	the	Float64	data	type.
The	Rational	number	1//0	is	also	infinite,	but	it	has	the	Rational	data	type.	It
behaves	as	an	infinity	should:	since	adding	a	finite	number	to	infinity	doesn’t
change	it,	we	have	1//0 + 1	yielding	1//0.	The	type	promotion	rules	still	apply,
so	if,	instead,	we	evaluate	1//0 + 1.0	we	get	Inf:	still	infinity,	but	the	Float64
infinity.

Dividing	by	infinity	gets	us	zero,	as	it	should.	However,	we	get	a	Rational
zero	or	a	Float64	zero,	depending	on	the	operands:

julia> 1/(1//0)
0//1

julia> 1.0/(1//0)
0.0

There	are	other	sizes	of	floating-point	numbers,	just	as	there	are	integers.



If	we	contrived	to	divide	a/b	where	a	had	the	value	1.0	of	type	Float32	and	b
had	the	value	0.0	of	the	same	data	type,	Julia	would	return	yet	another	kind
of	infinity:	Inf32.	You’ll	learn	how	to	make	variables	contain	types	of	your
choosing	in	“User-Defined	Types”	on	page	234.

Modular	Arithmetic
Another	useful	operator,	%,	returns	the	remainder	when	dividing	its	first
operand	by	its	second.	For	example,	5 % 2	returns	1.	As	with	the	other
arithmetic	operators,	integers	yield	an	integer	and	floats	yield	a	floating-
point	result.

Chains	of	Expressions
We’ve	briefly	seen	the	use	of	the	semicolon	to	separate	expressions	and,	in
the	REPL,	to	suppress	the	printing	of	a	result	(see	page	11).	If	we	have	a	list
of	expressions	on	a	line,	separated	by	semicolons,	the	result	of	the	chain	of
expressions	is	the	result	of	the	last	expression:

julia> 1; 2; 5+3
8

We	assign	values	to	variables	in	Julia	using	the	=	operator.	Since	the	value
of	a	chain	of	expressions	is	the	last	one,	the	assignment

r = (1; 2; 5+3)

results	in	r	having	the	value	8.	If	we	had	omitted	the	parentheses,	r	would
have	been	assigned	the	value	1,	because	then	the	assignment	r = 1	would
have	been	a	separate	expression.

Coefficient	Syntax
In	cases	where	it	is	not	ambiguous,	we	can	juxtapose	a	literal	number	with	a
variable	(or	function,	as	we’ll	see	later)	to	signify	multiplication.	If	the
juxtaposition	creates	an	ambiguity,	Julia	will	complain,	and	we	must	revert	to
using	the	*	operator.

Multiplication	written	this	way	has	one	important	difference	from	the	use
of	*.	It	has	a	higher	operation	precedence	than	the	other	arithmetic



operations,	so	it	is	an	exception	to	the	usual	order	of	operations.	A	few
examples	should	make	this	clear:

julia> w = 2
2

julia> 2w
4

julia> 2^2w
16

julia> 2^2*w
8

julia> 1/2w
0.25

julia> 1/2*w
1.0

In	an	expression	such	as	1/2*w,	the	1/2	is	calculated	first	and	the	result	is
multiplied	by	2.	But	since	juxtaposition	binds	more	tightly	than	explicit
arithmetic	operators,	in	the	expression	1/2w,	the	2w	is	calculated	first.

This	unusual	syntax	feature,	along	with	the	ability	to	use	Greek	letters
and	other	Unicode	symbols,	helps	to	make	math	in	code	look	more	like
math.

Expression	Blocks
Another	way	to	group	expressions	together	is	with	a	begin...end	block.	This
unit	of	code	starts	with	the	keyword	begin	and,	as	do	all	blocks	in	Julia,	ends
with	the	keyword	end.	You	can	enter	blocks	directly	in	the	REPL.	Julia	sees
that	you	are	defining	a	block	and	will	not	print	the	prompt	until	the
structure	is	complete:

julia> begin
           1
           2
           5 + 3
       end
8

julia>



As	with	chains	of	expressions	separated	by	semicolons,	the	result	of	this
group	of	expressions	is	the	final	one.	You	can	even	assign	the	result	of	the
block	to	a	variable:

julia> eight = begin
           1
           2
           5 + 3
       end
8

julia> eight
8

The	value	of	an	expression	is	printed	by	default	in	the	REPL	and	in	other
interactive	environments	such	as	Pluto.	However,	if	you	are	running	a
program	stored	in	a	file,	you	need	to	use	print(expression)	to	see	the	value	on
the	terminal.

Logic
Logical	values	are	represented	by	true	and	false,	which	are	of	type	Bool.	The
important	logical	operators	are	logical	AND,	which	is	represented	by	&&,	and
logical	OR,	which	uses	||.	These	operators	are	short-circuiting,	which	means
that,	going	from	left	to	right	in	an	expression,	once	the	final	value	of	an
expression	can	be	determined	to	be	true	or	false,	Julia	will	stop	and	not
evaluate	the	remainder.	For	example,	in	the	expression	false && more stuff,	as
soon	as	Julia	hits	the	&&	operator,	it	will	stop	and	return	false,	and	never	try
to	evaluate	the	more stuff.	It	can	do	this	because	the	result	of	this	expression
must	be	false,	regardless	of	whether	the	more stuff	is	true	or	false.	The
programmer	must	be	aware	of	this	and	not	depend	on	all	parts	of	a	logical
expression	being	evaluated.	In	an	expression	such	as	false && (cc = 17),	the
part	after	the	&&	is	never	even	looked	at,	and,	therefore,	the	assignment	never
happens.

If	you	need	to	ensure	that	all	parts	of	a	logical	expression	are	evaluated,
use	the	operators	&	and	|	instead.	These	are	the	bitwise	AND	and	OR
operators.	They	transform	numbers,	as	we’ll	see	in	later	chapters,	but	act	as
logical	operators	when	applied	to	Bools.

Bool	values	usually	arise	from	the	evaluation	of	comparisons,	which	use	the
operators	>,	<,	<=,	>=,	==,	and	===.	The	negations	of	the	equality	tests	are	!=	and



!==.	The	<=	operator	can	also	be	spelled	using	the	nicer-looking	Unicode
symbol	≤,	and	>=	is	synonymous	with	≥.	The	expression	1 < 5	evaluates	to	true,
5 ≥ 5	is	also	true,	and	so	on.

You	may	have	noticed	that	there	are	two	equality	comparisons.	The	first,
==,	compares	two	values,	regardless	of	type.	So	5 == 5.0	will	give	us	true,	even
though	one	number	is	an	integer	and	the	other	is	a	float.	The	other	equality
comparison	tests	whether	two	values	are	identical	in	all	respects.	It	only
returns	true	if	no	program	could	be	written	where	it	could	possibly	make	a
difference	which	value	was	used.	Therefore,	the	expression	5 === 5.0	returns
false	because	it	is	certainly	possible	for	a	program	to	distinguish	between
integers	and	floats.

Comparisons	such	as	>	don’t	usually	need	associated	negations,	because
the	negation	of	>	is	<=.	In	fact,	mathematicians	sometimes	pronounce	that
comparison	as	“not	larger	than.”	If	you	need	to	express	this	as	an	explicit
negation,	you’ll	have	to	negate	a	whole	expression	using	the	syntax	!(a > b),
at	least	at	the	time	of	writing.	Including	negated	comparisons	in	the
language,	which	would	be	written	as	!<,	for	example,	is	under	consideration.

Looping:	while	Blocks
So	far	we’ve	learned	about	one	kind	of	block:	the	expression	block	using
begin.	A	common	way	to	write	a	loop,	or	piece	of	code	that	is	to	be	repeated
until	some	condition	no	longer	holds,	is	with	another	kind	of	block:	the	while
block.	As	with	all	blocks,	it	is	terminated	with	the	end	keyword.	The
condition	that	terminates	the	block	uses	the	comparisons	that	we	learned
about	in	the	previous	section.	Listing	2-1	is	a	simple	example	of	a	while	block
in	action	in	the	REPL.

julia> j = 0;

julia> while j < 5
           println(j^2)
           j = j + 1
       end
0
1
4
9
16

Listing	2-1:	Looping	in	the	REPL



The	println()	function	prints	its	value	on	a	separate	line.	But	why	did	we
have	to	use	this	at	all,	when	expressions	in	the	REPL	are	supposed	to	be
printed	automatically?

The	begin	blocks	return	a	result,	which	is	the	last	expression	evaluated	in
the	block.	But	while	blocks	do	not	return	a	result,	so	there	is	nothing	to	print.
Whatever	we	want	to	see,	we	have	to	print	explicitly.	This	is	probably	a
good	thing,	as	loops	can	evaluate	many	expressions	and	are	likely	to	produce
a	mass	of	output	that	we	don’t	want.

Notice	also	the	initialization	of	the	j	variable	before	the	start	of	the	loop.
In	the	REPL,	this	creates	a	global	variable	that	is	accessible	and	modifiable
anywhere.	After	the	while	loop	is	finished,	the	value	of	j	equals	5.	This	is
another	behavior	that	differs	between	the	REPL	(and	other	interactive
contexts	such	as	Pluto)	and	programs	in	files.	(I’ll	explain	this	in	more	detail
in	“Scope”	on	page	52.)

if	Blocks
Julia	has	conventional	conditional	evaluation	control	flow	using	the	logical
comparison	operators	(see	“Logic”	on	page	31)	and	the	keywords	if,	elseif,
and	else.	You	may	nest	your	if	blocks	at	will;	each	one	is	terminated	with	the
end	keyword.

Here	is	a	little	program	that	we	can	run	in	the	REPL	to	tell	us	if	a
number	is	even	or	odd:

if n % 2 === 0
    "That number is even."
elseif n % 2 === 1
    "That number is odd."
else
    "I only deal with integers."
end

If,	before	entering	this	block,	you	define	n	to	be	a	number,	it	will	give	you
the	answer.	If	n	is	undefined	or	something	besides	a	number,	you’ll	get	an
error	message.

The	===	comparison	between	two	integers	makes	the	code	refuse	to
handle	any	kinds	of	numbers	other	than	integers.	Try	the	code	with,	say,	n =
6	and	then	with	n = 6.0	to	see	what	happens.

Unlike	while	blocks,	if	blocks	return	a	result,	so	an	explicit	print()



statement	isn’t	needed.

NOTE

I’ve	used	indentation	to	clarify	the	structure	of	the	code	blocks	in	the	examples
through-out	this	book.	Indentation	has	no	syntactic	meaning	in	Julia,	but	using
it	is	a	good	habit	that	makes	programs	easier	to	read.	You	can	indent	code	lines
any	way	you	please,	or	not	at	all,	and	it	will	not	affect	their	execution.	Spaces	are
needed	to	separate	tokens,	and	newlines	are	equivalent	to	semicolons	in	their	role
as	statement	and	expression	separators.	Otherwise,	Julia	doesn’t	care	about
whitespace	in	general.

Arrays
The	various	numbers	that	we’ve	seen	so	far	are	all	types	that	hold	single
values.	Arrays	are	a	class	of	Julia	data	types	that	hold	collections	of	values.
Scientific	calculation	typically	involves	operations	over	vectors,	matrices,	or
higher-dimensional	arrays,	and	Julia	offers	a	convenient,	concise	syntax	for
manipulating	these	data	structures,	as	well	as	excellent	array	performance.

Try	typing	[1, 2, 3]	in	the	REPL.	This	is	the	syntax	for	creating	a	one-
dimensional	array,	also	called	a	vector,	of	three	elements.	Its	data	type	is
called	Vector.	As	before,	the	REPL	will	print	the	expression	back,	but	this
time	in	a	different	form:

julia> [1, 2, 3]
3-element Vector{Int64}:
 1
 2
 3

It	also	prints,	before	the	value,	a	bit	of	information	about	the	kind	of
value	that	it’s	about	to	display.	Julia	routinely	does	this	in	the	REPL	when
printing	anything	more	complicated	than	a	simple	data	type.	The
information	is	provided	to	help	you	interpret	the	display.	This	is	useful
because,	when	constructing	arrays,	Julia	may	change	the	types	of	some	of	the
elements	that	you	included	under	some	circumstances,	and	it’s	good	to	know
about	that.	Also,	the	feedback	about	the	shape	of	the	array	tells	you	whether
your	array	operations	did	what	you	expected.



Here	is	a	case	where	Julia	changes	some	numerical	types:

julia> a = [4, 5.0, 6]
3-element Vector{Float64}:
 4.0
 5.0
 6.0

We	give	a	a	value	entered	as	a	literal	array	with	three	elements:	an
integer,	a	float,	and	another	integer.	The	message	from	the	REPL	confirms
that	this	is	a	3-element Vector,	but	the	notation	Vector{Float64}	means	that	the
elements	of	the	Vector	are	all	of	type	Float64.	Julia	has	promoted	the	integers	to
floats.	We	can	confirm	this	by	looking	at	the	numbers	it	prints,	which	are
now	all	adorned	with	decimal	points.	When	you	initialize	an	array	with	a
literal	expression	like	the	one	just	shown,	Julia	will	always	try	to	make	the
types	of	its	elements	uniform	by	promoting	values	as	needed.	This	helps
performance	for	later	calculations	using	the	array.	The	vertical	arrangement
of	numbers	is	the	way	Julia	prints	vectors	when	possible.	As	we’ll	see	shortly,
it	has	conventions	for	printing	arrays	of	various	shapes.

Sometimes	it’s	impossible	to	promote	elements	so	that	they	all	have	the
same	type.	The	elements	of	an	array	can	be	anything,	including	other	arrays,
as	shown	in	Listing	2-2.

julia> a = [4, [5.0, 6], 7]
3-element Vector{Any}:
 4
  [5.0, 6.0]
 7

Listing	2-2:	A	heterogeneous	array

Julia	is	still	following	the	printing	convention	of	arranging	the	elements
in	a	column.	The	first	and	third	elements	are	integers,	and	the	second
element	is	a	vector.	But	notice	how	Julia	promoted	the	integer	6	in	that
vector	to	a	float	so	that	all	of	its	elements	would	have	the	same	type.	The
message	from	the	REPL	tells	us	that	the	type	of	the	complete	vector	is
Vector{Any},	which	means	it’s	a	Vector	that	can	hold	a	mixture	of	any	types.
This	particular	array	has	two	elements	of	type	Int64	and	one	element	of	type
Vector{Float64}.

We	can	get	the	value	of,	or	assign	a	value	to,	an	element	of	an	array	by
indexing	using	square	brackets.	Array	indices	in	Julia,	as	in	Fortran	and	many



other	languages	designed	with	scientific	and	mathematical	work	in	mind,
start	at	1.

In	the	following	example,	I’ve	entered	a	few	array	indexing	expressions
into	the	REPL	after	performing	the	assignment	in	Listing	2-2:

julia> a[1]
4

julia> a[end]
7

julia> a[2]
2-element Vector{Float64}:
 5.0
 6.0

julia> a[2][2]
6.0

Notice	the	use	of	the	keyword	end	to	point	to	the	last	element	of	an	array;
this	is	convenient	when	you	don’t	know	its	length.	The	second	element	of
the	array	is	another	array;	we	can	index	into	that	array	in	one	expression
using	a	double	index,	as	in	the	last	expression.	If	you	do	need	to	find	the
length	of	an	array,	use	the	length()	function.

Ranges
Julia	can	construct	ranges	of	numbers	with	a	special	notation.	The	syntax	1:5
represents	a	range	of	integers	from	1	to	5	inclusive,	counting	by	1.	You	can
count	by	numbers	other	than	1	by	using	a	version	of	the	syntax	with	three
numbers.	For	example,	1:3:12	represents	a	range	with	the	numbers	1, 4, 7, 10.
The	range	can	count	down	as	well,	using	a	negative	step,	as	in	5:-1:2.	Finally,
any	of	the	numbers	in	the	range	specifier	can	be	a	float	rather	than	an
integer,	in	which	case	all	the	numbers	in	the	range	will	be	floats.

Ranges	are	not	arrays.	They	live	in	a	kind	of	dimension	of	potentiality,
ready	to	be	brought	to	life	by	being	used.	In	the	meantime,	they	take	up
almost	no	space.	One	way	to	bring	them	to	life	is	with	the	collect()	function
that	turns	them	into	a	bona	fide	Vector:

julia> collect(1:5)
5-element Vector{Int64}:
 1



 2
 3
 4
 5
julia> [collect(1:2:10), collect(2.5:-0.5:0)]
2-element Vector{Vector{Float64}}:
 [1.0, 3.0, 5.0, 7.0, 9.0]
 [2.5, 2.0, 1.5, 1.0, 0.5, 0.0]

The	first	example	turns	a	range	into	a	vector,	while	the	second	uses	two
collect()	operations	inside	a	literal	vector,	resulting	in	a	vector	of	two	vectors.

The	most	common	use	of	ranges	is	in	for	loops,	which	is	covered	in
“More	Looping:	for	Blocks”	on	page	46.

Ranges	are	also	useful	in	indexing	expressions	to	extract	more	than	one
element	from	an	array:

julia> v = collect(0:5:20)
5-element Vector{Int64}:
  0
  5
 10
 15
 20

julia> v[2:4]
3-element Vector{Int64}:
  5
 10
 15

julia> v[end:-2:1]
3-element Vector{Int64}:
 20
 10
  0

These	examples	show	how	we	can	extract	subsets	of	arrays	and
conveniently	reverse	the	order	of	elements	by	using	a	decreasing	range.	We
can	extract	noncontiguous	elements	by	supplying	the	range	with	a	step.	For
instance,	v[1:2:5]	yields	[0, 10, 20].

Arrays:	Beyond	the	First	Dimension
The	Vectors	we’ve	seen	up	to	now	are	Arrays	of	one	dimension.	Even	though
the	elements	of	a	Vector	may	contain	other	collections,	the	Vector	itself	is	still
one-dimensional.	Julia	has	arrays	with	any	number	of	dimensions.	Those
with	one	dimension	have	their	own	type	because	they	are	a	common	special



case,	and	optimizations	can	be	applied	to	routines	that	calculate	on	them.

Matrices
Arrays	with	two	dimensions	also	have	a	particular	type,	called	a	Matrix.
Matrices	arise	in	many	contexts	in	mathematics	and	physics,	and	in	all	kinds
of	calculations.	They	represent	linear	transformations	that	rotate	vectors,
encode	the	coefficients	of	systems	of	linear	equations,	are	used	as	simple	data
tables,	and	much	more.

Think	of	a	matrix	as	a	rectangular	table	of	values.	You	can	enter	such
tables	directly	to	define	them:

julia> m = [5 6
            7 8]
2×2 Matrix{Int64}:
 5  6
 7  8

When	entering	the	definition	of	the	matrix	m	into	the	REPL,	I	press
ENTER	after	the	number	6	to	insert	a	line	break.	Julia’s	REPL	knows	that	the
input	is	not	complete	because	of	the	unclosed	square	bracket,	so	it	doesn’t
try	to	evaluate	anything,	but	instead	waits	for	more	input.	After	I	close	the
bracket	and	press	ENTER,	the	REPL	sees	a	complete	expression,	makes	the
assignment	to	the	variable	m,	and	returns	the	expression,	preceded	by	a
description	of	its	shape	(2×2),	type	(Matrix),	and	the	type	of	the	collection’s
elements	(Int64).

You	can	take	advantage	of	this	behavior	to	break	an	expression	between
lines,	as	in	the	following	example:

julia> (1 + 1
          + 1
       )
3

Without	the	opening	parenthesis,	the	addition	on	the	first	line	would	have
been	performed	immediately	because	it’s	a	complete	expression.

Matrices	vs.	Vectors	of	Vectors
Make	sure	that	you	understand	the	difference	between	the	2×2 Matrix m	and
this	vector:



julia> v = [[5, 6], [7, 8]]
2-element Vector{Vector{Int64}}:
 [5, 6]
 [7, 8]

The	latter	is	a	one-dimensional	array,	whereas	the	former	has	two
dimensions.

Some	indexing	should	make	this	clear:

julia> v[1]
2-element Vector{Int64}:
 5
 6

Here,	the	first	element	of	the	Vector v	is	itself	a	vector.
A	double	index	selects	the	second	element	of	this	first	element:

julia> v[1][2]
6

In	this	case,	we	get	the	number	6.
A	colon	standing	alone	means	to	select	everything—in	this	case,	the

entire	second	element,	which	is	a	Vector:

julia> v[2][:]
2-element Vector{Int64}:
 7
 8

In	this	example	the	stand-alone	colon	is	unnecessary,	as	just	v[2]	would	yield
the	same	result.

Since	m	is	a	Matrix,	or	a	two-dimensional	array,	we	select	its	elements	using
two	indices:

julia> m[1, 1]
5

In	this	expression,	the	index	[1, 1]	means	row	1,	column	1,	where	the
number	5	resides.

In	a	Matrix,	the	colon	index	is	useful:

julia> m[2, :]
2-element Vector{Int64}:
 7



 8

Here	it’s	selecting	the	entire	second	row.

Scalar	Indexing
The	usual	way	to	index	an	n-dimensional	array	is	with	n	indices:	one	for	a
vector,	two	for	a	matrix,	and	so	on,	as	in	the	examples	just	shown.	If	you	use
the	wrong	number	of	indices,	you’ll	get	an	error:

julia> m[1, 2, 3]
ERROR: BoundsError: attempt to access 2×2 Matrix{Int64} at index [1, 2, 3]

Julia	is	complaining	that	we	tried	to	index	a	two-dimensional	array	as	if	it
had	three	dimensions.

What	do	you	think	we	would	get	if	we	used	just	one	index	on	m,	as	if	it
were	a	vector?	Oddly	enough,	we	don’t	get	an	error,	but	it	may	not	be
obvious	at	first	why	we	are	getting	these	particular	results:

julia> m[1]
5

julia> m[2]
7

julia> m[3]
6

julia> m[4]
8

Apparently	we	can	access	the	four	elements	of	this	matrix	as	if	they	were
arranged	as	a	one-dimensional	array,	and	they	seem	to	be	arranged	by
column.	This	is	indeed	the	case,	and	it	reflects	how	the	numbers	in	the
matrix	are	arranged	in	memory.	The	numbers	5,	7,	6,	and	8	are	the	contents
of	the	matrix	reading	down	by	column,	starting	with	the	first	column	and
then	the	second.	This	is	called	column-major	order,	and	is	the	way	the
elements	are	stored	in	memory.

Concepts	like	“two-dimensional	arrays”	are	abstractions	that	make	it
easier	to	think	about	calculations	and	write	programs.	In	the	machine,	the
elements	of	the	array	are	stored	in	one	long	row.	The	numbers	in	a	Julia
Vector,	Matrix,	or	other	Array	type	are	guaranteed	to	be	stored	contiguously.



Using	a	single	integer	as	an	index	is	called	scalar	indexing.
The	scalar	index	can	go	from	1	to	the	total	size	of	the	matrix.	If	we	try

m[5],	we	get	an	error	message	because	the	matrix	contains	only	four	elements.
The	Julia	programmer	doesn’t	have	to	be	overly	concerned	with	the

machine	representation	of	data	structures	or	think	much	about	how	they	are
arranged	in	memory,	but	this	detail	is	important.	A	calculation	that	loops
over	the	elements	of	a	matrix	should	proceed	in	column-major	order	rather
than	row-major	order	because	the	former	method	accesses	contiguous	values
in	memory	and	will	be	more	efficient.

Indexing	Arrays	with	Arrays
In	addition	to	numbers	and	ranges,	elements	of	an	index	expression	can
themselves	be	vectors.	Listing	2-3	sets	up	a	slightly	larger	matrix	so	we	have
more	room	to	play.

   julia> m = [11 12 13 14
               15 16 17 18
               19 20 21 22];

➊ julia> m[2, [2, 3]]
   2-element Vector{Int64}:
    16
    17

   julia> m[[1, 2], [3, 4]]
   2×2 Matrix{Int64}:
    13  14
    17  18

Listing	2-3:	Indexing	with	vectors

After	defining	a	3×4	Matrix,	I	extract	the	elements	from	the	second	and
third	columns	of	the	second	row	by	using	a	vector	for	the	column	part	of	the
indexing	expression	➊.	Since	the	result	is	one-dimensional,	Julia	puts	the
elements	into	a	Vector.

Then	I	pull	out	the	elements	in	the	first	two	rows	and	the	third	and
fourth	columns.	Since	the	result	is	two-dimensional,	it	becomes	a	(smaller)
Matrix.

We’ve	seen	that	when	we	access	elements	of	a	multidimensional	array
using	a	single	index,	Julia	interprets	that	as	an	index	into	the	one-
dimensional	array	made	by	taking	the	elements	in	column-major	order.



When	indexing	an	array,	you	can	refer	to	all	of	its	dimensions:

Array[rows, columns, third_dimension, fourth_dimension]

With	this	style,	each	of	the	expressions	separated	by	commas	must	be	a
Vector	or	a	number.	(A	number	is	treated	as	a	Vector	with	one	element,	as
evaluating	5[1]	shows.)	The	Vectors	can	be	in	the	form	of	range	expressions	or
simple	colons,	which	are	interpreted	as	the	Vectors	they	represent.

Alternatively,	you	can	index	it	as	if	it	were	a	Vector:

Array[Array]

When	using	this	second	style,	the	Array	in	the	index	expression	can	have
any	shape.	The	result	will	have	the	shape	of	that	Array.	It	can	be	larger	than
the	original	Array	because	you	can	repeat	elements.	The	only	limitation	is
that,	if	the	original	Array	has	n	elements,	you	can	use	indices	only	in	the	range
[1,	n].	The	same	limitation	applies	to	the	first	style,	but	to	each	individual
indexing	vector,	where	n	means	the	length	of	the	array	along	that	dimension.
In	other	words,	you	can’t	index	elements	that	don’t	exist.

Let’s	take	another	look	at	the	second	indexing	style	with	a	couple	of
examples,	using	the	Array m	defined	earlier:

julia> m[[2 3
          4 5]]
2×2 Matrix{Int64}:
 15  19
 12  16

julia> m[[end 1 9
          9   1 end]]
2×3 Matrix{Int64}:
 22  11  21
 21  11  22

In	both	of	these	cases,	the	result	has	the	same	shape	as	the	array	used	as
an	index.	The	end	keyword	picks	out	the	last	element	in	the	source	array.	In
the	first	style	of	indexing,	it	picks	out	the	last	element	along	the	relevant
dimension.

Concatenation	Operators
It’s	not	always	convenient	to	use	line	breaks	to	signify	the	end	of	a	row	when



defining	matrices,	so	in	Julia,	you	can	use	a	semicolon	instead:

julia> m1 = [6 7
             8 9];

julia> m2 = [6 7; 8 9];

julia> m1 == m2
true

The	line	break	and	the	semicolon	are	both	ways	to	spell	the	vertical
concatenation	operator.	This	has	another	name,	vcat,	so	another	way	to
construct	the	m1	or	m2	matrix	is	with	vcat([6 7], [8 9]).	In	this	expression,	[6 7]
and	[8 9]	are	two	arguments	to	the	vcat()	function.

The	space	used	to	separate	the	numbers	6	and	7	in	the	definitions	of	m1
and	m2	just	shown	is	an	operator,	too,	called	the	horizontal	concatenation
operator.	It	has	its	own	explicit	function	as	well,	called	hcat().	It’s	important	to
understand	the	difference	between	[6, 7],	which	is	a	Vector	containing	two
elements,	and	[6 7],	which	is	a	1×2 Matrix	formed	by	horizontal	concatenation
invoked	by	a	space.	(Tabs	can	be	used	as	well	as	spaces	for	this	purpose.)

The	following	are	a	few	final	examples	to	clarify	the	results	of	the	two
different	directions	of	concatenation.	Here’s	one	way	to	construct	a	matrix:

julia> [[6 7]; [8 9]]
2×2 Matrix{Int64}:
 6  7
 8  9

This	construction	combines	vertical	and	horizontal	concatenation	in	one
expression.	The	spaces	between	the	numbers	concatenate	them	horizontally
into	arrays	with	a	single	row	each.	The	semicolon	vertically	concatenates
each	of	those	matrices	into	a	larger	matrix	with	the	first	row	on	top	of	the
second.

Replacing	the	semicolon	with	a	space	produces	a	different	shape,
horizontally	joining	the	two	one-row	matrices	into	a	longer	one-row	matrix:

julia> [[6 7] [8 9]]
1×4 Matrix{Int64}:
 6  7  8  9

In	the	third	example,	we’ll	ask	for	two	vectors	to	be	horizontally
concatenated:



julia> [[6, 7] [8, 9]]
2×2 Matrix{Int64}:
 6  8
 7  9

The	result	in	this	example	surprises	some	people	new	to	the	language.
You	may	not	immediately	understand	why	we	don’t	get	the	same	result	as	in
the	previous	example.	Horizontal	concatenation	really	means,	for	a	Matrix,
joining	along	the	second	dimension.	Since	a	Vector	doesn’t	have	a	second
dimension,	Julia	first	has	to	change	each	Vector	into	a	2×1 Matrix,	and	then	join
them	along	the	column	dimension.

But	there	is	no	such	issue	when	we	ask	Julia	to	vertically	concatenate	the
vectors	because	that	means	to	join	them	along	their	first	dimensions:

julia> [[6, 7]; [8, 9]]
4-element Vector{Int64}:
 6
 7
 8
 9

The	result	of	this	is	a	longer	Vector.

Tuples
A	Tuple	is	similar	to	a	Vector,	with	the	important	difference	being	that	you
cannot	change	it	once	it	is	created.	Initialize	a	Tuple	the	same	way	you	create
a	Vector,	but	use	parentheses	instead	of	square	brackets	or	omit	them	entirely
if	that	does	not	create	an	ambiguity,	as	shown	in	Listing	2-4.

   julia> tup1 = (5, 6)
   (5, 6)

   julia> tup2 = 5, 6
   (5, 6)

   julia> tup1 === tup2
   true

➊ julia> tup1[1]
   5

➋ julia> tup1[1] = 9
   ERROR: MethodError: no method matching [...]

Listing	2-4:	Some	properties	of	tuples



This	example	shows	that	the	parentheses	are	optional,	and	that	two	tuples
containing	the	same	values	(in	the	same	order)	are	indistinguishable	because
they	pass	the	===	comparison.

NOTE

When	a	tuple	contains	only	one	element,	it	must	be	written	with	parentheses	and
a	comma	after	the	element—for	example,	(3,).

We	can	index	tuples	➊	as	if	they	were	vectors,	but	we	can	neither	assign
values	to	element	locations	➋	nor	change	the	tuple	in	any	way.

What	is	the	use	of	a	vector-like	collection	that	can’t	be	changed?	Tuples
can	be	used	to	store	lists	of	values	that	we	want	to	ensure	can’t	be	altered
accidentally.	Their	main	use	is	supplying	arguments	to	functions	and
collecting	results,	as	we’ll	see	shortly.

Membership
Julia	provides	another	logical	operator	that	tests	for	membership	in	a
collection.	It’s	the	in	operator,	which	can	also	take	the	form	∊,	entered	in	the
REPL	with	\in	followed	by	pressing	TAB.	In	this	case,	the	Unicode	version	is
preferred	because	it	comes	with	a	negated	form,	meaning	“not	in,”	that	looks
like	∉	and	is	entered	in	the	REPL	with	\notin	followed	by	TAB.

Here	are	some	examples:

   julia> 2 ∈ [1, 2, 3]
   true

   julia> 2 ∉ [1, 2, 3]
   false

➊ julia> 2 ∈ [1, 2.0, 3]
   true

➋ julia> [2, 3] ∈ [2, 3, 4]
   false

➌ julia> [2, 3] ∈ [[2, 3], 4]
   true

Membership	uses	comparisons	of	values	➊,	not	object	identity,	which
may	not	be	what	you	were	expecting.



In	➋,	we	get	false	because	the	Vector [2, 3]	is	not	one	of	the	members	of
the	Vector [2, 3, 4].	In	the	following	example	➌	,	we	get	a	true	result	because
the	Vector [2, 3]	is	a	member	of	[[2, 3], 4].

Strings	and	Characters
Julia	is	a	bit	unusual	in	that	single	and	double	quotation	marks	have	different
meanings:	single	quotes	indicate	characters	and	double	quotes	are	for	strings.
Char	and	String	are	two	distinct	data	types.

Characters
A	Char	is	entered	with	a	pair	of	single	quotes.	Julia	was	created	in	the	age	of
Unicode,	so	it	was	spared	the	painful	transitions	of	older	languages	such	as
Python.	Julia	is	fully	Unicode	aware.	A	Char	can	be	any	Unicode	character,
such	as	'5',	'a',	'ñ',	or	'∑'.	Under	the	hood,	it’s	a	32-bit	value	representing
the	character	with	its	UTF-8	encoding.	The	value	has	some	of	the
properties	of	a	number,	but	it	is	not,	in	fact,	a	number.

Characters	have	an	ordering,	so	you	can	ask	'a' < 'z'	and	Julia	will	tell
you	true.

NOTE

In	many	languages,	single	and	double	quotes	can	be	used	interchangeably,	and
both	signify	strings	or	characters,	with	characters	being	strings	with	only	one
letter	or	other	symbol.	Like	Elixir	and	SQL,	Julia	distinguishes	between	string
and	character	data	types:	"ab"	is	a	string,	but	'ab'	is	a	syntax	error.

You	can	add	an	integer	to	a	character,	as	in	'a' + 1,	and	Julia	will	give	you
the	next	character,	'b'.	Subtraction	gives	similar	results.	You	can	even
subtract	two	characters	to	find	the	distance	between	them:	'c' - 'a'	yields	2,
which	means	that	'a' + 2	yields	'c'.	However,	addition	of	characters	is	not
allowed.

Strings
A	String	is	entered	with	double	quotes,	like	"François".	It	is	a	type	of
collection,	similar	in	some	ways	to	a	Vector,	but	with	some	complications.	As



it	is	a	series	of	characters,	you	can	make	one	by	joining	together	single
characters.	The	operator	for	this,	unusually,	is	*.	The	designers	of	Julia
decided	not	to	employ	the	more	usual	+	for	several	reasons,	one	of	them
being	that	addition	is	commutative,	but	the	joining	of	characters	certainly	is
not:	'a' * 'b'	yields	the	string	"ab",	but	'b' * 'a'	yields	a	different	string,	"ba".
You	can	also	build	up	a	string	by	joining	other	strings:	"Fran" * "çois"
becomes	"François".

Since	strings	are	collections,	you	can	use	the	membership	operator	with
them,	but	only	for	testing	the	occurrence	of	characters:	'a' in "abc"	yields
true.

If	you	want	to	test	for	the	occurrence	of	a	string,	even	one	consisting	of	a
single	character,	in	another	string,	use	the	occursin()	function:	occursin("a",
"abc")	will	give	you	a	true	result.

One	of	the	complications	that	arises	when	treating	strings	like	vectors	is
when	trying	to	index	them:

julia> n = "François"
"François"

julia> length(n)
8

julia> n[end]
's': ASCII/Unicode U+0073 (category Ll: Letter, lowercase)

julia> n[1]
'F': ASCII/Unicode U+0046 (category Lu: Letter, uppercase)

julia> n[5]
'ç': Unicode U+00E7 (category Ll: Letter, lowercase)

julia> n[6]
ERROR: StringIndexError: invalid index [6], valid nearby indices [5]=>'ç', [7]=>'o'

Everything	was	going	fine	until	the	last	expression.	Extracting	single
elements	from	the	String	gives	us	the	Char	that	we	expect.	Why	doesn’t	n[6]
just	return	the	sixth	character?	Even	stranger,	if	we	try	n[8],	we	don’t	get	the
last	letter,	but	'i'	instead.	If	we	try	n[end],	we	do	get	the	final	letter.

The	cause	of	these	mysteries	is	that	different	Unicode	characters	take	up
different	amounts	of	space.	The	index	into	a	String	counts	the	number	of
bytes,	or	8-bit	units,	from	the	beginning	of	the	String.	Ordinary	ASCII	letters
like	“F”	and	“r”	take	up	one	byte	each,	but	“ç”	happens	to	take	up	two	bytes.



So	it	starts	at	position	5	when	counting	bytes,	but	the	next	character	is	at
position	7,	as	the	error	message	advises	us.	And	we	got	the	error	because	we
are	not	allowed	to	index	“inside”	a	character.

There	are	complicated	ways	to	avoid	this	problem	by	finding	out	the	legal
indices	for	any	String.	Fortunately,	you	won’t	have	to	learn	these	techniques,
because	one	rarely	needs	to	index	strings	directly.	If	you	need	to	iterate	over
the	elements	of	a	String	or	any	other	collection,	there	is	a	far	easier	way	to	do
so,	which	we’ll	cover	in	the	next	section.

For	very	long	strings,	especially	those	that	contain	line	breaks	and	may
contain	quote	characters,	there	is	a	more	convenient	syntax.	Delimit	these
strings	using	three	double	quotes:

julia> ls = """
       Line one.
       Line two "with a quoted section"!
       We're done.
       """
"Line one.\nLine two \"with a quoted section\"!\nWe're done.\n"

julia> print(ls)
Line one.
Line two "with a quoted section"!
We're done.

In	this	example,	using	print()	displays	strings	somewhat	differently	from
how	they	are	returned	as	results.

More	Looping:	for	Blocks
So	far,	we’ve	learned	one	way	to	iterate	over	a	section	of	code,	or	loop,	by
using	a	while	block	in	conjunction	with	a	condition	for	stopping	the	iteration.
This	is	appropriate	for	situations	when	we	want	to	do	something	repeatedly
until	something	changes—for	example,	when	reading	data	from	a	network
socket	until	the	socket	is	closed	or	calculating	a	progressively	more	accurate
solution	to	an	equation	until	the	error	is	smaller	than	some	tolerance.	In
other	situations,	we	simply	want	to	iterate	a	fixed	number	of	times	or	iterate
over	the	members	of	a	collection.	This	is	where	for	loops	come	in.

To	loop	a	fixed	number	of	times,	use	a	range	expression.	This	loop
repeats	the	calculation	in	Listing	2-1:



julia> for j in 0:4
           println(j^2)
       end
0
1
4
9
16

This	version	is	simpler	because	we	didn’t	have	to	add	1	to	j	on	each
iteration.	The	variable	takes	on	the	sequence	of	values	in	the	range
expression,	progressing	to	the	next	one	each	time	through	the	loop.	As	with
while	loops,	for	loops	do	not	return	results,	so	we	need	an	explicit	println()
statement.

We	can	use	any	kind	of	range	expression:

julia> for q in 8:-2:1
           println(1/q)
       end
0.125
0.16666666666666666
0.25
0.5

Here	we’re	counting	down	by	twos	from	8	to	1.

NOTE

You	may	substitute	=	for	the	keyword	in	in	any	for	block	if	you	prefer.	There	is
also	a	third,	fancier	option:	you	can	use	the	membership	symbol	∈,	which	we	first
met	in	“Membership”	on	page	43.

You	may	nest	as	many	for	blocks	inside	each	other	as	required.	In	cases
where	you	have	a	contiguous	loop	body,	meaning	you	don’t	have	to	do
anything	between	the	updates	of	any	of	the	loop	variables	(such	as	the
counters	i	and	j	in	the	following	listing),	Julia	provides	a	concise	syntax	that
avoids	deeply	nested	structures	on	the	page:

julia> for i ∈ 0:3, j ∈ 4:6
           println([i, j, i + j])
       end
[0, 4, 4]
[0, 5, 5]
[0, 6, 6]
[1, 4, 5]



[1, 5, 6]
[1, 6, 7]
[2, 4, 6]
[2, 5, 7]
[2, 6, 8]
[3, 4, 7]
[3, 5, 8]
[3, 6, 9]

All	the	looping	instructions	are	on	one	line,	and	we	need	only	one	end
statement.

The	same	for	block	syntax	lets	us	loop	over	vectors,	matrices,	or	other
containers:

julia> for x in [-19 23 0]
           println(abs(x))
       end
19
23
0

In	this	example,	x	takes	on	the	values	in	the	1×3 Matrix,	applying	the
absolute	value	function	to	each	one.

The	loop	can	be	over	Vector	and	Tuple	data	types	as	well,	but	a	Tuple	needs
to	be	enclosed	in	parentheses	if	used	in	the	for	statement.

You	can	loop	over	arrays	of	any	dimension:

julia> for x in [[-19 23 0]; [-1 22 -17]]
           println(abs(x))
       end
19
1
23
22
0
17

The	elements	are	printed	in	column-major	order,	reflecting	their	layout
in	memory.

Since	strings	are	containers,	too,	you	can	loop	over	them:	François

julia> for c ∈ "François"
           print(c * " • ")
       end
F • r • a • n • ç • o • i • s •



Here	we	don’t	have	to	worry	about	the	varying	lengths	of	Unicode
characters	as	the	for	loop	knows	how	to	step	from	one	character	to	the	next.

Functions
Projects	in	Julia	are	organized	around	sets	of	functions.	These	resemble
functions	in	mathematics,	in	that	they	are	maps	of	values	to	other	values.	In
Julia	the	input	and	output	values	can	be	of	any	type.

Here	is	how	to	define	a	function:

julia> function double(x)
           2x
       end
double (generic function with 1 method)

The	double()	function	takes	a	number	and	returns	twice	the	number.	For
now,	don’t	worry	about	the	message	that	the	REPL	returns.	You’ll	find	out
what	it	means	in	“Functions	and	Methods:	Multiple	Dispatch”	on	page	229.

Simple	functions	like	this	one	have	an	alternative	syntax.	You	can	shorten
this	function	definition	block	as	follows:

double(x) = 2x

Notice	that	we	don’t	need	a	print()	statement	because	a	function	returns
the	last	expression	that	it	evaluates.	Try	it	by	entering	expressions	like
double(-3.1)	in	the	REPL.	Anything	where	2x	makes	sense	will	work,	but	if
you	supply	an	argument	where	it	doesn’t,	such	as	a	string,	Julia	will	respond
with	an	error	message.

In	the	definition	of	the	function,	the	(x)	part	is	actually	a	Tuple	with	one
element,	x,	which	is	double()’s	single	argument.

Functions	can	have	any	number	of	arguments.	Here	is	one	that	gives	the
length	of	a	vector	from	the	origin	if	you	supply	the	x-,	y-,	and	z-coordinates
of	its	end:

julia> function length3d(x, y, z)
           sqrt(x^2 + y^2 + z^2)
       end
length3d (generic function with 1 method)

julia> length3d(1, 1, 1)



1.7320508075688772

Use	the	return	statement	if	you	want	the	function	to	stop	and	return	a
value.	We	can	use	this	to	modify	our	length3d()	function	to	accept	only
positive	coordinates:

julia> function length3d(x, y, z)
           if x < 0 || y < 0 || z < 0
               return "I only work with positive coordinates."
           end
           sqrt(x^2 + y^2 + z^2)
       end
length3d (generic function with 1 method)

If	we	call	length3d()	with	all	positive	arguments,	all	is	well:

julia> length3d(1, 1, 1)
1.7320508075688772

But	a	negative	argument	hits	the	return	statement:

julia> length3d(1, 1, -1)
"I only work with positive coordinates."

When	you	invoke	the	name	of	a	function	with	parentheses	and
arguments,	you	are	causing	the	function	to	execute	using	those	arguments.
This	is	called	calling	the	function.	If	you	supply	the	wrong	number	of
arguments,	such	as	trying	to	call	length3d(1, 1),	you’ll	get	an	error.	When	we
want	to	refer	to	the	function	without	calling	it,	we	simply	use	its	name
without	parentheses	or	arguments:	for	instance,	length3d.	We	can	assign
functions	to	variables,	pass	them	as	arguments	to	other	functions,	and
generally	treat	them	as	any	other	value.

The	function	in	Listing	2-5	takes	a	value	and	another	function	as
arguments	and	announces	the	result	of	applying	the	supplied	function	to	the
argument.	It	works	with	any	function	of	one	argument,	as	long	as	you	supply
an	argument	x	that	f	can	handle.

julia> function tellme(f, x)
           print("The result is ")
           f(x)
       end
tellme (generic function with 1 method)

Listing	2-5:	A	function	with	a	function	as	an	argument



Now	if	we	call	tellme(double, 3)	we	will	see	the	string	The result is 6	printed
on	the	terminal.	If	we	call	tellme(abs, -17),	the	function	prints	The result is 17.

These	two	examples	use	the	double()	function	that	we	defined	and	the
built-in	absolute	value	function.

I	mentioned	previously	that	you	don’t	need	to	use	print()	statements	to
see	the	result	a	function	returns,	so	you	may	wonder	why	there	is	one	here.
A	function	returns	the	last	expression	it	evaluates	or	returns	immediately	if	it
reaches	a	return	statement.	If	we	had	omitted	the	print()	statement	and	had
only	the	string	in	its	place,	the	value	of	the	string	would	be	evaluated	as
itself,	but	not	returned,	because	it	would	not	be	the	last	expression.	Function
execution	would	proceed	to	the	next	line	and	return	the	value	f(x).

The	print()	statement	is	not	an	expression,	but	a	statement,	meaning	that	it
does	not	return	a	result;	instead,	it	has	the	side	effect	of	causing	something	to
be	written	on	the	terminal.	So	the	function	produces	that	side	effect	and
continues	to	the	next	(last)	line,	which	is	an	expression,	whose	value	it
returns.

A	side	effect	is	anything	that	changes	the	state	of	the	world,	such	as
creating	a	file,	printing	to	a	terminal,	or	downloading	something	from	the
internet.	A	pure	function	is	a	function	that	has	no	side	effects,	but	just	returns
a	result.	Writing	pure	functions	when	possible	makes	your	code	easier	to
debug	and	reason	about,	and	it	helps	make	your	functions	composable,	which
is	the	topic	of	the	next	section.

Composing	Functions
Just	as	in	math,	composing	functions	means	to	supply	the	output	of	one
function	as	the	input	of	the	next.	Julia	supplies	three	syntaxes	for	function
composition.	The	first	two	are	the	same	as	common	mathematical	notations,
but	the	third	is	a	somewhat	different	idea.	Here	are	all	three	methods,	used
for	applying	our	double()	function	twice:

julia> double(double(3))
12

julia> (double ○ double)(3)
12

julia> 3 |> double |> double
12



The	first	way	uses	the	syntax	for	applying	a	function	to	an	argument,
where	the	argument	is	the	function	applied	to	the	number	3.	The	number
gets	doubled	and	the	result	is	itself	doubled.

The	second	way	uses	a	symbol	that	mathematicians	sometimes	use	for
composition	and	has	a	neater	appearance,	especially	as	we	can	compose	as
many	functions	as	we	want	inside	the	first	set	of	parentheses,	something	that,
using	the	first	method,	leads	to	a	proliferation	of	brackets.	The	series	of
functions	are	combined	into	a	single	composite	function,	applied	to	the
argument	list	in	the	second	set	of	parentheses.	You	can	enter	the	little	circle
in	the	REPL	using	\circ	followed	by	TAB.

The	final	option	goes	from	left	to	right,	whereas	the	previous	two	acted
from	right	to	left.	It	uses	the	pipe	operator	|>	to	create	a	pipeline.	A	value	at	the
beginning,	in	this	case	3,	is	fed	to	the	first	function	in	the	pipeline,	and	the
result	of	applying	that	function	to	the	value	is	passed	along	to	the	second
function,	and	so	on.	This	method	is	a	favorite	of	people	who	don’t	like
parentheses;	it’s	especially	suited	to	expressing	the	processing	of	data
through	a	series	of	transformations.

The	three	syntaxes	for	function	composition	are	exactly	equivalent.
Which	one	to	use	is	a	matter	of	preference	and	convenience	in	a	particular
situation.

Creating	Anonymous	Functions
Sometimes	you	need	to	define	a	function	“on	the	fly,”	without	giving	it	a
name.	This	happens	when	you	want	to	supply	a	function	as	an	argument	to
another	function,	but	the	one	you	supply	needs	to	live	only	as	long	as	the
computation	performed	by	the	outer	function.	That	is,	it’s	disposable.

The	syntax	for	anonymous	functions	makes	their	operation	as	maps
explicit,	using	the	operator	->	to	indicate	the	mapping.	To	define	an
anonymous	doubling	function,	write	x -> 2x.

If	the	function	has	multiple	variables,	enclose	them	in	parentheses:	(x, y)
-> x/(1 + y).

We’ll	make	extensive	use	of	anonymous	functions	in	Chapter	4,	where
they’ll	make	it	easy	for	us	to	plot	mathematical	functions.

Broadcasting



One	of	the	most	useful	and	innovative	operators	in	Julia	is	the	humble	dot.
With	this	single	character	you	can	turn	any	function	into	one	that	operates
element	by	element	on	an	array,	a	process	called	broadcasting.

You	can	transform	your	own	functions	into	array	functions	simply	by
appending	a	dot	to	their	names:

julia> f(x) = 2x
f (generic function with 1 method)

julia> f.([1, 2, 3])
3-element Vector{Int64}:
 2
 4
 6

Here	we	define	a	doubling	function	and	broadcast	it	to	the	elements	of	a
vector.	Naturally,	broadcasting	works	with	arrays	of	any	shape.

There	is	much	more	to	say	about	the	central	idea	of	functions	in	Julia.	As
with	most	topics	in	this	chapter,	this	is	just	an	introduction.	You	will	meet
other	facets	of	functions	in	later	chapters	as	we	need	them.

Scope
The	scope	of	a	variable	refers	to	the	region	of	code	where	it	is	visible	and
modifiable.	When	you	define	a	variable	outside	any	block,	with	a	statement
like	a = 1,	the	variable	a	is	global	because	you’ve	defined	it	in	the	global	scope.

The	interactive	style	of	computation	in	the	REPL	or	Pluto	leads	to	the
routine	use	of	global	variables,	as	we	improvise	within	an	interactive
workspace	where	it’s	convenient	to	have	everything	immediately	available.
When	writing	permanent	programs	in	files,	however,	it’s	a	good	practice	to
limit	your	use	of	global	variables.	They	are	best	confined	to	constants	that
need	to	be	available	to	more	than	one	function	in	your	project.

If	you	need	to	use	such	global	constants,	declare	them	with	the	const
keyword;	for	example,	const e = exp(1).	This	both	ensures	that	you	won’t
accidently	change	their	value	later	and	helps	the	compiler	to	generate	faster
code.

This	practice	has	several	benefits.	For	one,	it	allows	you	to	move	a
function	from	one	file	to	another	or	reuse	your	functions	without	worrying
about	whether	they	depend	on	global	quantities	defined	elsewhere.	It	keeps



functions	self-contained.
Loops	and	functions	have	somewhat	different	scoping	rules	in	non-

interactive	contexts.	After	we	master	them,	we’ll	learn	about	a	slight
modification	to	the	rules	that	makes	working	in	the	REPL	more	convenient.

Not	all	blocks	create	local	scopes.	Expression	blocks,	beginning	with	the
begin	keyword	(see	“Expression	Blocks”	on	page	30),	do	not	establish	their
own	scopes.	Their	scope	is	the	same	as	the	scope	of	whatever	they’re
contained	within.	If	the	begin	block	is	at	the	top	level,	it’s	in	the	global	scope.

The	same	holds	for	if	blocks:	they’re	simply	part	of	their	immediate
environment	as	far	as	scope	is	concerned.

The	other	blocks	introduced	in	this	chapter	establish	local	scopes,	but	there
are	two	different	varieties.	One	type	of	scope	applies	to	function	definition
blocks	while	a	different	type	applies	to	for	and	while	blocks.

Scoping	Rules	for	Functions
Inside	a	function	definition,	all	variables	are	local	unless	you	decorate	them
with	the	global	keyword.	You	can	use	this	notation	one	time,	anywhere
within	the	function	definition,	because	variables	can	be	of	only	one	variety	in
any	one	block.

If	you	assign	to	a	variable	that	doesn’t	already	exist	as	a	local	variable,	a
new	one	is	created.	If	it	does	already	exist,	because	the	function	definition	is
inside	another	block	where	it’s	defined,	that	preexisting	variable	is	used.

None	of	this	has	to	do	with	variables	supplied	as	function	arguments.
Those	are	simply	local;	but	see	“Mutability”	on	page	55.

A	few	examples	should	help	to	make	this	clear:

s = 0
function glos()
    s = s + 1
end

glos()

If	you	save	this	listing	in	a	file	and	run	it	by	entering	julia	filename,	you’ll
get	an	error	message	complaining	that	s	is	undefined.	Although	s	is	already
defined	to	be	0	in	the	global	scope,	its	assignment	within	the	function
definition	creates	a	new	local	variable.	However,	this	variable	is	undefined
on	the	right-hand	side	of	the	statement.



This	program	file,	however,	runs	without	error:

s = 0
function glos()
    print(s)
end

glos()

It	prints	out	0.	Since	there	is	no	assignment	to	s	within	the	function	body,	no
new	local	variable	is	created	and	the	function	uses	the	existing	global
variable.

What	if	we	really	had	intended,	in	the	first	example,	to	use	that	global	s?

s = 0
function glos()
    global s = s + 1
    print(s)
end

glos()

This	program	prints	out	1.	The	declaration	of	s	as	global	within	the	function
means	that	the	variable	inside	the	function	is	the	same	as	the	one	outside.

We’ve	looked	at	the	relationship	between	variables	defined	inside	a
function	and	global	variables.	We	also	need	to	consider	what	happens	if	a
variable	inside	the	function	block	shares	a	name	with	a	local	variable	outside
the	function.	This	can	happen	if	everything	is	enclosed	within	another	block
—say,	another	function	definition:

function outer()
 ➊ s = 0
    function glos()
     ➋ s = s + 1
    end
    glos()
    print(s)
end

outer()

When	this	program	is	run,	it	prints	1.	The	variable	s	is	a	local	variable
because	it’s	defined	inside	a	function	block	➊.	Therefore,	according	to	the
scoping	rules,	when	it’s	assigned	to	inside	the	inner	function	glos()	➋,	a	new
local	variable	is	not	created;	rather,	the	existing	one	is	used.



Scoping	Rules	for	Loops
Both	kinds	of	loops,	for	blocks	and	while	blocks,	create	local	scopes,	but	they
have	one	small	change	in	behavior	from	function	blocks.

If	you	assign	to	a	variable	inside	a	loop,	and	a	variable	with	the	same
name	already	exists	in	the	global	scope,	two	things	happen:	the	variable	is
treated	as	local	within	the	loop,	with	the	value	of	its	global	version
unaffected	by	whatever	happens	inside	the	loop,	and	Julia	prints	a	warning
about	this	on	the	terminal	when	you	run	the	program	from	a	file	(but	not
from	the	REPL,	as	discussed	in	the	next	section).

The	reason	for	the	warning	is	that	shadowing	a	global	variable	inside	a
loop	creates	an	ambiguity:	Julia	is	not	sure	whether	you	mean	to	create	a
new	local	variable	or	use	the	global	one.	Rather	than	refusing	to	run	your
program,	Julia	picks	one	option,	but	warns	you	that	you	may	have	intended
something	different.	Remove	the	ambiguity	by	using	the	local	or	global
keyword	to	decorate	the	variable	inside	the	loop.

An	even	better	solution	for	program	files	is	to	put	the	loop	and	the
variables	it	references	inside	a	function.	Then	the	variables	will	not	be	in	the
global	scope	and	Julia	will	not	issue	a	warning.	In	general,	while	we	do	many
calculations	in	the	REPL	outside	functions,	it’s	a	good	practice	to	place	as
much	as	possible	inside	functions	when	writing	program	files.

The	behavior,	therefore,	is	exactly	the	same	as	in	the	case	of	function
blocks,	aside	from	the	warning.	Julia	issues	this	warning	in	the	case	of	loops,
but	not	function	definitions,	because	while	functions	generally	use	only	the
variables	passed	in	as	arguments	and	their	private,	local	variables,	it	is
common	for	loops	to	be	initialized	by	variables	set	up	outside	the	loops.
When	everything	is	local,	as	when	the	loop	and	its	initialization	are	all	inside
a	function,	there	is	little	chance	that	the	programmer	repeated	the	variable
name	inadvertently.	However,	when	the	variable	external	to	the	loop	is
global,	there	is	the	distinct	possibility	that	this	happened	by	accident.	The
loop	could	have	been	copied	from	another	file	that	used	the	same	variable
names	by	chance,	or	the	global	variables	could	have	been	defined	somewhere
in	the	file	thousands	of	lines	away	from	the	loop.	To	help	keep	you	safe,	Julia
follows	the	scoping	rules,	but	warns	you	about	existing	global	variables
shadowed	in	the	loop.

Modification	of	Scoping	Rules	in	Interactive	Contexts



Inside	the	REPL,	Pluto,	or	other	interactive	contexts,	different	scoping	rules
for	while	and	for	loops	apply.	Function	blocks	use	the	same	rules	in	both
interactive	and	noninteractive	contexts.

In	the	REPL,	if	a	variable	is	assigned	within	a	loop,	and	the	variable	does
not	exist	in	the	global	REPL	scope,	a	new	local	variable	is	established.	If,
however,	a	global	variable	with	the	same	name	already	exists,	that	global
variable	is	used	and	no	warning	is	issued.

This	modification	to	the	scoping	rules	makes	work	in	the	REPL,	with	all
of	its	global	variables,	more	convenient.	It	also	simplifies	the	process	of
debugging	parts	of	functions	inside	the	REPL.	Imagine	that	a	loop,	along
with	its	initialization,	is	copied	from	within	a	big	function	defined	in	a	file
and	pasted	into	the	REPL.	In	the	file,	the	initialization	variables	are	local,
but	when	pasted	into	the	REPL,	they	appear	in	the	global	scope.	The	REPL
rule	exceptions	allow	loops	and	their	initializations	to	behave	the	same	way
they	do	in	their	natural	habitat,	nestled	within	function	blocks.

Mutability
In	several	places	in	this	chapter,	the	===	operator	appears	as	a	test	of	strict
equality:	two	values	are	only	equal	in	the	===	sense,	or	identical,	if	they	have
the	same	types	as	well	as	the	same	values.

Now	that	we	know	more,	we	can	revisit	the	===	comparison	in	other
contexts.	The	following	example	might	surprise	you:

julia> [1] === [1]
false

Both	sides	of	the	comparison	look	the	same:	both	are	Vectors	and	both
contain	the	same	single	value	with	the	same	Int64	type.	And,	as	you	can
check,	1 === 1	is	true.

The	reason	for	the	result	in	the	listing	just	shown	is	that	every	time	you
create	an	array,	you	are	creating	a	new	object	with	its	own	location	in
memory.	The	two	arrays	on	the	two	sides	of	the	comparison	are	not
identical	because	they	reside	at	different	memory	addresses.	It	is	possible	to
write	a	program	that	distinguishes	between	them,	which	is	the	formal
criterion	that	forces	the	===	comparison	to	yield	false.

A	number,	in	contrast,	is	just	a	number,	with	no	particular	location	in



memory.	The	integer	1	is	always	identical	to	itself.
This	becomes	clearer	if	we	assign	these	objects	to	variables.	If	we	make

the	assignments	v1 = [1]	and	v2 = [1],	the	comparison	v1 === v2	will	yield	false,
while	v1 == v2	gives	us	true.	The	two	variables	have	the	same	values,	but	are
different	objects.	They	are	not	identical.	Think	of	the	variables	as	references,
or	pointers,	to	the	memory	addresses	where	the	arrays	begin.

Arrays	are	mutable.	Here	is	one	consequence	of	the	mutability	of	arrays:

   julia> a = [1]
   1-element Vector{Int64}:
    1

   julia> b = a
   1-element Vector{Int64}:
    1

➊ julia> b[1] = 7
    7

➋ julia> a
   1-element Vector{Int64}:
    7

   julia> b === a
   true

First	we	define	a	to	be	a	Vector	with	one	element.	Then	we	set	b	to	be
equal	to	a.	We	then	change	➊	the	first	(and	only)	element	of	b	to	be	7.	After
that,	when	we	take	a	look	at	a	➋,	we	find	that	it’s	changed,	too.	Its	first
element	is	now	also	7.	The	clue	to	why	this	happens	is	in	the	last	line:	b	and	a
are	not	simply	equal,	they	are	identical.	When	we	make	the	assignment	b = a
we	make	b	point	to	the	same	memory	address	as	a.	The	two	variables	are	now
pointers	to,	or	names	for,	the	same	object.	So	if	we	change,	or	mutate,	one,
we	see	the	same	change	in	the	other.

Some	objects	in	Julia	are	immutable:

julia> a = 1
1

julia> b = a
1

julia> b = 7
7

julia> a



1

After	making	the	assignments	to	a	and	b,	they	become	alternative	names
for	the	numbers	1	and	7.	A	table	keeps	track	of	the	names	we’ve	given	to
values,	and	it	lives	somewhere	in	memory,	but	the	variables	are	names	for
values,	not	for	memory	addresses.

In	the	second	line,	we	tell	Julia	to	also	use	b	as	a	name	for	the	number	1.
After	that,	we	change	our	mind	and	want	b	to	mean	7,	but	that	does	not
change	the	assignment	of	a	as	a	name	for	1.	You	can’t	mutate	the	number	1.
It	will	always	be	1,	and	has	always	been	1.	But	you	can	mutate	an	array	by
changing	what	it	contains.

Functions	That	Mutate	Their	Arguments
We	can	mutate	an	array	by	assigning	directly	to	one	of	its	elements	with	an
indexing	expression.	We	can	also	mutate	an	array	by	adding	an	element	to	its
end,	making	it	larger.	We	can	always	do	this	with	concatenation.	For
example,	if	v	is	a	Vector	of	numbers,	v = [v; 7]	sticks	the	number	7	onto	the
end,	increasing	its	length	by	one.

However,	in	calculations	where	we	are	going	to	be	doing	that	many
times,	this	is	inefficient.	If	we	get	to	a	point	where	there	is	not	enough	room
in	memory	to	keep	the	elements	of	v	contiguous,	Julia	will	have	to	relocate
it,	perhaps	repeatedly.	A	more	efficient	option	is	to	use	a	built-in	function
made	for	this	purpose.	If	we	call	push! (v, 7),	that	mutates	v	just	as	in	the
concatenation	version,	but	more	efficiently.	When	push!()	runs	out	of	space,
it	moves	the	array	and	reserves	memory	for	its	later	expansion.	Every	time	it
finds	it	needs	to	do	this,	it	reserves	a	geometrically	increasing	amount	of
space.	The	function	is	designed	to	handle	the	common	scenario	of	a	loop	in
which	an	array	is	appended	to	in	a	time-	and	space-efficient	manner.

The	use	of	the	exclamation	point	in	the	name	push!()	warns	and	reminds
the	user	that	this	is	a	function	that	mutates	its	argument(s).	It’s	not	part	of
the	actual	syntax,	but	a	strongly	held	convention.	Usually	functions	in	Julia
use	their	arguments	as	inputs	to	a	calculation	that	returns	a	result:	what	we
called	“pure	functions”	earlier.	Functions	with	!	in	the	name	change	their
arguments,	and	may	or	may	not	also	return	a	result.	The	push!()	function
does	return	a	result	as	well:	the	mutated	array.

As	the	use	of	the	exclamation	point	is	a	convention	rather	than	a	rule



enforced	by	the	language,	it’s	possible	for	any	function	to	mutate	its	mutable
arguments,	but	the	convention	is	valuable,	and	Julia	programmers	are	careful
in	following	it.

The	opposite	of	push!()	is	pop!(),	which	mutates	its	argument	by	removing
its	last	element	and	returning	that	element	as	a	result.

Strings	Are	Immutable
Although	the	String	type	is	a	collection,	like	Vector,	Matrix,	and	the	other	array
types,	it	is	immutable.

We	can	index	a	string,	but	we	can’t	assign	to	its	elements,	because	strings
cannot	be	changed:

julia> s = "abc"
"abc"

julia> s[1:2]
"ab"

julia> s[3] = 'Z'
ERROR: MethodError: no method matching setindex!(::String, ::Char, ::Int64)

This	shows	that	we	can	index	the	string	just	as	we	index	a	vector,	but
we’re	not	allowed	to	change	any	of	its	elements.

If	we	want	to	make	a	new	string,	we	have	to	define	it	literally	or	build	it
from	parts	of	existing	strings	or	from	characters,	using	concatenation	and
indexing.	Here	is	a	little	function	that	takes	a	string	and	returns	a	decorative
version	of	it:

julia> function string_decorator(s)
           decorated = ""
           for char in s
               decorated = decorated * char * " • "
           end
           decorated[1:end-5]
       end
string_decorator (generic function with 1 method)

julia> string_decorator("Julia")
"J • u • l • i • a"

The	end-5	in	the	last	line	of	the	function	is	there	to	omit	the	final	bullet
and	the	space	before	it—a	bullet	takes	up	four	bytes.

In	general,	the	technique	used	here	of	building	up	a	string	by	repeatedly



redefining	it	is	a	good	idea	only	for	small	strings	and	limited	numbers	of
redefinitions.	Because	strings	are	immutable,	each	time	through	the	loop
creates	a	new	object,	which	is	wasteful	of	memory.

Here’s	how	to	write	a	function	that	performs	the	same	task	without
creating	a	bunch	of	strings:

julia> function better_string_decorator(s)
           a = String[]
           for char in s
               push!(a, char * " • ")
           end
           join(a)[1:end-5]
       end
better_string_decorator (generic function with 1 method)

julia> better_string_decorator("PARTY!")
"P • A • R • T • Y • !"

The	built-in	join()	function	takes	an	array	of	strings	and	joins	them
together	into	one	longer	string.	It	will	convert	other	types	to	strings	if	there
is	a	sensible	way	to	do	so,	which	means	join([5, "6", 'X'])	returns	"56X".

A	sort	of	opposite	to	join()	is	split().	This	function	takes	a	string	and
turns	it	into	an	array	of	shorter	strings:

julia> split("a     b c")
3-element Vector{SubString{String}}:
 "a"
 "b"
 "c"

julia> split("a||b||c", "||")
3-element Vector{SubString{String}}:
 "a"
 "b"
 "c"

It	splits	on	whitespace	of	any	length,	unless	you	supply	a	second	argument	in
the	form	of	a	character	or	string.	In	that	case,	it	will	use	the	second
argument	as	a	delimiter;	the	delimiters	themselves	are	discarded.

Comments	in	Code
An	introduction	to	a	language	would	not	be	complete	without	including	the



syntax	for	comments.
A	single-line	comment	in	Julia	begins	with	a	hash	mark	(#)	and	can	appear

on	its	own	line	or	following	a	line	of	code.	In	other	words,	Julia	ignores
everything	after	a	naked	#	character.

To	include	a	multiline	comment,	begin	it	with	#=	and	end	it	with	=#.

Congratulations
If	you’ve	mastered	everything	in	this	chapter,	you	are	now	able	to	write
useful	Julia	programs	to	solve	many	types	of	problems.

Most	of	the	programs	you	write	will	not	be	completely	self-contained,
however.	Modern	programmers	build	solutions	by	combining	their	own
code	with	functions	from	existing	libraries	written	by	others	and	by
themselves.	The	next	chapter	will	introduce	a	system	built	into	Julia	that
helps	you	manage	these	libraries	and	your	own	programs.



3
MODULES	AND	PACKAGES

Information	about	the	package	is	as	important	as	the	package	itself.
—Frederick	W.	Smith,	founder	of	FedEx

In	the	previous	chapter,	I	mentioned	that	Julia	programs	are	organized
around	collections	of	functions.	The	functions	are	the	verbs	of	your
program,	meaning	they	describe	what	it	does.	You	could	spend	your	whole
Julia	programming	life	working	in	the	REPL	or	in	Pluto	while	saving
programs	in	files	using	nothing	more	than	function,	variable,	and	data	type
definitions.

But	when	it	comes	time	to	develop	projects	that	build	on	your	previous
work	systematically,	or	to	allow	other	people	to	use	your	code	in	their
projects,	you	will	want	to	take	advantage	of	the	structures	Julia	provides	to
organize	and	share	your	programs.	Even	if	you	never	reuse	or	distribute	your
own	code,	you	will	use	code	from	the	Julia	standard	library,	from	other
official	Julia	packages,	and	perhaps	from	other	researchers.	In	any	case,
familiarity	with	Julia’s	module	and	package	system	is	essential.

Modules
Julia	programmers	make	liberal	use	of	modules	both	in	the	REPL	and	in



program	files,	and	borrowing	existing	facilities	for	plotting,	solving
equations,	serving	websites,	and	countless	other	activities	is	routine.	Creating
modules,	however,	is	of	little	use	in	the	REPL.	The	modules	you	create	will
live	in	files,	ready	to	be	used	as	needed.

Understanding	Namespaces
A	namespace	is	a	grouping	for	names	that	distinguishes	them	from	identical
names	existing	in	other	groups.	We	need	namespaces	because	functions	and
variables	may	be	defined	in	different	places	but	happen	to	have	identical
names,	and	we	need	a	way	to	make	it	clear	which	object	we	are	referring	to.

When	we	define	an	object	in	the	REPL	we	can	refer	to	it	later	with	its
name.	For	example,	after	an	assignment	such	as	a = 1,	the	variable	a	will
return	1.	We	say	that	a	is	defined	in	the	global	namespace.	The	terminology
varies:	sometimes	it’s	top-level	namespace	and	sometimes	main	namespace.	In
any	case,	the	current	namespace	is	the	one	in	which	we’re	working.

When	we	need	to	refer	to	objects	defined	elsewhere,	we	have	two
options.	We	can	call	them	by	their	unadorned	names,	as	if	they	had	been
defined	in	the	current	namespace,	or	we	can	refer	to	them	with	a	name	such
as	SomeModule.a.	In	the	latter	case,	we	say	that	a	is	in	the	SomeModule	namespace,
and	we	have	used	a	qualified	name	for	it.

The	two	names	SomeModule.a	and	a	can	refer	to	different	objects—perhaps
even	to	different	types	of	objects.	The	identifier	a	might	be	a	variable	that
we’ve	defined	in	the	REPL,	and	SomeModule.a	might	be	a	function	defined	in
the	SomeModule	module.	In	the	next	section,	we’ll	learn	how	objects	from	other
modules	sometimes	wind	up	in	our	current	namespace	and	when	we	need	to
use	qualified	names	to	refer	to	them.

Using	Installed	Modules
A	Julia	installation	comes	with	many	modules	ready	for	use.	The	resources	in
two	particular	modules,	Base	and	Core,	are	always	automatically	available,
which	is	why	we	can	invoke	the	functions	that	we	used	in	the	previous
chapter,	such	as	abs(),	without	loading	anything	explicitly.	Most	of	these
essential	functions	are	in	the	Base	module.	Base	also	supplies	such	basics	as	the
+	operator,	which	is	also	a	function	under	the	hood.	The	Core	module	exists	at
an	even	deeper	level	and	contains	such	foundation	stones	as	the	Int64	data
type.	Although	you	can’t	do	much	without	Base,	you	can	arrange	for	it	to	not



be	loaded.	The	small	Core	module	is	necessary	for	Julia	to	work,	however,	so
it’s	not	optional.

The	standard	library	is	a	collection	of	modules	that’s	always	installed	with
Julia	but	that	you	need	to	load	explicitly	to	be	able	to	use.	The	modules	in
the	standard	library	provide	functionality	that	is	commonly	needed	across	a
variety	of	computations,	but	that	is	less	fundamental	than,	for	example,	the
arithmetic	operators.	You	will	never	need	everything	in	the	standard	library
in	any	particular	program,	but	a	typical	program	will	make	use	of	several	of
its	modules.

You	can	load	the	resources	in	a	module	with	either	the	using	or	import
statements.

NOTE

Most	modules	have	uppercase	initials	and	use	“camel	case”	for	their	names,	such
as	LinearAlgebra	from	the	standard	library.	Although	you’re	free	to	ignore	such
naming	conventions	(including	the	use	of	!	explained	in	“Functions	That
Mutate	Their	Arguments”	on	page	56)	in	your	own	projects,	following	them
will	make	your	code	easier	to	read	for	other	Julia	programmers.

The	using	statement	provides	access	to	everything	in	the	module.	It	brings
all	the	names	that	the	module	creator	has	marked	for	export	into	the	current
namespace.	So,	for	example,	after	executing	using Plots,	we	can	use	the	plot()
function	directly,	as	in	plot(x -> x^2).

We	can	use	any	name	that	we	know	of,	however,	even	if	it’s	not	exported.
Julia	has	no	secrets.	Prefix	the	unexported	name	with	the	name	of	the
module	and	a	dot.	For	example,	Plots.surface(x, y, f)	will	work	regardless	of
whether	surface	is	exported.	In	this	case,	we	are	invoking	surface	in	the	Plots
namespace.

The	other	way	to	use	resources	from	other	modules	involves	the	import
statement.	The	only	difference	between	import	and	using	has	to	do	with	how
we	use	names.	If	we	execute	import Plots,	Plots.surface(x, y, f)	will	work,	but
just	using	surface(x, y, f)	will	not.	The	import	statement	provides	access	to
everything	in	the	module,	just	as	using	does,	but	not	in	the	current	namespace.
You	must	use	the	module’s	namespace.

You	can	use	either	statement	with	a	list	of	modules	separated	by	commas:



using Module1, Module2, Module3.
To	show	the	difference	between	the	using	and	import	statements,	we’ll	use

two	modules	from	the	standard	library:	the	LinearAlgebra	module,	which
contains	functions	for	solving	sets	of	linear	equations,	inverting	matrices,
and	other	linear	algebra	operations,	and	Random,	which	provides	random
number	functions.

Listing	3-1	uses	some	functions	from	the	standard	library.

   using LinearAlgebra
   import Random

➊ function randexp()
       17
   end

   a = [1 1]
   b = [0 1]

➋ dot(a, b) |> println

➌ Random.randexp() |> println

➍ randexp() |> println

Listing	3-1:	Two	ways	to	import	a	module

The	first	two	lines	make	the	resources	from	the	two	standard	library
modules	available	in	the	rest	of	the	program.	The	difference	between	the
using	and	import	statements	is	in	how	we	refer	to	those	resources.

The	using LinearAlgebra	statement	allows	us	to	use	all	of	the	exported	names
from	this	module	directly.	The	exported	names	are	those	that	appear	in	an
export	statement	in	the	module.	We	can	use	the	dot()	function	➋,	which
computes	the	dot	product	of	two	vectors,	directly,	because	it’s	exported	by
LinearAlgebra,	and	the	using LinearAlgebra	statement	pulled	it	into	the	current
namespace.	(The	dot	product	of	[a,	b]	and	[c,	d]	is	ac+bd.)	We	can	refer	to	the
function	using	LinearAlgebra.dot()	as	well;	the	two	names	refer	to	the	same
object.

NOTE

Sometimes	import	and	using	statements	incur	significant	delays.	Julia	is
precompiling	some	functions	in	the	module	to	make	their	use	more	efficient.



The	other	way	to	use	resources	from	other	modules	involves	the	import
statement,	as	we	used	in	the	second	line:	import Random.	The	only	difference
between	import	and	using	has	to	do	with	the	use	of	names.	Since	we	imported
Random,	to	use	its	functions	we	must	prefix	them	with	the	name	of	the	module
➌.

If	we	pull	in	a	module	with	using	and	already	have	some	of	its	names
defined	in	our	program,	Julia	will	print	a	warning.	The	next	section
describes	other	ways	to	handle	this	problem.

We	use	the	import	statement	when	we	have	names	that	happen	to	be	the
same	within	more	than	one	module	or	that	are	identical	in	an	imported
module	and	in	our	program.	The	use	of	module	namespaces	will	remove	the
ambiguity.	For	example,	our	program	has	our	own	randexp()	function,	which
is	different	from	the	one	supplied	by	the	Random	module.	It	returns	17,	which	I
chose	at	random	when	I	wrote	the	function,	hence	the	name.

After	the	definition	of	randexp()	➊,	we	define	two	vectors,	a	and	b.	We
calculate	their	dot	product	using	the	dot()	function,	which	is	exported	by
LinearAlgebra,	and	pipe	its	output	to	println()	so	we	can	see	it.

The	next	line	calls	the	randexp()	function	from	Random	and	prints	the	result.
This	function	returns	a	number	randomly	selected	from	the	exponential
distribution.

Finally	we	call	randexp()	➍	from	the	program’s	global	namespace	and	print
the	result:	17.

Here	is	the	output	from	one	run	of	the	program:

1
0.11747991328811039
17

When	you	run	it,	the	second	number	will	be	different	because	it’s
randomly	generated	(see	“Random	Numbers	in	Julia”	on	page	307).

Selective	Importing	and	Renaming
So	far	we’ve	seen	two	Julia	statements,	each	of	which	allows	a	program	to
refer	to	objects	defined	elsewhere.	Both	statements	give	access	to	everything
in	the	target	module,	but	differ	in	how	we	refer	to	the	module’s	objects.

We	can	supplement	either	command	with	specifications	that	provide
more	control.



The	as	keyword	lets	us	pick	a	name	to	use	for	the	module	within	our
program.	If	we	change	the	second	line	in	Listing	3-1	to	import Random as Rnd,
we	need	to	change	the	line	that	uses	it	to	Rnd.randexp() |> println.

We	can	append	a	colon	to	the	module	name	to	limit	the	import	to	only
specified	objects.	Optionally,	we	can	use	the	as	keyword	to	rename	those
objects	to	names	of	our	choosing.	These	methods	can	serve	to	avoid	conflicts
with	existing	names.	Here	is	Listing	3-1	with	some	modifications:

   using LinearAlgebra
➊ import Random: randexp as rrexp

   function randexp()
       17
   end

   a = [1 1]
   b = [0 1]

   dot(a, b) |> println

➋ rrexp() |> println

   randexp() |> println

This	program	has	the	same	results	as	the	previous	version,	but	the	import
statement	➊	imports	only	the	randexp()	function	from	Random	and	renames	it	as
rrexp().	When	we	call	it	➋,	we	have	to	use	its	alias	because	its	original	name,
randexp(),	is	unknown	in	its	current	environment.

Creating	Modules
In	Julia,	there	is	no	relationship	between	modules	and	files	or	between
filenames	and	module	names.	A	file	can	contain	any	number	of	modules,	and
a	module	may	be	split	among	many	files.

We	define	a	module	in	a	program	file	using	the	module	keyword.	This
begins	a	structure	that	resembles	a	block	and	is	terminated	with	the	end
keyword,	but	is	different	from	the	blocks	described	in	Chapter	2.	Because	it’s
common	for	entire	files	to	comprise	the	contents	of	a	module,	the
conventional	style	does	not	indent	module	bodies.	Such	a	practice	would
lead	to	uselessly	indenting	most	of	the	file.	Another	distinction	concerns
scope:	variables	defined	within	a	module,	but	outside	any	of	the	blocks	that
define	local	scopes,	are	global	to	the	module.	Each	module	has	its	own



global	scope,	so	a	file	with	more	than	one	module	has	more	than	one	such
scope.

As	an	example,	let’s	begin	with	a	simple	case:	Listing	3-2	is	a	small
program	containing	two	modules,	with	everything	contained	within	a	single
file.

   module M1
   export plusone
   plusone(x) = x + 1
   end

   module M2
   export minusone
   minusone(x) = x - 1
   end

➊ using .M1, .M2

   println(plusone(99))
   println(minusone(101))

Listing	3-2:	A	program	containing	two	modules

This	program	defines	two	modules,	M1	and	M2.	Each	module	defines	one
function,	which	it	lists	in	an	export	statement.	Usually	export	lines	go	near	the
top	of	the	module,	but	they	can	appear	anywhere.	Running	the	program
prints	100	twice.

The	using	statement	➊	brings	the	exported	names	of	the	two	modules	into
the	global	namespace	of	the	file.	The	dots	in	front	of	the	module	names
mean	that	we	are	referring	to	modules	defined	within	the	current	module.	But
it	doesn’t	appear	as	if	we’re	in	a	“current	module”:	the	statement	is	simply	at
the	top	level	of	the	file.

We’re	always	in	a	module	in	Julia.	The	top-level	module	is	automatically
called	Main	if	we	don’t	name	it	ourselves,	so	M1	and	M2	are	modules	within	the
Main	module.

If	we	had	used	import	rather	than	using,	we	would	have	been	obliged	to
mention	the	module	namespaces	when	invoking	their	functions.	Although
we	need	to	use	the	dot	when	importing	to	indicate	where	the	module	is,	its
names	are	still	given	in	the	module	statements.	For	example,	the	plusone()
function	is	M1.plusone().

Dots	in	module	import	statements	have	a	significance	similar	to	their	use
in	directory	names	in	Unix-like	operating	systems.	Single	dots	refer	to	the



current	“directory,”	or	module,	and	a	double	dot	goes	up	one	level	to	the
enclosing	module.

Listing	3-3	shows	an	example.

   module M1
   export plusone
   plusone(x) = x + 1

➊ module M2
   export minusone
   minusone(x) = x - 1
➋ using ..M1
   println(plusone(200))
   end

   end

➌ using .M1, .M1.M2

   println(plusone(99))
   println(minusone(101))

Listing	3-3:	Relative	module	imports

We’ve	moved	the	definition	of	module	M2	inside	M1	➊.	Within	M2	we
import	M1	➋,	which	is	now	a	sibling	module:	the	double	dot	tells	Julia	to	go	up
one	level	before	looking	for	M1.	After	this	using	statement,	plusone()	is	available
within	M2,	so	we	can	call	it	directly	within	the	println()	statement.

Back	in	the	top	level,	which	is	the	Main	module,	we	again	want	to	import
every	exported	name	from	M1	and	M2	into	the	global	namespace,	but	now	we
need	to	specify	that	M2	is	within	M1	➌.

This	program	prints	201	followed	by	the	same	output	as	the	previous
example	in	Listing	3-2.

If	we	simply	want	to	insert	the	contents	of	a	file	into	the	current	file,	we
use	the	include()	statement	with	a	string	argument	giving	the	file’s	pathname.
This	is	equivalent	to	pasting	the	file’s	contents	at	the	location	of	the	include()
statement.	It	doesn’t	use	any	of	the	module	namespacing	machinery,	pulling
objects	in	the	included	file	into	the	module’s	namespace.	Using	file
inclusion,	we	can	split	large	modules	among	different	files,	helping	to	keep
our	code	organized.

Documenting	Functions	with	Docstrings



The	previous	chapter	described	how	to	use	the	REPL’s	help	system	to	get
information	about	functions.	We	can	document	our	own	functions	so	that
the	help	system	can	provide	nicely	formatted	information	about	them.

Place	a	string	literal	immediately	before	the	beginning	of	any	function
definition	to	document	it,	creating	what’s	called	a	docstring.	The	help	system,
as	well	as	any	other	Julia	documentation	system,	will	associate	this	string
with	the	function,	and	format	and	display	it	when	the	user	asks	for	help.
Here	is	a	somewhat	silly	example,	where	I	added	some	help	text	to	Listing	3-
3	to	document	the	plusone()	function:

module M1
export plusone
"""
    plusone(x)

Add _one_ to the **number** `x`.

# Example

For example, `plusone(1)` returns 2.
"""
plusone(x) = x + 1

module M2
--snip--

In	this	example	I	use	the	triple-quoted	string	syntax	explained	on	page	45
to	conveniently	embed	newlines	and	other	characters	without	needing	to
escape	them.	Most	help	strings	are	written	this	way.

MARKDOWN	IN	DOCSTRINGS

The	documentation	system	understands	a	version	of	Markdown	syntax
and	will	format	the	output	appropriately.	Markdown	is	a	simplified
system	of	text	markup	where	you	can	specify	italics,	boldface,	and	code
using	underscore,	double	underscore,	and	backtick	delimiters,	with
asterisks	accepted	as	alternatives	to	underscores.	A	blank	line	starts	a
new	paragraph,	and	indenting	text	by	four	spaces	sets	it	as	code.	Lines
beginning	with	hash	marks	are	not	comments,	as	in	Julia	code,	but
become	headings:	# Heading,	##	Subheading,	and	so	on.



The	example	demonstrates	some	of	the	documentation	conventions	the
Julia	community	uses.	Begin	the	help	text	with	the	function	signature,
followed	by	an	imperative	statement	of	what	the	function	does.	After	that
can	come	more	explanation	and	examples.

Figure	3-1	is	a	screenshot	of	a	REPL	session	where	I	included	the
modutst.jl	file.

Figure	3-1:	Using	the	documentation	system

In	the	REPL,	the	println()	statements	are	run	and	produce	the	output
shown	previously.	I	pressed	?	to	enter	help	mode	and	typed	the	name	of	the
function.	After	showing	the	results	of	a	fuzzy	search	on	the	name,	the	REPL
renders	the	docstring	of	the	most	likely	choice.	The	terminal	REPL	renders
code	using	a	contrasting	color	and	italics	with	an	underline.	Other
environments	may	use	different	typography.

For	more	details	about	Markdown	formatting,	see	“Further	Reading”	on
page	81.

We’ve	learned	how	to	reference	modules	defined	in	the	current	file	using



dots	and	extend	the	current	file	using	include().	Before	that,	we	were	loading
external	modules	with	the	same	using	and	import	statements,	but	with	no	dots
in	front	of	the	module	names.	Somehow	in	those	cases,	Julia	knew	where	to
find	the	files	containing	the	module	definitions,	and	that	is	the	subject	of	the
next	section.

The	Package	System
The	most	convenient	way	to	interact	with	Julia’s	package	system	is	with	the
REPL’s	package	mode.	Press	]	to	enter	and	BACKSPACE	to	exit	this	mode.

Enter	the	package	mode	and	have	another	look	at	the	prompt.	It	looks
something	like	(@v1.8) pkg>,	where	v1.8	shows	the	currently	installed	Julia
version.	The	part	within	the	parentheses	informs	us	of	our	current
environment.	We	are	always	in	some	environment	in	the	REPL.	The
environment	is	the	project	to	which	the	package	mode	applies	its	commands.

When	we	start	the	REPL	we’re	in	the	default	project.	Everything	we	do
in	the	package	manager	applies	to	that	environment,	unless	we	change	it
with	the	activate	command.

Enter	activate.	to	change	the	environment	to	the	current	directory,	or
activate	path	to	change	it	to	a	specified	path.	A	simple	activate	changes	to	the
default	environment	for	the	version	of	Julia	in	use.

How	to	Add	and	Remove	Packages
The	most	important	package	command	is	add.	To	use	it,	enter	add	packageName
from	within	the	REPL’s	package	mode.

The	add	command	does	two	things:	it	downloads	and	precompiles	the
latest	compatible	version	of	the	requested	package,	if	it’s	not	already
installed,	and	it	records	the	package	as	a	dependency	of	the	current
environment.	The	second	step	ensures	that	the	set	of	package	versions	used
in	the	project	can	always	be	reproduced,	either	by	its	author	on	a	different
computer	or	by	a	colleague.

We	will	have	to	add	any	packages	that	are	not	in	the	standard	library.	This
includes	the	vast	majority	of	packages	in	the	Julia	ecosystem,	such	as	Plots,
for	making	scientific	graphics,	or	BenchmarkTools,	for	timing	and	profiling
programs.



If	any	package	previously	installed	with	add	is	no	longer	needed,	we	can
remove	it	with	the	rm	PackageName	command,	also	from	within	package	mode.

The	rm	package	mode	command	deletes	a	package	from	the	list	of	direct
dependencies	of	your	project,	but	it	does	not	immediately	erase	any	files
from	the	disk.	An	automatic	garbage	collection	process	runs	periodically,
reclaiming	disk	space	by	purging	packages	that	no	other	installed	package
depends	on	and	that	haven’t	been	used	for	over	30	days.	To	reclaim	disk
space	right	away,	call	the	garbage	collector	manually.	Detailed	instructions
are	in	the	package	system	manual	(see	“Further	Reading”	on	page	81).

The	Load	Path
The	current	environment	influences	where	using	and	import	look	for	packages
and	defines	the	default	location	for	package	commands.	When	executing
statements	like	using Plots	or	import Random	that	mention	package	names
without	dots,	Julia	looks	for	the	packages	in	a	series	of	places	derived	from	a
vector	of	strings	named	LOAD_PATH.

We	can	ask	the	REPL	to	show	us	the	default	initial	value	of	LOAD_PATH:

julia> LOAD_PATH
3-element Vector{String}:
 "@"
 "@v#.#"
 "@stdlib"

The	contents	of	LOAD_PATH	are	clearly	not	filepaths.	They’re	a	notation	that
the	package	manager	translates	into	the	appropriate	paths	for	the	system	and
installation.	To	see	the	results	of	the	translation	and	the	current	values	of	the
paths,	we	can	call	the	load_path()	function	from	Base:

julia> Base.load_path()
2-element Vector{String}:
 "/home/lee/.julia/environments/v1.8/Project.toml"
 "/home/lee/Downloads/julia/julia-1.8.1/share/julia/stdlib/v1.8"

We’ve	already	mentioned	that	Base	contains	the	functions	we	almost
always	need,	but	they’re	not	all	exported.	Ones	that	are	used	infrequently,
such	as	load_path(),	need	to	be	accessed	in	the	Base	namespace.

My	current	load	path	contains	two	items.	The	first	is	a	directory	that	Julia
set	up	when	I	installed	it.	It	corresponds	to	my	default	environment.	When	I
execute	a	command	like	add Plots	in	the	REPL,	if	I	haven’t	switched



environments	with	the	activate	command,	the	package	manager	adds	the
current	version	of	the	Plots	package	as	a	dependency	in	the	default	project.	It
records	the	fact	that	this	project	depends	on	a	particular	version	of	Plots
being	available,	and	using Plots	will	import	the	functions	from	that	version.
This	path	is	the	translation	of	the	second	element	in	LOAD_PATH,	"@v#.#".	The
notation	simply	means	“the	default	environment”;	notice	how	its	structure
resembles	the	prompt	in	package	mode.

The	package	manager	records	these	direct	dependencies,	the	ones
specified	with	add	commands,	in	the	Project.toml	file.	This	file	contains	lines
such	as:

Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"

This	line	shows	that	the	particular	version	of	the	Plots	package,	made
specific	with	a	unique	identifier	called	a	UUID,	is	a	dependency	of	the
project	that	contains	this	file—in	this	case,	the	default	project	associated	with
my	installation	of	v1.8	of	Julia.

The	second	path	returned	by	Base.load_path()	comes	from	the	last	element
of	LOAD_PATH,	which	refers	to	the	standard	library.	As	mentioned	previously,
the	standard	library	consists	of	modules	that	are	part	of	the	Julia	installation,
so	they	don’t	need	to	be	installed	with	add.	I	left	my	installation	in	the
download	folder	where	my	web	browser	put	it,	so	that’s	where	its	standard
library	lives.

The	LOAD_PATH	has	three	elements,	but	we	see	only	two	in	its	current
translation	by	Base.load_path().	The	first	element,	which	is	simply	@,	refers	to
the	current	environment.	Julia	searches	for	packages	in	the	order	in	which
they	appear	in	LOAD_PATH,	so	it	searches	the	current	environment	first.	To
change	the	current	environment,	execute	activate	path.

The	current	environment	has	two	purposes:	it	comes	first	in	the	load
path,	so	imports	of	packages	will	load	the	versions,	if	any,	that	have	been
added	as	dependencies	in	the	environment,	and	the	package	system	add
command	inserts	a	dependency	there.

An	environment	is	really	nothing	more	than	a	place	in	the	filesystem	with
a	Project.toml	file	and	a	Manifest.toml	file.	The	latter	is	a	list	of	the	entire
dependency	graph	of	the	environment:	all	the	packages	that	need	to	be	loaded
to	satisfy	the	dependencies	of	the	ones	explicitly	added,	with	their	UUIDs,
the	list	of	dependencies	of	each	of	those	dependencies,	and	so	on.	If	we	use



the	activate	command	on	a	path	where	there	is	no	existing	environment	and
execute	one	or	more	add	commands,	Julia	will	create	these	two	files	there	and
fill	them	with	the	specified	package	information.

NOTE

If	we	can’t	use	the	filenames	Project.toml	or	Manifest.toml	because	they
conflict	with	another	tool,	we	can	use	JuliaProject.toml	and
JuliaManifest.toml	instead.	If	Julia	sees	either	of	those	files,	it	will	use	it	and
ignore	the	one	without	the	Julia	prefix.

Environments	contain	no	Julia	code,	only	a	list	of	dependencies.	They
may	document	a	set	of	consistent	modules	that	work	for	a	particular
purpose.	For	example,	after	using	Pluto,	we’ll	discover	that	Julia	has	created
an	environment	alongside	the	normal	default	environment	whose	Project.toml
and	Manifest.toml	files	contain	a	list	of	the	modules	that	Pluto	needs	to	work
properly.

The	Nature	of	a	Package
I’ve	mentioned	package	many	times,	and	have	used	the	term	more	or	less
interchangeably	with	module,	a	tradition	well	established	in	the	Julia
documentation.	Now	let’s	make	the	relationship	between	these	concepts
precise	and	explore	how	packages	are	related	to	environments.

A	package	is	a	Julia	module	associated	with	a	Project.toml	file	containing	a
few	critical	pieces	of	information.	The	file	containing	the	module	and	the
Project.toml	file	must	be	laid	out	in	the	filesystem	as	shown	in	Figure	3-2.

Figure	3-2:	The	filesystem	layout	of	a	package

Alongside	the	Project.toml	file	is	a	src	directory,	inside	which	must	be	the
Julia	program	file,	named	after	the	package.	Inside	this	file	is	the	definition



of	a	module	also	named	after	the	package,	which	in	this	case	is	module
SomePackage.	The	structure	shown	in	Figure	3-2	is	usually	placed	inside	a
directory	also	named	after	the	module,	SomePackage	in	this	case,	but	that	is
not	strictly	required.

For	this	arrangement	to	qualify	as	a	package,	the	Project.toml	file	must
provide	the	name	of	the	package,	its	UUID,	its	authors,	and	its	version
number,	in	the	format	shown	in	Listing	3-4.

name = "SomePackage"
uuid = "842ca1f4-56d0-4d49-a6c9-7b9c77404c7a"
authors = ["Ada Lovelace <ada.l@example.com>"]
version = "0.1.0"

Listing	3-4:	A	package’s	Project.toml	file

The	name	must	match	the	name	of	the	module	defined	in	src/Some
Package.jl.	If	we	have	these	two	files,	one	within	a	src	directory,	we	have	a
package.	We	can	think	of	a	package	as	an	environment	with	a	module	inside
and	with	these	four	pieces	of	information	in	Project.toml.	In	practice,	as	soon
as	we	add	dependencies	to	our	package	with	the	add	command	executed
within	the	package’s	environment,	we	will	also	have	a	Manifest.toml	file
alongside	the	Project.toml	file	that	contains	the	complete	dependency	graph.

We	can	do	all	of	our	Julia	development	within	.jl	files,	possibly	using
include()	to	split	the	code	among	several	files,	and	share	our	work	by	emailing
those	files	to	colleagues.	Many	Julia	programmers	do	no	more	than	this	and
don’t	bother	creating	packages.

The	Benefits	of	Packages
After	the	exploratory	REPL	phase	of	your	program	development	is	over,	and
it’s	time	to	save	your	code	in	the	filesystem	so	you	can	use	it	later,	possibly	as
a	resource	in	other	programs,	I	would	like	to	encourage	you	to	take
advantage	of	Julia’s	package	system.

It’s	sophisticated,	easy	to	use,	and	will	save	you	from	dependency	conflicts
down	the	road.	Most	programs	use	modules	from	the	standard	library	and
other	packages,	and	all	are	developed	with	a	particular	version	of	Julia	itself.
As	all	these	components	evolve,	the	possibility	of	conflict	arises	and,	with
time,	becomes	inevitable	in	large	programs	that	use	many	external	resources.
The	package	system	records	the	exact	versions	of	all	the	resources	your



program	uses,	so	you	or	anyone	else	can	reproduce	that	environment	in	the
future,	and	the	program	will	always	work.

In	the	absence	of	dependency	management,	a	statement	like	using Plots	in
your	program	imports	whatever	version	of	Plots	is	used	by	the	environment
in	which	a	future	user,	including	yourself,	happens	to	run	it.	You	may	have
used	a	feature	that	is	later	removed	from	the	package,	or	a	future	version
may	introduce	a	bug	that	breaks	your	program.	Without	package
management,	your	program	is	loading	unknown	code	because	you’re	not
being	specific	about	what	you	mean	by	Plots.

Packages	often	depend	on	other	packages.	A	future	user	of	your	program,
encountering	a	conflict	with	Plots,	may	try	to	resolve	it	by	using	a	different
version.	But	that	version	will	depend	on	different	versions	of	other	packages,
and	some	of	those	will	have	their	own	dependencies.	Trying	to	sort	out	the
dependency	graph	of	packages	manually	to	find	a	workable	set	quickly
becomes	a	maddening	task.	It’s	such	a	common	headache	in	languages
without	good	package	management	that	there’s	a	name	for	it:	dependency	hell.
Julia’s	package	system	manages	the	dependency	graph	automatically.	You
can	have	various	versions	of	Julia	and	of	any	number	of	packages	installed	on
your	machine	at	the	same	time	with	no	issues.	If	you	keep	your	programs	in
packages,	you	can	upgrade	the	versions	of	modules	that	it	imports	without
changing	your	actual	code,	and	if	the	new	versions	create	problems,	you	can
downgrade	as	needed.

If	you	decide	to	share	your	programs	through	the	official	community
channels,	you	must	use	packages.	The	official	repository,	from	which	you	get
resources	when	you	use	the	add	command,	is	based	on	packages	and	the	Git
version	control	system,	which	I’ll	treat	in	“Julia	and	Git”	on	page	77.

How	to	Create	Packages
It’s	easy	to	create	packages.	First,	we	navigate	to	the	directory	in	the
filesystem	where	we	want	the	package	to	be	and	start	the	Julia	REPL.	We
can	use	any	directory,	and	we	can	always	move	it	later.

NOTE

We	don’t	have	to	start	a	new	REPL	session	just	to	change	locations	in	the
filesystem.	To	continue	in	an	existing	REPL	session,	we	can	move	around	the
filesystem	while	staying	in	the	REPL	using	two	Julia	function	versions	of	the



familiar	Unix	commands	pwd	and	cd.	The	REPL	maintains	a	notion	of	the
current	directory,	which	is	where	we	gave	the	julia	command	that	started	the
REPL,	and	it	stays	there	unless	we	change	it.	The	pwd()	function	in	the	REPL
returns	a	string	with	the	full	pathname	of	the	current	directory.	To	change	it,
enter	cd(new_directory),	substituting	the	name	of	the	desired	destination.	(The
name	is	a	string,	as	returned	by	pwd(),	so	must	be	enclosed	within	quotes.)

Within	the	REPL,	press	]	to	enter	package	mode,	and	execute	generate
Floof.	That’s	all	we	need	to	do	to	create	a	new	package	named	Floof.

Back	in	the	system	shell,	or	using	the	REPL’s	shell	mode,	we’ll	find	the
new	directory	named	Floof,	and	within	it,	the	minimal	package	files	shown	in
Figure	3-2.	Floof’s	Project.toml	file	will	contain	lines	similar	to	Listing	3-4,
but	with	the	name	Floof	and	a	new,	unique	UUID.	The	authors	field	is
populated	from	our	Git	configuration,	so	it’ll	be	empty	if	we	haven’t
installed	Git	(see	“Julia	and	Git”	on	page	77).	The	generate	statement	gives
our	new	package	a	version	number	of	0.1.0,	which	we	can	change.

Descending	into	the	src	directory,	the	Floof.jl	file	has	the	following
contents:

module Floof

greet() = print("Hello World!")

end # module

This	defines	a	tiny	module,	called	Floof,	with	one	function,	greet(),	that
greets	the	world.	Julia	sets	up	a	minimal	package	with	everything	in	place	so
we	can	begin	development	of	our	module.	We’ll	make	one	change	to	this	file
for	now:	add	the	statement	export greet	after	the	first	line.

Let’s	experiment	with	this	new	mini-package.	First,	we’ll	exercise	it
without	using	the	package	system:

   julia> include("/tmp/Floof/src/Floof.jl")
➊ Main.Floof

   julia> Floof.greet()
   Hello World!
   julia> using Floof
➋ ERROR: ArgumentError: Package Floof not found in current path

   julia> using .Floof



➌ julia> greet()
   Hello World!

We	put	the	Floof	package	in	the	/tmp	directory.	The	first	action	in	the
REPL	is	to	include	the	program	file	directly.	This	is	equivalent	to	pasting	it
directly	into	the	REPL.	The	feedback	➊	from	the	include()	statement
confirms	that	Floof	is	loaded	into	Main,	which	is	always	the	name	for	the	top-
level	module.

Now	we	can	use	anything	in	the	Floof	module	by	mentioning	its
namespace.	It	has	only	one	ingredient,	the	greet()	function,	which	does
what’s	expected	when	we	call	it.

We	would	prefer	to	call	this	function	without	having	to	type	the	module
name,	so	we	need	to	import	its	name	into	the	current	namespace.	We	tried
to	do	this	with	the	using	statement,	but	Julia	won’t	let	us	➋.	After
remembering	that	we	need	to	prefix	local	modules	with	a	dot,	everything
works	as	expected	➌.	(I’ve	omitted	the	stacktrace	from	the	error	message	to
save	space,	as	I	will	do	routinely.)

Importing	a	name,	whether	with	using	or	import,	without	a	dot	prefix	tells
Julia	to	import	a	package	rather	than	a	local	module.	This	wakes	up	the
package	system,	which	consults	the	LOAD_PATH	to	search	for	the	package.
Although	Floof	is	indeed	a	package,	it’s	not	on	the	LOAD_PATH,	which	by	default
includes	the	activated	environment,	the	default	environment,	and	the
standard	library,	in	that	order.	Since	we	haven’t	activated	an	environment,
and	the	Floof	package	is	in	neither	the	standard	library	nor	the	default
environment,	Julia	can’t	find	it.

If	we’re	determined	to	import	greet()	into	the	global	namespace,	we	can
activate	the	environment	that	contains	the	Floof	module.	But	first,	we	should
quit	and	restart	the	REPL.	Otherwise,	this	new	attempt	to	import	will
generate	an	error	complaining	about	a	conflict	with	an	existing	name.	After
starting	a	fresh	REPL,	we	can	do	this:

(@v1.8) pkg> activate /tmp/Floof
  Activating environment at `/tmp/Floof/Project.toml`

julia> using Floof

julia> greet()
Hello World!
(Floof) pkg> add Random



After	activating	the	Floof	environment	using	its	pathname,	we	exit	package
mode.	Back	in	the	REPL’s	normal	mode,	after	importing	Floof’s	names	into
the	global	namespace	with	using,	a	simple	greet()	invokes	the	function.	This
works	only	because	we	edited	Floof.jl	to	export greet.	Then	we	re-enter
package	mode—observe	the	prompt,	which	now	indicates	the	Floof
environment.	The	add Random	command	adds	this	package,	which	contains
utilities	related	to	random	number	generation,	to	the	dependency	list	for
Floof.

We	can	add	paths	manually	to	LOAD_PATH:

julia> push!(LOAD_PATH, "/tmp/Floof/")
4-element Vector{String}:
 "@"
 "@v#.#"
 "@stdlib"
 "/tmp/Floof/"

julia> using Floof

julia> greet()
Hello World!

We	do	this,	again,	in	a	fresh	REPL.	The	package	system	found	Floof	in
the	last	entry	in	LOAD_PATH;	it	will	find	it	regardless	of	the	current	environment.

Floof’s	Project.toml	file	now	contains	two	additional	lines.	Here	are	its
contents	after	executing	add Random:

name = "Floof"
uuid = "fdb9266c-3340-4b10-958f-2cb27e4e2988"
authors = ["Lee <lee@example.com>"]
version = "0.1.0"

[deps]
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"

The	lines	after	the	[deps]	label	will	record	every	dependency	that	we
manually	add	with	an	add	statement.

A	new	Manifest.toml	file	has	appeared	alongside	the	Project.toml	file	with
these	contents:

# This file is machine-generated - editing it directly is not advised

[[Random]]
deps = ["Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"



[[Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"

Manifest	files	are	for	recording	the	dependency	graph	of	a	package	or
environment.	For	each	dependency	added	manually,	the	system	looks	up	its
dependencies,	and	the	dependencies	of	all	of	those	dependencies,	and	so	on,
until	it	finds	every	dependency.	Each	of	these	dependencies	is	another
package;	all	of	them	together,	with	all	of	their	dependency	relationships,	is
the	dependency	graph.	As	you	can	imagine,	Manifest	files	can	get	rather
large,	but	this	one	is	not	because	Random	apparently	has	only	one	dependency,
a	package	called	Serialization,	and	Serialization	has	no	dependencies	of	its
own.

Now	that	we	have	our	very	own	package,	we	should	be	able	to	add	it	as	a
dependency	to	other	packages	and	environments,	just	as	we	did	with	other
packages	like	Random	and	Plots:

(Floof) pkg> activate
  Activating environment at `~/.julia/environments/v1.8/Project.toml`

(@v1.8) pkg> add /tmp/Floof
ERROR: Did not find a git repository at `/tmp/Floof`

First	we	use	the	activate	statement	with	no	argument	to	go	back	to	the
default	environment.	We	try	to	add	Floof	to	that	environment,	but	the
package	manager	has	a	complaint	about	not	finding	something	called	a	git
repository.

Julia	and	Git
Git	is	a	version	control	system:	a	program	that	helps	you	keep	track	of	your
work	as	it	changes	over	time.	Git,	in	addition,	focuses	on	collaboration,
although	it’s	immensely	useful	to	the	solo	creator	as	well.

Git	is	independent	of	Julia,	but	since	its	creation	in	2005	by	Linus
Torvalds,	the	creator	of	Linux,	its	superiority	over	all	other	version	control
systems	has	led	to	a	near	monopoly	in	the	free	software	community.	Julia	is
part	of	this	community,	and	Git	is	an	intimate	component	of	the
development	of	the	language	and	its	packages.

If	you	don’t	already	have	Git	installed	and	would	prefer	to	continue	your
study	of	Julia	without	pausing	to	install	Git	and	learning	how	to	use	it,	skip



this	section	for	now.	You	can	always	return	later.	See	“Further	Reading”	on
page	81	for	a	link	to	an	excellent	learning	resource.	There	are	also	many
articles	and	several	books	about	Git.

I	recommend	installing	Git	and	using	it	in	your	projects	before	your
personal	library	of	code	becomes	substantial.	The	small	investment	in	time
and	effort	to	become	familiar	with	a	few	basic	operations	has	a	huge	payback.
You’ll	be	able	to	travel	back	in	time	to	past	states	of	your	programs,	keep	a
log	of	changes,	create	alternative	versions	of	your	programs	where	you	try
out	ideas,	and	merge	the	ideas	into	the	main	line	of	development	when
they’re	ready.

If	you’re	already	using	one	of	the	older	version	control	systems,	you	can
continue	to	do	so.	However,	if	you	reach	the	stage	where	you	would	like	to
contribute	your	Julia	programs	to	the	community,	you	will	have	to	use	Git.
As	we’re	about	to	see,	Git	is	also	required	for	adding	your	own	packages	as
dependencies	in	your	own	projects	and	environments	on	your	personal
machine,	which	is	something	you	may	want	to	do	even	if	you	don’t	share
your	programs.

As	shown	in	“How	to	Create	Packages”	on	page	73,	Julia	complained
when	we	tried	to	add	my	Floof	package.	The	package	system	won’t	let	us	add	a
package	until	we	put	it	in	a	Git	repository.	Dependency	management,	which
is	the	reason	for	the	package	system,	tracks	not	simply	packages,	but	versions
of	packages.	Julia’s	package	system	works	with	Git	to	track	these	versions.
The	rest	of	this	section	assumes	Git	is	installed.

To	allow	the	package	system	to	deal	with	Floof,	we	have	to	put	it	in	a	Git
repository	and	make	an	initial	commit.	In	the	/tmp/Floof	directory,	we
execute	git init	in	the	system	shell	to	create	the	repository,	then	git add.	and
git commit -m "Begin repo"	to	begin	tracking	the	contents.

Back	in	the	Julia	REPL,	we	try	again:

(@v1.8) pkg> add /tmp/Floof
    Updating git-repo `/tmp/Floof`
   Resolving package versions...
    Updating `~/.julia/environments/v1.8/Project.toml`
  [fdb9266c] + Floof v0.1.0 `/tmp/Floof#master`
    Updating `~/.julia/environments/v1.8/Manifest.toml`
  [fdb9266c] + Floof v0.1.0 `/tmp/Floof#master`

(@v1.8) pkg> status
      Status `~/.julia/environments/v1.8/Project.toml`
  [336ed68f] CSV v0.8.4



  [31c24e10] Distributions v0.24.15
  [fdb9266c] Floof v0.1.0 `/tmp/Floof#master`
  [23fbe1c1] Latexify v0.14.12
  [91a5bcdd] Plots v1.10.6
  [c3e4b0f8] Pluto v0.15.1

It	works	this	time:	the	package	manager	responds	that	it’s	added	Floof	to
the	Project.toml	and	Manifest.toml	files.	The	string	in	square	brackets	is	the
initial	part	of	the	UUID	that	the	package	manager	has	assigned	to	this
version	of	Floof.	The	#master	string	refers	to	the	branch	name	in	Git.

The	status	package	command	returns	a	list	of	all	the	dependencies	added
to	the	current	environment	(not	the	entire	dependency	graph),	and	we	see
that	Floof	is	among	them.

If	we	want	to	remove	a	dependency—say,	Floof—we	enter	rm Floof	in
package	mode:	note	that	when	removing	packages,	we	use	just	the	package
name,	not	the	whole	path	on	the	filesystem.	This	does	nothing	to	our	files;	it
simply	removes	Floof	from	the	Project.toml	file.	However,	it	may	not	remove
it	from	Manifest.toml	because	it	may	be	listed	there	as	a	dependency	of	some
other	package.

If	you’ve	made	your	program	into	a	Julia	package	and	are	tracking	it	with
Git,	you’ll	be	prepared	to	request	that	it	be	included	in	the	official	repository
if	the	day	comes	when	you	feel	it	will	be	of	use	to	a	wider	audience.	If	you
complete	this	step,	any	Julia	user	anywhere	in	the	world	can	simply	tell	their
package	REPL	to	add	YourPackage,	and	they’ll	be	able	to	use	and	build	on	your
work.	Sharing	and	collaboration	are	embedded	in	Julia’s	DNA.	Chapters	9
and	12	demonstrate	several	interesting	examples	of	how	packages	can	be
combined	to	create	new	capabilities.

The	Relationship	Between	Package	Versions	and	Git	Commits
We’ve	seen	how	to	request	status	at	the	package	prompt	to	see	a	list	of
dependencies	and	abbreviations	of	their	UUIDs,	and	how	to	see	the
complete	UUID	in	the	Manifest.toml	file.	We	may	be	aware	that	Git
identifies	commits	with	a	unique	hash,	but	if	we	examine	the	hash	of	our
project	with	git log,	we	won’t	see	anything	that	looks	like	Julia’s	UUID.

Here	is	the	relevant	section	of	the	default	environment’s	Manifest.toml,
which	is	in	.julia/environments/v1.8/Manifest.toml	within	the	user’s	home
directory:



[[Floof]]
deps = ["Random"]
git-tree-sha1 = "478b184e365f8d114ab757e18c6ab060fc590920"
repo-rev = "master"
repo-url = "/tmp/Floof"
uuid = "fdb9266c-3340-4b10-958f-2cb27e4e2988"
version = "0.1.0"

Random	is	listed	as	a	dependency	because	we	had	added	it	to	the	project
earlier.	In	the	last	two	lines,	we	see	the	full	UUID	and	the	initial	version
assigned	by	the	package	system.	Before	that,	we	have	the	path	and	the
branch	name	from	Git.	Above	that,	we	see	something	called	the	git-tree-sha1,
which	is	a	Git	hash,	but	it’s	not	the	commit	hash	that	we	see	by	default	when
we	enter	git log.	Within	Floof’s	directory,	if	we	enter	this	command	with	an
option,	we	can	see	more:

bash> git log --pretty=raw

commit 460ef22bb5c86863d07493e36be791977acd62e7
tree 478b184e365f8d114ab757e18c6ab060fc590920
author Lee <lee@example.com> 1630788711 -0600
committer Lee <lee@example.com> 1630788711 -0600

    make a repo

The	hash	recorded	in	Manifest.toml	is	the	tree	hash.	Most	Git	users	are
unaware	of	this	hash	because	it’s	rarely	needed	for	anything.	The	tree	hash
encodes	the	actual	contents	of	all	the	tracked	files	in	the	commit.	Julia’s
package	manager	uses	this	rather	than	the	commit	hash	because	it’s	more
reliable.	Git	provides	powerful	commands,	such	as	rebase,	that	let	users
rewrite	the	commit	history.	If	a	conflict	arises	and	something	breaks,	ideally
we	would	like	to	identify	the	actual	file	contents	of	the	programs	involved.	In
practice,	to	identify	a	commit	from	the	information	recorded	in
Manifest.toml,	we	need	to	ask	Git	for	the	raw	commit	log	and	search	for	the
tree	hash.

Version	Updating	and	Pinning
Another	crucial	package	system	command	is	update	PackageName.	Execute	this
operation	to	get	the	latest	version	of	PackageName	installed	in	the	environment.
Julia	will	check	the	registry	for	a	new	version,	and	download	and	precompile
it	if	there	is	one.	If	PackageName	has	any	dependencies,	Julia	will	check	their
versions	against	the	ones	already	installed,	and	download	and	precompile



anything	that’s	changed.	It	will	continue	through	the	entire	dependency
graph,	leaving	us	with	a	consistent	environment,	with	no	further	action	on
our	part.

If	PackageName	is	our	own	project	that	we’re	developing	locally,	the	update
command	will	cause	the	package	manager	to	check	its	Git	repository.	If	the
tree	hash	at	the	HEAD	of	the	tracked	branch,	as	recorded	in	Git’s	log,	has
changed,	Julia	will	install	the	new	version	into	the	environment	and
precompile	it.	The	Manifest.toml	file	will	contain	the	new	tree	hash.	If	we’ve
edited	the	source	file	but	not	yet	made	a	new	Git	commit,	the	package
manager	won’t	do	anything.	Even	if	we	change	the	version	number	recorded
in	PackageName’s	Project.toml	file,	that	will	not	cause	Julia	to	take	any	action.
The	package	manager	cares	only	about	the	tree	hash.	This	means,	for
example,	if	we	soft-reset	to	an	earlier	commit,	then	update	in	Julia,	the
package	manager	will	revert	to	the	version	that	our	HEAD	now	points	to,
pulling	the	files	from	the	Git	repository	and	not	from	our	working	tree.

It’s	possible	for	an	update	to	lead	to	a	conflict,	where	the	current	versions
of	two	packages	cannot	work	together.	Use	the	pin	command	in	the	package
manager	to	force	it	to	hold	particular	packages	at	certain	versions.
Sometimes	that’s	the	only	way	around	a	conflict	until	the	bugs	are	fixed.

The	three	versions	of	pin	are	pin	PackageName,	which	holds	PackageName	at	its
current	version;	pin	PackageName@2.4.2,	which,	in	this	example,	holds	PackageName
at	version	2.4.2;	and	pin	PackageName=UUID,	which	holds	the	package	using	its
UUID	rather	than	the	version	number	to	identify	the	version.

How	to	Find	Public	Packages
How	can	we	discover	if	there	is	a	Julia	package	that	might	help	us	write	our
program?	The	most	productive	approach	is	probably	a	general	web	search
for	projects	or	problems	similar	to	ours,	using	Julia—this	will	quickly	surface
the	most	popular	relevant	packages.	Of	course,	talking	to	people	working	in
the	same	area	is	invaluable,	if	such	a	community	is	available.	Asking	on	the
Julia	Discourse	forum	will	almost	certainly	yield	helpful	replies,	unless	our
project	is	quite	niche	or	esoteric.

Since	practically	all	development	of	public	Julia	packages	takes	place	on
GitHub,	this	is	the	place	to	search	directly	for	solutions,	especially	if	the
previously	mentioned	approaches	did	not	lead	to	anything	appropriate,	or	if
specific	criteria	are	important	to	our	project,	such	as	recency	of



development.
There	are	several	sites	that	seem	to	offer	a	way	to	search	through

packages,	but	provide	nothing	beyond	what	GitHub	offers	directly,	aside
from	incorrect	and	outdated	information	and	an	even	worse	interface.	The
best	strategy	for	searching	on	GitHub	is	to	use	a	language	qualifier.	For
example,	in	the	project	search	box	we	would	enter	phylogenetics language:Julia
to	look	for	projects	that	mention	phylogenetics	in	their	title	or	keywords,
and	that	are	written	in	Julia	(and	possibly	other	languages).	This	is	effective
because	Julia	packages	are	written	in	Julia,	and	it’s	necessary	because	Julia
packages	often	do	not	have	a	“Julia"	keyword,	so	using	that	as	a	bare	search
term	misses	many	projects.

Crucially,	we	can	then	sort	the	resulting	list	based	on	several	criteria,
including	recency	of	last	update	and	the	number	of	“stars”	the	project	has.
The	latter,	despite	its	unpleasant	associations	with	internet	popularity	and
gamification,	is	actually	a	useful	proxy	to	uncover	packages	that	are	widely
used	and	therefore	more	likely	to	be	valuable	and	to	have	a	community
around	them.

The	individual	project	pages	in	GitHub	will	contain	a	rendering	of	their
README	files,	which	range	from	a	few	cryptic	phrases	to	a	full
introduction	and	tutorial	with	screenshots	and	animations.	The	README
sometimes	contains	a	link	to	further	documentation;	if	it	doesn’t,	one	can
click	one	of	the	project’s	documentation	badges,	but	there	is	no	guarantee
that	will	lead	to	any	actual	documentation.	Lack	of	documentation	is	not	a
good	sign,	but	there	may	be	linguistic	or	other	reasons	for	the	lapse.	We	can
always	look	at	the	source	code,	all	of	which	will	be	a	click	away	on	GitHub.
Julia	code	is	unusually	easy	to	read,	and	obviously	is	the	final	source	of	truth
about	the	operation	of	any	package.

After	we	discover	a	package	that	we	want	to	try,	it’s	time	to	return	to	the
REPL	and	add	it	to	our	project.	We	can	add	packages	in	the	official	registry,
listed	in	the	GitHub	project	JuliaRegistries/General,	simply	by	using	its	name.
In	the	probably	unusual	circumstance	where	we	want	to	add	a	public	project
that	is	not	in	the	general	registry,	we	can	add	it	using	its	URL.	In	package
mode,	we	enter

add https://github.com/developer/projectname

for	example,	to	add	the	project	projectname	by	developer	developer.	This	will



only	work	if	we	are	pointing	at	a	proper	Julia	project	with	a	Project.toml	or
JuliaProject.toml	file.	After	adding	the	project,	it	will	appear	in	our
Manifest.toml	file	with	the	extra	field	repo-url.

Conclusion
This	chapter	describes	some	essential	ingredients	for	using	Julia	effectively
and	making	it	possible	for	others	to	incorporate	our	programs	into	their
work.	Programming	is	rarely	done	in	isolation.	There	is	no	need	to	reinvent
the	wheel	if	a	solution	to	a	part	of	your	problem	is	as	close	as	an	import	away.
In	later	chapters,	we’ll	expand	on	these	ideas	and	look	at	even	more	powerful
ways	to	combine	the	resources	of	several	packages.	But	first,	in	the	next
chapter	we’ll	explore	an	essential	package	that	nearly	all	scientific	Julia
programmers	use	as	we	delve	into	the	plotting	system.

FURTHER	READING

More	details	on	what	you	can	do	with	docstrings,	mostly	of
interest	to	package	developers,	are	available	at
https://docs.julialang.org/en/v1/manual/documentation/.
When	making	those	docstrings,	you	may	need	to	know	more
about	Markdown	syntax:	https://www.markdownguide.org/basic-
syntax.
The	.toml	file	extension	stands	for	“Tom’s	Obvious,	Minimal
Language”	designed	by	Tom	Preston-Werner:
https://github.com/toml-lang/toml.
A	good	resource	for	getting	started	with	Git	is	https://git-scm.com.
For	detailed	information	about	the	package	system,	including
instructions	on	how	to	submit	your	creations	to	the	official
repository,	or	registry,	go	to	https://pkgdocs.julialang.org/.
A	package	system	summary,	and	my	first	adventure	in
contributing	to	a	public	package,	are	available	at
https://lwn.net/Articles/871490/.
For	workflow	tips,	visit

https://docs.julialang.org/en/v1/manual/documentation/
https://www.markdownguide.org/basic-syntax
https://github.com/toml-lang/toml
https://git-scm.com
https://pkgdocs.julialang.org/
https://lwn.net/Articles/871490/


https://docs.julialang.org/en/v1/manual/workflow-tips/.

https://docs.julialang.org/en/v1/manual/workflow-tips/


4
THE	PLOTTING	SYSTEM

There	is	nothing	worse	than	a	sharp	image	of	a	fuzzy	concept.
—Ansel	Adams

This	chapter	introduces	the	large	and	rich	subject	of	visualization	in	Julia.
Plots	and	diagrams	play	a	role	in	scientific	communication	equal	in
importance	to	words	and	equations.	Julia’s	plotting	ecosystem	is	diverse	and
powerful;	you’ll	be	able	to	craft	a	solution	to	any	type	of	visualization
challenge	without	leaving	the	language.	The	ability	to	keep	both	your
calculation	and	its	visualization	within	a	single	program	simplifies	the
process	of	exploring	and	reporting	results.

Plotting	in	Julia	is	a	hotspot	of	rapid	development.	This	is	mostly	good,
as	it	means	new	features	and	packages	arise	regularly.	The	downside,
however,	is	a	higher	than	average	incidence	of	conflicts	among	packages,
incomplete	documentation,	and	bugs,	exacerbated	by	the	frequent	need	for
plotting	routines	to	depend	on	external	graphics	libraries.	With	this	in	mind,
I’ve	confined	the	treatment	in	this	chapter	to	packages	that	seem	to	be	stable
and	mature.	The	examples	here	should	work	over	the	long	term.	I’ve
avoided	discussing	some	potentially	useful	packages	that	still	have	too	many
rough	edges.



Plots
The	main,	and	in	a	sense	“official,”	plotting	package	for	Julia	is	Plots.	Later
in	the	book	we’ll	explore	other	graphical	methods,	but	this	chapter	is	about
the	package	at	the	center	of	Julia’s	visualization	universe.

Plots	is	not	in	the	standard	library,	so	we	need	to	install	it	in	the	package
manager	with	add Plots.	The	initial	installation	will	take	some	time,	as	Plots
has	many	dependencies,	all	of	which	need	to	be	(automatically)	installed	as
well.	Precompilation	of	this	assortment	of	packages	will	take	a	few	minutes.

Plots	is	a	unique	approach	to	providing	a	programming	language	with
plotting	abilities.	It’s	often	described	as	a	plotting	metapackage,	because	Plots
doesn’t	do	any	actual	plotting	on	its	own.	Rather,	it	orchestrates	the	creation
of	visualizations	by	calling	on	a	choice	of	backends.

The	Backend	System
The	backend	is	the	package	that	actually	draws	the	picture.	Each	backend
has	particular	strengths	and	weaknesses,	and	is	suitable	for	a	different	type	of
application.	The	job	of	Plots	is	to	provide	a	unified	interface	to	all	of	the
backends	and	to	apply	a	degree	of	intelligence	in	translating	our	plotting	call
into	a	form	that	the	backend	can	understand.	It	tries	to	figure	out	what	we
mean	and	how	to	produce	the	plot	we	want.

The	advantage	of	using	a	plotting	metapackage	is	that	we	can	change	the
backend	used	in	a	program	without	having	to	change	the	plotting
commands.	During	research,	we	may	want	to	have	a	simulation	code
produce	rough	plots	directly	in	the	terminal	or	3D	plots	that	we	can	rotate
with	the	mouse.	Later,	we	may	want	to	run	the	simulation	again,	but	this
time	save	publication-quality	plots	to	disk.	With	the	Plots	system,	we	can
accomplish	that	by	simply	changing	one	line	of	code	that	selects	a	different
backend.

Some	of	Plots’s	backends	are	automatically	installed	when	we	install	the
package,	but	we’ll	need	to	install	others	manually,	as	separate	packages	(these
are	subject	to	change,	but	we’ll	be	prompted	to	install	a	missing	backend
when	we	try	to	use	it).	When	we	add	the	Plots	package,	one	backend	that
always	comes	along	for	the	ride	is	the	default	backend.	Recently	this	default
has	been	GR,	a	reasonably	fast	and	featureful	plotting	engine.	To	see	the	list



of	available	backends,	execute	the	backends()	function	in	the	REPL.	To	see
the	currently	active	backend,	execute	the	backend()	function.

To	activate	a	backend,	we	use	the	appropriate	name	that	backends()	returns
to	form	a	function	and	simply	call	it.	If	it’s	installed,	the	function	responds
by	confirming	the	name	of	the	package.	If	not,	we’ll	get	an	error	message
explaining	that	we	need	to	add	it.

Here	is	part	of	a	REPL	session	showing	the	process:

   julia> using Plots

➊ julia> backends()
   10-element Vector{Symbol}:
    :pyplot
    :unicodeplots
    :plotly
    :plotlyjs
    :gr
    :pgfplo
    :pgfplotsx
    :inspectdr
    :hdf5
    :gaston

➋ julia> backend()
   Plots.GRBackend()

➌ julia> unicodeplots()
   Plots.UnicodePlotsBackend()

   julia> hdf5()
   ERROR: ArgumentError: Package HDF5 not found in current path:
   - Run `import Pkg; Pkg.add("HDF5")` to install the HDF5 package.

➍ (@v1.6) pkg> add HDF5
      Resolving package versions...
       Updating `~/.julia/environments/v1.6/Project.toml`
     [f67ccb44] + HDF5 v0.15.6
     No Changes to `~/.julia/environments/v1.6/Manifest.toml`

   julia> hdf5()
   Plots.HDF5Backend()

   julia> backend()
   Plots.HDF5Backend()

Asking	for	available	backends	➊	returns	a	list	in	the	form	of	a	Vector	of
Symbols,	indicated	by	the	leading	colons.	“Symbols	and	Metaprogramming”
on	page	167	will	explain	the	Symbol	data	type,	but	for	now,	think	of	it	as	a
string.



Asking	for	the	current	backend	➋	returns	Plots.GRBackend().	The	multiple
names	for	each	backend	is	somewhat	confusing,	as	the	capitalized	form	used
to	refer	to	a	package	differs	from	the	lowercase	form	used	to	activate	it.	The
form	that	backend()	returns	isn’t	used	for	anything.

The	next	move	is	to	make	UnicodePlots	the	current	backend	➌;	the
operation	was	confirmed.	Then	we	change	our	mind	and	decide	to	plot	with
HDF5,	but	our	attempt	to	switch	to	it	gives	us	an	error	because	it’s	not	in
the	load	path.	Apparently	we	never	added	it	to	the	environment.	After
adding	HDF5	in	package	mode	➍,	we	switch	to	it	and	call	backend()	to
confirm.

The	package	system	doesn’t	consider	the	various	backends	to	be
dependencies	of	Plots.	This	was	a	deliberate	choice	to	spare	users	from
having	to	install	all	of	the	backends	when	installing	Plots,	as	there	are	many
of	them,	and	most	users	will	need	only	a	modest	subset.	This	creates
occasional	incompatibilities,	however,	as	Plots	and	its	various	backends
evolve,	since	the	package	system	cannot	automatically	keep	them	in	sync.	If
something	doesn’t	work,	try	a	different	backend	if	possible;	otherwise,	search
the	web	and	the	resources	in	“Further	Reading”	on	page	121	for	a
resolution.

Modes	of	Interaction	with	Plots
If	you	are	following	along	in	Pluto,	you	can	enter	each	plotting	command	in
a	new	cell	and	produce	a	sequence	of	figures	embedded	in	the	page.	If	you’re
using	the	REPL,	each	plot	should	reuse	the	display	window	opened	by	the
first,	replacing	the	existing	plot.	If	you	want	to	close	that	window,	use	the
statement	closeall().	Closing	it	using	your	window	manager	sometimes	leads
to	errors	in	the	REPL,	a	known	bug.

If	you’re	saving	plot	commands	in	a	program	file,	you	may	have	noticed
that	you	don’t	see	any	output	when	you	run	it.	First,	you	need	to	include	the
statement	gui()	at	the	point	in	the	program	where	you	want	to	display	the
current	state	of	the	plot.	However,	the	plot	window	thus	created	will	vanish
when	the	program	exits,	perhaps	so	quickly	that	you	may	not	be	able	to	see
the	window	at	all.	You	need	to	make	the	program	pause	until	you’re	done
admiring	your	plot.	One	way	is	to	insert	the	readline()	statement	directly
after	gui().	This	statement	waits	for	input	at	the	terminal.	When	you’re	ready



to	dismiss	the	plot	window,	simply	press	RETURN	and	it	will	vanish,	and	the
program	will	continue.

2D	Plots
The	term	2D	plot	refers	to	a	variety	of	visualizations	involving	maps	between
two	variables.	The	basic	type,	a	line	plot,	takes	the	form	of	a	curve,	or	set	of
curves,	for	functions	of	a	single	variable,	where	typically	the	independent
variable	is	represented	by	the	horizontal	x-axis	and	the	dependent	variable	by
the	vertical	y-axis	in	a	rectangular	coordinate	system.	The	polar	coordinate	plot
maps	an	angle	to	the	distance	from	some	origin,	in	a	polar	coordinate
system.	A	third	common	type	is	a	parametric	plot,	where	both	variables
depend	on	a	third	variable,	called	the	parameter.	These	three	basic	types,
along	with	other	varieties	such	as	bar	and	pie	charts	and	scatterplots,	are	all
called	two-dimensional	plots,	and	they	are	all	handled	by	the	plot()	function
provided	by	the	Plots	package	and	understood	by	all	of	its	backends.

For	the	examples	in	this	section,	any	backend	will	work,	but	I	suggest
sticking	with	the	default	setup	when	you	execute	using Plots.	This	will	always
be	a	relatively	stable	and	performant	engine	that	displays	color	plots	either	in
a	new	window	when	using	the	REPL,	or	on	the	page	when	using	Pluto	or
VS	Code.	In	all	of	the	examples	in	this	chapter,	using Plots	is	assumed.

The	plot()	function	accepts	arguments	of	various	kinds,	and,	as	mentioned
previously,	usually	does	what	we	expect.	It	returns	a	result	in	the	form	of	a
plot	object.	In	the	REPL,	a	notebook	interface	such	as	Pluto,	or	another
interactive	environment,	it	immediately	displays	the	plot,	unless	we	suppress
the	output	by	following	the	call	with	a	semicolon.	We	can	display	the	plot
later	with	a	call	to	gui()	or	by	storing	the	plot	object	in	a	variable	and	simply
evaluating	it.

Plotting	from	Vectors
We	can	call	the	function	with	a	single	Vector	argument:

julia> gr()
Plots.GRBackend()

julia> plot([0, 3, 1, 4, 1])



This	plots	the	numbers	in	the	Vector,	in	order,	against	an	independent
variable	that	gives	their	index.	Figure	4-1	shows	the	plot.

Figure	4-1:	Plotting	a	single	vector

We	get	a	legend,	which	at	the	moment	is	not	very	informative.	We’ll
learn	shortly	how	to	adjust	this,	and	change	other	things	about	the	graph,
but	first	let’s	look	at	the	different	ways	we	can	use	plot().

NOTE

I’ve	created	grayscale	versions	of	all	the	examples	in	this	chapter	for	printing,
but	the	original	color	output	from	each	plot	command	is	available	from	the
book’s	supplementary	website	at	https://julia.lee-phillips.org.

https://julia.lee-phillips.org


The	second	form	supplies	both	x-	and	y-variables,	with	two	Vectors:

julia> plot([0, 0.13, 0.38, 0.88, 1.88], [0, 3, 1, 4, 1])

The	result	(Figure	4-2)	shows	the	same	y-values	plotted	at	different
horizontal	locations.

Figure	4-2:	Plotting	a	vector	versus	another	vector

Plotting	Functions
To	plot	a	function,	we	can	supply	a	vector	as	the	first	argument	and	a	second
vector	created	by	broadcasting	the	function	over	the	first	argument	(see



“Broadcasting”	on	page	51):

julia> f(x) = sin(1/x)
f (generic function with 1 method)

julia> x = π/1000:π/1000:π
0.0031415926535897933:0.0031415926535897933:3.14

julia> plot(x, f.(x))

In	this	example	we	first	create	a	function,	f(),	using	the	succinct	one-line
function	definition	syntax.	Next	we	define	a	range	and	store	it	in	x;	the	range
excludes	0	to	avoid	the	singularity	there.	The	plot()	command	has	two	Vector
arguments,	as	before.	The	range	is	instantiated	into	a	Vector	and	the	dot	after
f()	broadcasts	the	function	over	x,	returning	a	Vector	for	the	dependent
variable.	Figure	4-3	shows	the	result.



Figure	4-3:	A	plot	of	a	function	broadcast	over	a	vector

We	can	see	the	plot	becoming	inaccurate	as	we	approach	the	origin	and
the	π/1000	resolution	fails	to	keep	up	with	the	rapid	oscillations	in	that
region.

The	plot()	function	and	its	comrades	offer	a	convenient	shorthand.
Instead	of	supplying	the	second	argument	as	a	broadcast	expression	that
explicitly	creates	a	vector,	we	can	simply	write	the	name	of	a	function,	or
construct	an	anonymous	function.	The	plot()	function	will	broadcast	the
function	we	name	over	the	independent	variable	vector	that	we	pass	in	the
first	argument.

In	other	words,	we	can	write	plot(x, f.(x))	as	simply	plot(x, f).	If	we	had
not	already	defined	f(),	we	could	insert	an	anonymous	function	directly	as



plot(x, s -> sin(1/s)).	These	three	ways	of	calling	plot()	are	all	equivalent.
We	can	even	leave	out	the	independent	variable	and	supply	only	a

function	name	or	an	anonymous	function.	In	this	case,	plot()	will	plot	the
function	for	us,	choosing	the	locations	of	the	independent	variable	and
handling	singularities	automatically.	We	can	supply	a	domain	on	the
horizontal	axis	using	a	second	and	third	argument,	with	default	values	of	–5
and	5.	If	we	use	a	Vector	of	functions	in	the	first	argument,	we’ll	get	a	plot	of
all	of	them	on	the	same	axes.	Using	the	same	definition	for	f,	executing
plot([sin, cos, f], -π,	π)	produces	Figure	4-4.

Figure	4-4:	Plotting	three	functions

In	this	use	of	plot(),	we	supply	the	names	of	the	functions.	We’re	not



calling	these	functions,	so	we	omit	the	parentheses.	Plotting	is	a	common
application	for	anonymous	functions	(see	“Creating	Anonymous	Functions”
on	page	51).	This	is	their	purpose:	to	pass	a	function	as	an	argument	to
another	function,	in	this	case	plot().

Plotting	Vectors	of	Vectors	or	Functions
If	we	supply	vectors	of	vectors	in	the	first	two	argument	positions,	plot()	will
cycle	through	both	arguments,	reusing	elements	as	necessary.	For	example,
if	we	call	plot([x1, x2], [y1, y2]),	we’ll	get	a	plot	of	y1	versus	x1	and	y2	versus
x2,	both	on	the	same	set	of	axes.	But	if	we	call	plot(x1, [y1, y2]),	we’ll	get	a
plot	of	y1	versus	x1	and	y2	versus	x1.	If	we	call	plot([x1, x2], y1),	we’ll	see	y1
versus	x1	and	y1	versus	x2.

We’ll	get	the	same	results	if	we	use	horizontal	concatenation;	in	other
words,	plot([x1, x2], [y1, y2])	produces	the	same	plot	as	plot([x1 x2],	[y1 y2]).
When	given	Matrix	arguments,	plot()	plots	by	columns.	We	can	even	call
plot([x1, x2], [y1 y2]),	mixing	a	vector	of	vectors	with	a	matrix,	and	plot()	will
know	what	we	mean	and	draw	the	same	graph	as	in	the	two	preceding
examples.

If	we	use	vertical	concatenation,	we	will	simply	create	longer	vectors.	We
can	use	this	to	plot	different	functions	over	different	ranges:

julia> x = 0:5π/1000:5π
julia> plot([x; 5π .+ x], [sin.(x); -exp.(-x .* 0.2) .* sin.(x)])

In	this	example,	we	join	the	x	vector	to	itself	shifted	to	the	right	by	5π	and
supply	the	result	as	the	independent	variable.	Against	that,	we	plot	a	sin
function	joined	to	the	same	function	multiplied	by	a	decaying	exponential
(note	the	use	of	broadcast	notation	throughout).	Figure	4-5	shows	the	result.



Figure	4-5:	Joining	vectors	to	model	a	damped	oscillation

The	graph	can	be	interpreted	as	an	initially	frictionless	oscillation	with
damping	applied	at	x	=	5π.

Displaying	and	Mutating
I	mentioned	earlier	that	we	cause	the	display	of	a	plot	in	a	program	file	with
the	call	gui().	But	how	does	the	gui()	function	know	what	plot	to	display?
The	plotting	system	maintains	a	current	plot	in	the	global	namespace,	along
with	other	settings	and	state	related	to	the	display	of	graphics.	This	is
convenient	during	interactive	plotting,	as	it	allows	us	to	incrementally	adjust
and	add	things	to	the	current	plot	by	mutating	it.	The	mutating	version	of
plot()	is	plot!(),	following	the	convention	(see	“Functions	That	Mutate	Their



Arguments”	on	page	56).
Using	mutation,	we	can	produce	Figure	4-4	with	these	three	lines:

julia> plot(sin, -π, π)

julia> plot!(cos)

julia> plot!(f)

The	plot!()	function	maintains	the	domain	established	in	the	first	call.	We
can	use	the	mutating	form	to	change	many	aspects	of	the	plot,	in	addition	to
adding	curves.

The	plot()	and	plot!()	functions	return	plot	objects,	which	we	can	assign
to	variables.	The	reason	we	see	a	plot	when	we	call	the	function	in	the	REPL
or	in	a	notebook	is	that	Julia	calls	gui()	automatically	in	interactive	contexts
whenever	a	plot	object	is	returned	from	an	expression.	If	we’ve	assigned
some	plots	to	variables,	anytime	we	want	to	see	one,	we	can	simply	type	its
name	in	the	REPL	and	press	RETURN.	In	a	program	file,	we	can	supply	the
plot	object	as	an	argument	to	gui().

If	we	give	plot!()	a	plot	object	as	its	first	argument,	it	will	mutate	that	plot
instead	of	the	current	plot.	For	example,	if	we	execute	ps = plot(sin),	then	ps
is	a	plot	of	the	sin()	function.	A	call	to	plot!(ps, cos)	will	do	two	things:	it	will
mutate	ps,	adding	a	cos()	curve	to	it,	and	it	will	return	the	result,	so	that	the
altered	plot	pops	up	on	the	screen.	Making	the	same	call	using	the	non-
mutating	version,	plot(),	will	display	the	plot	with	both	curves,	but	won’t
alter	ps.

We	can	supply	any	number	of	plot	objects	as	arguments	to	plot(),	and	it
will	arrange	them	automatically	into	a	grid.	See	“Layouts”	on	page	117	for
details	on	how	to	get	more	control	over	this	arrangement.

This	REPL	session	creates	several	plots	and	then	combines	them:

julia> parabola = plot(x -> x^2);

julia> ps = plot(sin, 0, 2π);

julia> plot!(ps, cos);



julia> plot(ps, plot(f), plot(s -> s^3), parabola)

All	the	lines	end	with	a	semicolon	except	the	last,	where	we	want	to	see
the	plot.	First	we	give	the	variable	parabola	the	value	of	a	plot	object	depicting
a	parabola,	constructed	with	an	anonymous	function.	The	value	of	the
variable	is	now	a	data	type	representing	a	complete	plot,	with	axes,	tick
marks,	and	so	on.	We	don’t	specify	a	domain,	so	the	parabola	is	plotted	from
–5	to	5.

Then	we	assign	ps	to	a	plot	of	the	sin	function,	this	time	with	a	domain
from	0	to	2π.

Next	we	decide	we	would	like	ps	to	also	contain	a	cos	curve,	so	we	change
it;	plot!()	will	keep	the	existing	domain.

The	final	line	creates	the	plot	shown	in	Figure	4-6.



Figure	4-6:	Plotting	four	plot	objects

We	call	plot()	with	four	plot-object	arguments.	The	first	and	last	are	the
two	plot-holding	variables,	the	second	is	a	plot	object	created	directly	with	a
plot()	function	on	the	previous	f	function,	and	the	third	uses	an	anonymous
function.

Creating	Parametric	Plots
Parametric	plots	in	the	plane	are	also	classified	with	2D	plots	because	there
is	one	independent	variable,	now	called	the	parameter.	In	this	type	of	plot,	x
and	y	both	depend	on	the	parameter.	If	we	pass	two	arguments	that	are	both
functions	to	plot(),	it	recognizes	this	as	the	signature	for	a	parametric	plot
and	produces	a	graph	with	the	x-dependence	given	by	the	first	function	and



the	y-dependence	given	by	the	second	(where,	as	usual,	x	is	plotted	on	the
horizontal	axis	and	y	on	the	vertical).	We	must	specify	the	domain	for	the
parameter	with	two	additional	arguments;	however,	there	is	no	default	as
when	plotting	non-parametric	functions.

Parametric	plotting	allows	us	to	render	various	complex	shapes	and	such
plots	as	circles	and	spirals,	as	shown	in	Figure	4-7.

Figure	4-7:	Two	parametric	plots

The	left-hand	plot	is	produced	with	the	call	circle = plot(sin, cos, 0, 2π)
and	the	spiral	in	the	right-hand	plot	is	created	by	spiral = plot(r -> r*sin(r),	r
-> r*cos(r), 0, 8π).	We	draw	the	composite	figure	by	calling	plot(circle,
spiral).



As	in	the	case	of	regular	function	plotting,	the	independent	variable,	in
this	case	the	parameter,	can	be	implicit,	as	in	the	call	we	used	to	draw	the
circle.	When	the	functions	to	be	plotted	are	too	complex	to	allow	this,	as	in
the	spiral	example,	we	must	employ	a	dummy	variable,	which	we	named	r	in
this	case.

Making	Polar	Plots
A	polar	plot	uses	the	conventional	polar	coordinate	system	rather	than	a
rectangular	coordinate	system.	The	independent	variable	is	the	angle,
measured	counterclockwise	from	the	horizontal	axis,	and	the	dependent
variable	is	the	distance	from	the	origin.

Figure	4-8	shows	two	simple	plots	in	polar	coordinates.	The	plot()
function	renders	the	coordinate	grid	to	reflect	the	symmetry	of	the	polar
geometry.



Figure	4-8:	Two	polar	plots

We	created	the	plot	on	the	left	with	plot(0:2π/500:2π, t -> 1 + 0.2*sin(8t);
proj=:polar)	and	the	spiral	on	the	right	with	plot(0:8π/200:8π, t -> t; proj=:
polar).	The	first	arguments	in	these	calls	are	arrays	of	angular	coordinates,
and	the	second	arguments	are	functions	mapping	the	angle	to	the	distance
from	the	origin,	using	t	as	a	dummy	variable.	The	argument	proj=:polar	tells
plot()	to	make	a	polar	plot.	This	is	a	keyword	argument,	as	explained	in
“Optional	and	Keyword	Arguments”	on	page	96.

Making	Scatterplots
The	2D	plots	we’ve	seen	so	far	draw	a	continuous	line	through	a	set	of
points.	Sometimes	we	need	to	plot	a	collection	of	dots	or	other	markers,
each	at	a	particular	(x,	y)	position:	a	scatterplot.	The	scatter()	function	works
identically	to	the	plot()	function,	but	it	draws	point	collections	rather	than
curves.

As	an	example	application,	suppose	we	wanted	to	visualize	the	output	of
the	iterated	map:

This	simple	map	produces	a	fascinating	variety	of	patterns	with	an
unpredictable	dependence	on	a.	The	Julia	version	is:

julia> function ginger(x, y, a)
           x2 = 1.0 - y + a*abs(x)
           y2 = x
           x2, y2
       end

I’ve	named	it	after	the	common	nickname	for	the	map:	the	gingerbread
man.

We’ll	store	the	sequence	of	values	in	two	vectors,	x	and	y,	initialized	with
the	starting	coordinates,	and	iterate	4,000	times:

julia> x = [20.0]; y = [9.0];
julia> for i in 1:4000
        ➊ x2, y2 = ginger(x[end], y[end], 1.76)
           push!(x, x2)
           push!(y, y2)



       end

The	listing	uses	a	form	of	destructuring	➊.	The	ginger()	function	returns	a
tuple	with	its	first	member	stored	in	x2	and	its	second	in	y2.

After	running	this	loop,	we	can	see	what’s	in	x	and	y	with	a	scatterplot.
The	call	scatter(x, y; ms=0.5, legend=false)	produces	the	plot	shown	in	Figure
4-9.

Figure	4-9:	The	gingerbread	man	iterated	map

In	the	call	to	scatter(),	after	the	x	and	y	arguments,	we	add	something	new
after	a	semicolon.	These	two	optional	keyword	arguments	affect	the	plot’s
appearance,	as	explained	in	the	next	section.



Optional	and	Keyword	Arguments
In	a	function	definition,	we	can	supply	default	values	for	arguments.	Doing
so	makes	those	arguments	optional,	as	the	user	can	call	the	function	without
using	them:

julia> g(x, y=2) = x + y
g (generic function with 2 methods)

julia> g(4)
6

julia> g(4, 9)
13

In	this	example,	the	definition	of	g()	includes	the	default	value	of	2	for	y.	If
we	call	it	with	no	second	argument,	it	returns	x + 2.	When	we	do	supply	a
second	argument,	it	uses	that	instead.

So	far	we’ve	learned	how	to	define	and	call	functions	with	positional
arguments.	Values	are	assigned	based	on	the	order	in	which	we	put	them	in
the	argument	list	when	calling	the	function,	whether	they’re	optional	or	not.

Julia	also	has	keyword	arguments,	identified	by	name	rather	than	position.
Unlike	some	other	languages,	we	must	make	a	distinction	when	defining	a
function	between	its	positional	and	keyword	arguments;	we	separate	them
with	a	semicolon,	as	in	this	example:

   julia> p(x; y=2) = x + y
   p (generic function with 1 method)

➊ julia> p(4)
   6

   julia> p(4, 5)
   ERROR: MethodError: no method matching p(::Int64, ::Int64)
   Closest candidates are:
     p(::Any; y) at REPL[346]:1

   julia> p(4; y=5)
   9

Here	we	define	p()	to	have	one	positional	argument	and	one	keyword
argument,	named	y,	with	the	default	value	of	2.	We	can	call	p()	omitting	the
keyword	argument	➊,	because	the	default	makes	it	optional.	If	we	supply
two	positional	arguments,	that	returns	an	error	because	the	function	takes



only	one.	Make	sure	you	understand	the	difference	between	the	functions	g()
and	p():	they	differ	only	in	their	function	signatures.

NOTE

When	calling	a	function	we	have	the	option	to	use	a	comma	instead	of	a
semicolon	because	there’s	no	chance	of	ambiguity;	however,	the	semicolon	is
required	in	function	definitions.

The	plotting	functions	in	the	Plots	ecosystem	use	positional	arguments
for	data	or	functions	and	keyword	arguments	for	setting	plot	options.
Because	all	the	plot	options	have	default	values,	we	haven’t	had	to	use	them
until	now.

Basic	Plot	Settings
To	adjust	a	plot’s	appearance,	we	use	keyword	arguments.	There	are	four
components	that	can	make	up	a	visualization	made	with	the	Plots	package,
and	each	one	has	a	collection	of	settings	that	applies	to	it.

These	four	components	are	plot,	subplot,	axis,	and	series.	Plots	can	contain
subplots,	and	either	of	those	can	contain	axes	or	series.

The	overall	illustration	is	called	the	plot;	it	contains	other	plots,	the
subplots,	when	there	are	more	than	one,	as	in	Figure	4-6.	Settings	such	as	an
overall	title	and	background	color	apply	to	the	plot.

Within	a	plot,	each	subplot	can	have	its	own	title,	background	color,
margin,	and	many	other	settings.

The	actual	curves	or	other	visualizations	of	functions	or	data	are	the
series,	and	a	subplot	can	contain	many	series.

Each	subplot	contains	an	axis	object.	Its	settings	determine	such	things	as
whether	the	coordinate	axes	are	drawn	with	arrows,	the	color	of	tick	labels,
or	the	numbers	on	the	coordinate	axes.

For	the	most	part,	we	can	simply	use	the	appropriate	keyword	to	set	the
desired	attribute	of	our	visualization,	and	the	plotting	system	will	apply	it
where	it	makes	sense.	But	when	designing	complicated	visualizations,	we
sometimes	need	to	target	specific	components.



The	official	plotting	system	documentation	at
https://docs.juliaplots.org/stable/	contains	the	complete	list	of	attributes	for	all
components,	as	well	as	which	attributes	are	supported	by	which	backends.
The	following	list	provides	the	most	important	ones	and	gives	examples	of
their	effects:

Titles

Overall	title:	plot_title
Title	for	subplot:	title
Title	for	legend:	legendtitle

Other	labels

Legend	text:	label
Legend	existence	and	position:	legend
Axis	labels:	[x,y]guide
Label	anywhere:	annotation=(x, y, "Text")

Font	colors

Overall	title:	plot_titlefontcolor
Subplot	title:	titlefontcolor
Legend:	legendfontcolor
Axis	labels:	[x,y]guidefontcolor

Area	colors

Margin	area:	background_outside
Plot	area	only:	background_inside

Curves

Line	color:	lc
Line	width:	lw
Line	style:	ls

https://docs.juliaplots.org/stable/


Scatterplots

Marker	shape:	shape
Marker	color:	mc
Marker	size:	ms

Contour	plots

Give	contours	labels	(Boolean):	clabels
Contour	levels:	levels

Axes	and	ticks

Reverse	axis	(Boolean):	[x,y]flip
Rotation	of	tick	labels:	[x,y]rotation
Draw	axis:	showaxis [x,y]ticks
Frame	style:	framestyle

Grid

Draw	a	grid	(Boolean):	grid
Gridline	opacity:	gridalpha [0,1]
Gridline	style:	gridstyle

Coordinate	system

Use	polar	coordinates:	:proj=polar

Sizes	and	margins

Margin	around	subplot:	[left,right,top,bottom]margin
Overall	plot	size:	sizes(a, b)	(in	px)
Subplot	aspect	ratio:	ratio

Each	of	the	keywords	in	these	lists	has	a	set	of	abbreviations	and
alternative	spellings,	all	listed	in	the	official	documentation.	I’ve	picked	one



version	in	each	case;	it’s	not	always	the	briefest	alternative,	but	a	choice
designed	to	be	memorable	and	to	avoid	confusion.

The	purposes	of	a	few	of	these	settings	will	not	be	clear	until	we	discuss
them	later,	but	I’ve	listed	them	all	here	for	easy	reference.

Font	Attributes
To	form	the	keyword	for	setting	a	font	attribute	such	as	the	font	size	or
family,	look	up	the	corresponding	name	for	setting	the	font	color	in	the
attribute	list	shown	earlier,	and	substitute	the	desired	attribute,	such	as
fontsize	or	fontfamily	in	place	of	fontcolor.	For	example,	to	make	the	plot	title
have	a	size	of	30pt,	use	the	setting	plot_titlefontsize=30.

The	font	families	are	dependent	on	which	backend	is	in	use.	A	list	for	the
GR	backend	is	at	https://gr-framework.org/fonts.xhtml.	Some	of	the	more
useful	families,	which	also	may	be	available	in	other	backends,	are	Times
(Roman,	Italic,	Bold),	Courier,	Bookman,	DejaVu	Sans,	and	Computer
Modern.	Supply	the	setting	as	a	string.	If	we	set	the	attribute	fontfamily,	that
will	apply	to	all	or	most	of	the	text	on	the	plot.	For	example,	to	get	the	ticks,
axis	labels,	and	other	annotations	in	Computer	Modern,	but	the	title	in
Times,	we’d	call	plot(...; fontfamily="Computer Modern", legendfontfamily="Times").

If	we	mutate	a	plot	that	contains	subplots,	and	we’re	adding	or	changing
attributes	that	apply	to	subplots,	we	must	specify	which	subplot	to	mutate,
unless	we	want	our	changes	to	apply	to	all	of	them.	This	is	the	purpose	of
the	subplot	keyword.	Set	it	to	an	integer	indexing	the	subplots	as	they	appear
in	the	plot()	statement.	For	example,	for	two	graphs	displayed	side	by	side
with	plot(p1, p2),	we	can	put	a	label	on	the	horizontal	axis	of	p2	with	plot!(;
xguide	="Time", subplot=2).	Without	the	subplot	keyword,	both	plots	would	get
the	label.

The	Frame	Styles
The	framestyle	setting	determines	the	type	of	axis.	Figure	4-10	displays	the	six
possibilities.

https://gr-framework.org/fonts.xhtml


Figure	4-10:	The	six	possible	frame	styles

We	set	the	attribute	to	the	symbol	version	of	the	term	printed	on	the
graph.	For	example,	to	get	the	style	in	the	lower-left	corner,	we’d	use	the
setting	framestyle=:zerolines.

Working	with	Plot	Settings
Now	we	can	understand	the	call	to	scatter(x, y; ms=0.5, legend=false)	that
produced	Figure	4-9.	After	the	first	two	positional	arguments,	the	arrays
holding	the	points	to	be	plotted,	we	have	a	semicolon	indicating	the	start	of
the	keyword	arguments.	The	first	sets	a	small	marker	size	and	the	second
turns	off	the	legend.

Let’s	use	some	combinations	of	the	basic	attributes	listed	in	“Basic	Plot
Settings”	on	page	98	to	solve	some	other	visualization	problems.



Aspect	Ratio	and	Title	Font	Size
The	following	program	creates	a	simple	plot	with	two	subplots	displaying	a
circle	and	a	parabola:

julia> p1 = plot(sin, cos, 0, 2π; title="A Circle", ratio=1,
                 grid=false, ticks=false, legend=false)

julia> p2 = plot(x -> x^2, -1, 1; title="A Parabola",
                 gridalpha=0.4, gridstyle=:dot, legend=false)

julia> plot(p1, p2; plot_title="Two Shapes", plot_titlefontsize=20)

Here	we	use	the	ratio	keyword	to	set	the	aspect	ratio	in	the	first	line.	You
may	have	noticed	that	what	is	supposed	to	be	a	circle	in	Figure	4-7	is
rendered	as	a	noncircular	ellipse.	The	default	size	of	Julia’s	plots	is	not
square,	but	is	instead	longer	than	it	is	tall,	so	the	circle	is	stretched
horizontally.	If	it	matters,	as	it	does	in	this	case,	we	can	use	ratio	to	fix	the
problem.	We	also	turned	off	the	grid	and	ticks	on	this	plot.

The	default	grid	in	most	backends	is	quite	light,	so	we	made	it	more
prominent	by	increasing	the	gridalpha	in	the	plot	of	the	parabola.	The	default
for	this	is	0.1.

The	last	line	creates	the	combined	plot	with	an	overall	title	set	a	little
larger	than	the	default.	Figure	4-11	shows	the	result.



Figure	4-11:	A	plot	with	two	subplots

To	get	more	space	between	the	two	subplots,	we	can,	for	example,	set	a
rightmargin	on	the	left	subplot.	Before	setting	margins,	execute	using Plots
.PlotMeasures,	which	lets	us	use	literal	dimensions	in	margin	settings;	for
example,	rightmargin=10mm.	Other	available	dimensions	are	inch,	cm,	px,	and	pt.

NOTE

The	plot_title	is	a	recent	addition	to	the	plotting	system,	and	its	implementation
is	incomplete.	If	we	choose	larger	font	sizes	for	the	title,	it	will	overlap	the	titles
of	the	subplots,	and	there	is	no	straightforward	way	to	fix	that.



Labels	and	Legend	Positioning

For	our	next	example,	let’s	make	a	plot	of	xn	for	a	few	values	of	n:

julia> plot()

julia> for n = 1:5
           plot!(x -> x^n; lw=3, ls=:auto, label=n)
       end

julia> plot!(; legend=:topleft, legendtitle="Exponent")

First	we’ll	clear	any	existing	plots	with	an	empty	plot()	command,	and
then	mutate	the	empty	plot	once	for	each	function.	Since	the	for	loop
doesn’t	return	a	result,	we	won’t	see	anything	until	the	final	call	after	the
loop,	which	simply	makes	some	plot	settings.	In	the	plotting	statements,	the
label	setting	defines	the	text	associated	with	that	plot	in	the	legend.	It	expects
a	string	(or	symbol),	but	can	convert	the	integer	n.	The	lw	setting	makes	the
lines	thicker	than	the	default.	The	ls	setting	is	for	the	line	style.	It	can	take
the	values	:auto,	:solid,	:dash,	:dot,	:dashdot,	or	:dashdotdot.	The	option	used
here,	:auto,	cycles	through	the	other	five	styles,	reusing	them	if	the	plot	has
more	than	five	curves.	It’s	a	good	choice	for	print	when	we	can’t	use	color.
Figure	4-12	shows	the	results.



Figure	4-12:	The	five	line	styles

The	final	plot()	statement	sets	legend	to	place	it	at	the	top	left	of	the	plot.
We	can	use	other	similar	positioning	symbols,	optionally	preceded	by	outer
to	place	the	legend	outside	the	axes.	For	more	precise	positioning	we	can	use
an	(x, y)	tuple	specifying	the	coordinates	of	the	legend	box.	Finally,	we	can
set	legend=false	to	omit	the	legend.

LaTeX	Titles	and	Label	Positioning	by	Data
Let’s	plot	the	same	functions	with	a	different	style	of	labeling.	We’ll	use
annotations	to	place	labels	indicating	each	exponent	on	top	of	each
corresponding	curve,	as	shown	in	Listing	4-1.



julia> plot()

julia> for n = 1:5
           xlabel = (0.2 + 0.12n)
        ➊ ylabel = xlabel^n
           plot!(x -> x^n; lw=3, ls=:auto,
                      annotation=(xlabel, ylabel, n),
                      annotationfontsize=25)
       end

julia> using LaTeXStrings

julia> plot!(; legend=false, xguide="x", yguide="y", guidefontsize=18,
        ➋ title=L"x^n \textrm{~labeled~by~}n", titlefontsize=30)

Listing	4-1:	Using	calculated	labels	and	a	LaTeX	title

Here	we	calculate	coordinates	for	each	of	the	five	labels	within	the	loop.
The	x-coordinate	increases	to	the	right	with	the	exponent,	to	space	out	the
labels	so	they	don’t	overlap.	The	label’s	y-coordinate	➊	is	the	same	function
of	x	as	the	curves	we’re	plotting,	to	ensure	that	they	lie	precisely	on	the
curves	that	they’re	labeling.

The	setting	for	the	annotation	has	n,	a	variable	holding	an	integer,	where
there	should	be	a	String,	but	the	plot()	function	converts	it	for	us.

We	then	import	a	package	we	haven’t	seen	before:	LaTeXStrings	(note	the
capitalization)	lets	us	put	math	in	our	plot	titles	and	annotations	using
LaTeX	syntax.	Even	non-LaTeX	users	may	still	need	equations	in	graphs
occasionally,	and	LaTeX’s	math	syntax	is	straightforward.	Check	“Further
Reading”	on	page	121	for	a	link	to	a	guide.	After	importing	this	package,	we
can	prepend	L	to	any	string	to	turn	it	into	a	LaTeX	string.	In	a	context
where	typesetting	is	possible,	such	as	in	a	plot,	Julia	will	typeset	the	string
appropriately.	The	entire	string	is	in	LaTeX	math	mode,	where	all	letters
are	treated	as	mathematical	symbols.	Therefore,	if	we	need	some	normal
text,	as	we	did	in	this	example	➋,	we	must	wrap	it	in	a	LaTeX	command	to
force	it	to	be	set	as	such.	Within	these	text	segments,	indicate	spaces	with	a
tilde	(~).	The	plot	in	Figure	4-13	shows	the	result	of	this	REPL	session.



Figure	4-13:	Using	calculated	labels	and	a	LaTeX	title

In	addition	to	the	settings	for	individual	plot	elements,	two	others	make
larger-scale	changes.	The	thickness_scaling	setting	is	useful	for	creating	a
version	of	the	plot	with	better	legibility	for	presentation.	It	thickens
everything,	including	tick	labels.	It	affects	the	margins	as	well,	however,	and
can	change	the	positioning	of	plot	elements.	Setting	the	values	between	1
and	1.7	produces	useful	results.	Use	values	less	than	1	to	create	a	spindly
version	of	the	plot.

Regression	Lines
The	smooth	setting	draws	a	line	of	best	fit,	calculated	by	linear	regression,



through	each	curve	or	dataset	on	the	plot.
Let’s	return	to	the	gingerbread	map	and,	using	the	same	initial

conditions,	calculate	20,000	iterations	with	a	=	1.6,	again	storing	the	results
in	the	x	and	y Vectors.	We’ll	make	two	subplots.	The	first	will	be	a	scatterplot
similar	to	Figure	4-9,	but	with	a	regression	line	showing	the	average
orientation	of	the	points.	The	second	will	plot	the	first	100	values	of	x	versus
iteration	number,	with	a	regression	line	showing	the	trend	of	a	gradually
increasing	distance	from	the	origin:

   julia> sc = scatter(x, y; smooth=true, ms=1, legend=false,
                       xguide="x", yguide="y", guidefontsize=18)

   julia> pl = plot(x[1:100]; smooth=true, legend=false)

➊ julia> pl = plot!(x[1:100]; lc=:lightgray, legend=false,
                     xguide="iteration", yguide="x", guidefontsize=18)

   julia> plot(sc, pl, plot_title="Gingerbread map with a = 1.6",
               plot_titlefontsize=22)

First	we	create	a	scatterplot	of	the	map	as	before,	adding	the	trend	line
with	the	setting	smooth=true,	and	assign	the	result	to	sc.	Then	we	plot	the
initial	100	x-values,	also	with	a	trend	line.	Plotting	the	two	subplots	together
with	a	title	gives	us	Figure	4-14.



Figure	4-14:	Trends	in	the	gingerbread	map

As	before,	the	plot_title	attribute	creates	an	overall	title	for	the	two	plots.
We	wanted	the	plotted	curve	and	the	calculated	trend	line	to	have	different
styles,	but	there’s	no	setting	for	this,	so	we	resorted	to	a	trick,	over-plotting
the	curve	in	a	different	style	but	without	a	trend	line	➊.

Saving	Plots
When	you’re	ready	to	save	your	creation	to	disk,	call	savefig(p,	path)	where	p
is	the	variable	holding	the	visualization	and	path	is	the	location	where	you
would	like	the	image	file	stored.	The	filename	extension	to	path	determines
the	format,	but	different	backends	support	different	types	of	images.	PDF
and	PNG	should	always	be	available,	and	SVG	is	also	widely	supported.

If	we	omit	p,	it	defaults	to	the	current	plot.	A	common	workflow	is	to



repeatedly	mutate	a	plot,	making	adjustments	until	it’s	satisfactory,	and	then
call	savefig(path).

Detail	Insets
An	inset	plot	is	a	small	plot	inside	the	frame	of	a	larger	one.	It’s	often	used	to
provide	a	magnified	view	of	a	section	of	the	outer	plot.	Julia’s	plotting
system	has	a	built-in	function	for	creating	this	type	of	detail	inset,	called
lens!().	It	exists	only	in	a	mutating	form	because	the	inset	plot	makes	sense
only	as	an	addition	to	an	existing	plot.

The	first	argument	to	lens!()	either	is	an	existing	plot	or	is	omitted	to
indicate	the	current	plot.	The	next	two	arguments	are	vectors	defining	the
rectangular	region	to	be	magnified.	The	required	argument	inset	specifies
which	subplot	gets	the	inset	as	well	as	the	inset’s	position	and	size.	The
diagram	in	Figure	4-15	shows	how	to	use	these	arguments.



Figure	4-15:	How	to	make	an	inset

Figure	4-15	uses	a	blank	plot	with	a	grid	for	illustration.	The	annotations
“width”	and	“height”	refer	to	the	width	and	height	of	the	outer	plot.	The
complete	command	that	created	the	inset	is	shown	near	the	bottom	of	the
plot.

As	an	application	for	lens!(),	I	constructed	another	instance	of	the
gingerbread	map,	this	time	with	a	=	1.4	and	100,000	iterations	to	produce
more	detail.	The	following	two	lines	first	create	the	scatterplot	and	then	add
the	inset:

scatter(x, y; ms=0.1, legend=false)

lens!([-26, -22], [31, 38];



      inset=(1, bbox(0.1, 0, 0.3, 0.3)),
   ➊ ticks=false, framestyle=:box, subplot=2,
      linecolor=:green, linestyle=:dot)

In	the	call	to	lens!(),	the	settings	➊	for	the	ticks	and	Framestyle	apply	to	the
inset	plot,	while	the	linecolor	and	linestyle	settings	apply	to	the	drawing	of
the	magnifying	glass	that	delineates	the	expanded	area.	A	full	frame	style	is	a
good	choice	for	an	inset	plot.

Figure	4-16	shows	the	result.	I’ve	used	the	inset	plot	to	magnify	one	of
the	corners	of	the	gingerbread	map,	showing	the	pattern	of	points	within	it.

Figure	4-16:	Using	a	detail	inset	to	magnify	a	section	of	the	gingerbread	map

The	setting	subplot=2	in	the	call	that	creates	the	inset	ensures	that	the



other	graph	settings	in	that	call	apply	only	to	the	inset,	which	becomes	the
second	subplot.	By	referring	to	the	number	of	the	subplot,	we	could	create
an	inset	within	the	inset,	if	we	were	so	inclined.

3D	Plots
Several	types	of	plots	visualize	a	quantity	that	depends	on	two	independent
variables.	When	in	rectangular	coordinates,	the	dependent	variable	is
conventionally	called	z,	and	the	two	independent	variables	are	called	x	and	y.
The	three	common	ways	to	represent	such	a	relationship	are	with	a	surface
plot,	a	heatmap,	or	a	contour	plot.	Which	is	most	effective	depends	on	the
nature	of	the	data	and	the	features	we’re	trying	to	clarify.

Surface	Plots
After	importing	the	plotting	package	with	using Plots,	we	have	access	to
several	3D	plotting	routines.	For	a	surface	plot,	we	use	the	surface()	function
to	create	a	perspective	rendering	of	a	2D	surface	embedded	in	a	3D	space,
with	the	height	and	coloring	of	the	surface	indicating	the	z-value.

Here	are	a	few	additional	settings	that	apply	to	surface	plots:

Draw	a	colorbar:	colorbar	(true	or	false)
Opacity	of	the	surface:	fillalpha
Angle	of	view:	camera	(azimuth,	elevation)	(in	degrees)
Colorbar	title:	cbtitle
Surface	palette:	c

Let’s	put	some	of	these	settings	to	use	in	making	a	surface	plot	of	a
Gaussian	distribution	of	two	variables.	After	defining	a	vector	x	to	go	from	–
1	to	1,	we	can	use	anonymous	function	syntax	to	plot	the	surface	with	the
following:

surface(x, x, (x, y) -> exp(-(0.05x^2 + y^2)/.1);
        fillalpha=0.5, camera=(45, 50), c=[Gray(0), Gray(0.8)],
        xrotation=45, yrotation=-45)

We	use	an	alpha	less	than	1	in	order	to	see	through	the	surface,	and
rotated	the	axis	tick	labels	to	make	them	easier	to	read	and	to	keep	them



from	colliding	where	the	axes	meet.	Figure	4-17	shows	the	surface	plot.

Figure	4-17:	A	surface	plot

The	c	setting	defines	the	palette	used	to	color	the	surface.	There	are
several	ways	to	define	the	palette;	the	one	used	earlier,	with	a	number	of
colors	in	a	Vector,	creates	a	palette	by	smoothly	interpolating	between	them.
Gray(0)	is	black,	Gray(1)	is	white,	and	so	on.	We	can	also	define	colors	with
RGB(r, g, b),	where	r,	g,	and	b	are	the	red,	green,	and	blue	components,	also
ranging	from	0	(absent)	to	1	(fully	saturated).	Over	600	color	names	are
available	as	symbols,	including	both	memorable	names	such	as	:red	and	:blue
and	meaningless	ones	such	as	:seashell3	and	:oldlace.

Instead	of	a	Vector	of	colors,	we	can	supply	a	symbol	giving	the	name	of	a



predefined	palette,	of	which	there	are	scores	listed	at
https://docs.juliaplots.org/latest/generated/colorschemes/.	The	more	useful	ones
have	names	such	as	:blues	or	:grays	that	use	one	hue	and	vary	the	saturation
and	lightness,	but	there	are	plenty	to	choose	from	for	special	purposes.

Heatmaps
A	heatmap	also	visualizes	a	mapping	of	two	independent	variables	to	one
dependent	variable,	but	the	values	of	the	independent	variable	are	indicated
by	a	color	or	gray	value.	The	call	is	similar	to	a	surface	plot,	but	uses	the
heatmap()	function:

heatmap(x, x, (x, y) -> exp(-(0.05x^2 + y^2)/.1);
               c=:grays)

This	call	creates	the	heatmap	shown	in	Figure	4-18.

https://docs.juliaplots.org/latest/generated/colorschemes/


Figure	4-18:	A	heatmap	of	a	2D	Gaussian

Color	palettes	for	heatmaps	work	the	same	way	as	for	surface	plots.

Contour	Plots
Contour	plots	are	similar	to	heatmaps,	but	they	use	isolines	rather	than	color
to	indicate	the	values	of	the	independent	variable.	Here	are	a	few	important
attributes	specific	to	contour	plots:

Number	of	contours	or	specific	contour	levels:	levels	(integer	or	vector
of	levels)
Draw	contour	labels	(Boolean):	clabels



Fill	areas	between	contours	(Boolean):	fill

If	we	supply	an	integer	for	levels,	Julia	will	draw	that	many	contours.	If
we	also	set	clabels	to	true,	it	will	label	the	contour	lines	with	the	values	they
represent.	Unfortunately,	these	numerical	labels	are	printed	with	too	many
digits	and	often	become	crowded.	If	we	set	levels	to	a	Vector	of	numbers,	the
plot	will	have	contours	at	just	those	values,	and	their	labels	will	be	printed
using	the	same	precision	used	for	the	levels.	The	following	example	shows
this	use	of	levels	and	clabels:

contour(x, x, (x, y) -> exp(-(0.05x^2 + y^2)/.1);
               clabels=true, levels=[0.1, 0.3, 0.5, 0.7, 0.9, 1.0],
               colorbar=false, framestyle=:box)

This	call	uses	the	same	x	vector	and	plots	the	same	function	as	the	surface
plot	and	heatmap	examples	shown	in	Figures	4-17	and	4-18.	The	result,	in
Figure	4-19,	shows	the	labels	with	one	digit	of	precision.



Figure	4-19:	A	labeled	contour	plot

The	:box framestyle	works	well	with	contour	plots.	Eliminating	the	color
bar	is	also	a	good	idea.	We	can	color	the	lines	by	setting	a	c,	but	this	doesn’t
always	work	well	with	every	backend.	If	we	find	stray	colors	creeping	into
the	contour	lines,	we	can	fix	it	with	c=:black.

Line	styles	such	as	:dot	work,	but	not	:auto.

NOTE

When	using	filled	contours	with	some	backends,	including	GR,	and	manually	set
contour	levels,	we	must	include	a	level	greater	than	or	equal	to	the	maximum	of
the	data,	or	the	graph	will	not	be	properly	drawn.



The	fill	attribute,	when	set	to	true,	adds	colors	between	the	contour
lines,	resulting	in	a	kind	of	discrete	heatmap	with	contours.	The	c	attribute
defines	the	palette	for	these	colors.	The	contourf()	function	is	an	alias	for
contour()	with	fill=true.

Let’s	repeat	the	previous	contour	plot	(Figure	4-19),	but	this	time	leave
the	color	bar	in,	turn	on	the	fill,	and	use	a	grayscale	palette:

contour(x, x, (x, y) -> exp(-(0.05x^2 + y^2)/.1);
               clabels=true, levels=[0.1, 0.3, 0.5, 0.7, 0.9, 1.0],
               fill=true, c=[Gray(0.4), :white])

Figure	4-20	shows	the	filled	contour	plot.

Figure	4-20:	A	filled	contour	plot



In	this	case,	having	both	contour	labels	and	a	color	bar	is	somewhat
redundant,	as	they	carry	the	same	information,	but	this	may	make	the	plot
easier	to	interpret.	There	is	an	art	to	scientific	visualization	in	creating	a
result	that	is	both	intuitively	clear	and	quantitatively	precise.

3D	Parametric	Plots
Parametric	plots	in	3D	work	just	as	they	do	in	2D,	but	they	trace	a	path
through	3D	space,	with	three	functions	of	the	single	parameter	giving	the	x-,
y-,	and	z-coordinates.	Unlike	in	2D	parametric	plots,	we	must	supply	three
vectors,	and	it	doesn’t	work	with	functions.	Here	is	an	example:

julia> t = 0:2π/100:2π;

julia> xp = sin.(3 .* t);

julia> yp = cos.(3 .* t);

julia> zp = t .* 0.2

julia> plot(xp, yp, zp; lw=3, gridalpha=0.4, camera=(30, 50))

The	plot()	function	knows	what	to	do	when	supplied	with	three	vectors	as
positional	arguments,	producing	the	resulting	3D	parametric	plot	shown	in
Figure	4-21.



Figure	4-21:	An	example	of	a	3D	parametric	plot

We	can	use	the	attributes	for	lines	as	for	ordinary	2D	plots,	and	set	the
camera	angle	as	for	surface	plots.

Vector	Plots
A	vector	field	maps	every	point	in	space	to	a	vector,	which	can	be
represented	by	an	arrow.	The	Plots	package	offers	vector	plots	created	with
the	quiver()	function.	Its	first	two	arguments	are	x	and	y Vectors	containing	the
coordinates	of	the	start	of	the	vectors.	The	displacements	from	those
coordinates	to	the	vectors’	endpoints	are	stored	in	two	other	Vectors,	placed
in	a	Tuple,	and	assigned	to	a	keyword	argument	also	called	quiver.

The	following	example	shows	how	to	use	quiver():



julia> xc = 0:.3:π;

julia> yc = sin.(xc);

julia> quiver(xc, yc; quiver=(xc .- π/2, yc .- 0.25), lw=3)

These	three	lines	produce	the	vector	plot	in	Figure	4-22.

Figure	4-22:	A	vector	plot	using	quiver()

The	quiver()	function	accepts	all	the	attributes	for	curves;	here	we	set	the
line	width	to	get	thicker	arrows.

3D	Scatterplots



Plots	can	extend	scatterplots	into	the	third	dimension.	One	way	to	visualize	a
3D	distribution	of	some	quantity	is	to	plot	a	regular	3D	grid	of	markers
while	setting	some	marker	attribute,	such	as	size	or	opacity,	to	a	function	of
the	quantity.	First	we	need	to	establish	the	grid	by	making	x,	y,	and	z	Vectors:

x = []; y = []; z = [];

for i in 0:20, j in 0:20, k in 0:20
    push!(x, i/10 - 1)
    push!(y, j/10 - 1)
    push!(z, k/10 - 1)
end

This	will	create	the	coordinate	arrays	ranging	from	–1	to	1.
Let’s	imagine	a	planet	sitting	in	the	center	of	our	grid.	We	could	plot	the

shape	of	the	gravitational	potential	due	to	the	planet	by	first	defining	a
potential	function	and	then	using	it	to	set	the	marker	size:

pot(x, y, z) = 1 / sqrt(x^2 + y^2 + z^2)
scatter(x, y, z;  ms=min.(pot.(x, y, z), 5), ma=0.4, legend=false)

The	potential	becomes	large	near	the	planet,	so	we	need	to	limit	the
marker	size	with	the	min()	function.	It	actually	becomes	infinite	at	(0,	0,	0),
but	Julia	handles	that	gracefully.	The	result	is	shown	in	Figure	4-23.



Figure	4-23:	A	3D	scatterplot

We	set	an	opacity	to	allow	us	to	see	through	the	markers.	This	is	the
same	scatter()	function	that	we	used	in	2D,	but	Julia	knows	what	to	do	if	we
give	it	three	positional	arguments.

Useful	Backends
GR,	the	current	default	backend,	has	the	merit	of	being	fast	and	capable	of
producing	most	basic	categories	of	visualization.

A	few	other	backends	are	available	for	special	purposes,	but	most	of	them
require	us	to	add	them	in	the	package	manager	before	use.



UnicodePlots
The	unicodeplots	backend	plots	directly	in	the	terminal.	It’s	good	for	a	quick
look	at	some	data,	which	it	plots	using	characters.	We	can	also	use	it	to
generate	plots	to	paste	into	an	email,	but	obviously	it’s	not	suited	to	making
figures	for	publication,	and	it	can’t	save	plots.

To	produce	quick	plots	in	the	terminal,	first	execute	add UnicodePlots	in
package	mode,	then	call	unicodeplots()	to	activate	the	backend.

The	unicodeplots	backend	doesn’t	support	every	plot	type.	It	can	make	2D
plots,	including	scatterplots,	but	not	contour	or	surface	plots.	However,
unicodeplots	can	render	colored	heatmaps	in	the	terminal.

PyPlot
The	pyplot	backend	uses	Python’s	Matplotlib,	so	it	may	be	a	good	choice	for
those	already	familiar	with	that	system.	Although	it	can	sometimes	be	a	bit
slow,	it	creates	better	plots	than	the	default	in	some	cases.

PlotlyJS
With	the	plotlyjs	backend	we	can	create	interactive	graphs	for	the	web.
Saving	the	plot	with	the	.xhtml	file	extension	creates	a	file	containing	an
HTML	fragment	that	we	can	paste	into	a	web	page.	The	fragment	loads
some	third-party	JavaScript	that	supplies	interactive	controls	for	panning,
zooming,	and,	for	3D	plots,	rotating	in	3D	space.	Other	forms	of
interactivity	vary	appropriately	with	the	plot	type.	Two-dimensional	plots
display	data	values	as	the	user	hovers	over	the	curve,	and	surface	plots	draw
contours	on	the	surfaces	at	the	z-value	of	the	mouse	pointer.

Plotting	is	not	at	all	fast,	although	the	results	look	good	and	interaction	is
impressively	responsive.	Contour	plots	are	better	with	plotlyjs	than	with	GR,
especially	for	colored	contours,	but	the	attributes	for	linewidth	or	linestyle
have	no	effect,	and	manual	levels	don’t	work.

When	plotting	from	the	REPL,	a	separate	window	pops	up	for	each	plot,
using	the	same	JavaScript	interactivity	as	in	the	HTML	files.

PGFPlots	and	PGFPlotsX
I	won’t	say	much	about	these,	because	they	are	useful	only	to	those	who	have
LaTeX	installed	and	some	knowledge	of	the	LaTeX	graphing	system



PGFPlots.	Those	who	do	use	these	systems	should	be	aware	of	the	two	Julia
interfaces	to	them.	The	difference	between	the	two	versions	is	that	PGFPlotsX’s
syntax	is	closer	to	what’s	used	directly	in	LaTeX.	With	PGFPlots,	we	can	make
extraordinary	visualizations	that	are	difficult	to	achieve	through	other	means.
LaTeX	users	who	aren’t	familiar	with	the	system	may	want	to	acquaint
themselves.	This	backend	does	depend	on	a	LaTeX	installation—not	a
trivial	requirement.

HDF5
HDF5	stands	for	Hierarchical	Data	Format,	version	5.	This	backend	does
not	display	plots	directly;	its	purpose	is	to	bundle	data	and	plots	together
into	an	HDF	file.	For	anyone	who	uses	HDF	in	their	research,	this	package
will	be	essential,	but	others	will	have	no	use	for	it.

The	backend	not	only	writes	HDF	files,	it	also	can	read	them	into	the
Julia	session	for	display	with	other	Plots	backends.

Gaston
Gaston	is	an	interface	to	gnuplot	and	depends	on	a	gnuplot	installation.	This
backend	will	be	of	interest	to	those	already	using	that	venerable	and
powerful	graphics	program.

Gaston	is	fast	and	powerful,	because	gnuplot	is	fast	and	powerful.	If	you
routinely	need	to	make	complex	3D	plots	that	the	other	backends	can’t
handle,	or	need	more	fine	control	over	plots	for	publication,	installing
gnuplot	and	using	it	with	Gaston	may	be	the	best	choice.

Layouts
Earlier	in	this	chapter	we	saw	that	the	plot()	function	will	arrange	graphs	in	a
grid	if	we	pass	it	a	number	of	plot	objects.	Sometimes	we	need	more	control
over	the	arrangement	of	subplots	in	an	illustration.	In	such	cases,	we	turn	to
the	Layout	system.

The	plotting	package’s	method	for	composing	plots	into	larger
illustrations	is	one	of	the	jewels	of	the	system.	Considering	the	complexity
that	it	allows,	it’s	remarkably	intuitive	to	use.

In	the	following	demonstrations,	the	Vector s	contains	six	plots,	each



displaying	a	prominent	digit,	from	1	to	6.	This	will	make	it	clear	where	the
layout	engine	positions	each	plot.

If	you’d	like	to	follow	along,	you’ll	need	to	create	your	own	s	vector,	with
plots	of	your	choosing.

Making	Simple	Rectangular	Layouts
To	replace	the	default	square	grid	of	plots	with	a	different	rectangular
arrangement,	supply	the	desired	number	of	rows	and	columns	as	a	tuple
assigned	to	the	layout	attribute:

plot(s[1], s[2], s[3], s[4]; layout=(1, 4))

As	Figure	4-24	shows,	this	call	arranges	the	plots	using	one	row	and	four
columns.



Figure	4-24:	A	one-row	layout

The	number	of	plots	implied	in	the	layout	tuple	must	match	exactly	the
number	of	subplots.	The	default	in	this	case	would	be	equivalent	to	layout=(2,
2).

Using	grid()
The	simple	layouts	in	the	previous	example	make	all	the	subplots	the	same
size.	To	control	the	heights	and	widths	of	the	rows	and	columns,	use	the
grid()	function,	as	in	the	following	example:

plot(s[1], s[2], s[3], s[4];
     layout=grid(2, 2; widths=(0.2, 0.8), heights=(0.7, 0.3)))

This	call	creates	the	layout	in	Figure	4-25.	We	can	omit	either	the	height
or	the	width	specification	to	get	equalized	lengths	in	that	direction.



Figure	4-25:	A	layout	using	the	grid()	function

When	using	grid(),	the	dimensions	can	add	up	to	less	than	1,	which	will
simply	leave	some	blank	space,	but	they	should	not	add	to	greater	than	1.

Creating	Complex	Layouts	Using	@layout
We	can	create	layouts	of	arbitrary	complexity.	The	next	level	requires	the
use	of	the	@layout	macro.	We	haven’t	seen	macros	yet;	they’re	introduced	in
“Macros”	on	page	170.	For	now,	I’ll	show	how	to	use	this	particular	macro
to	create	graph	layouts.	We’ll	be	better	equipped	to	understand	how	it	works
under	the	hood	after	we	learn	a	bit	more	about	the	language.

The	@layout	macro	creates	a	layout	that	follows	the	shape	of	a	matrix	that



we	supply	to	the	macro.	We	use	spaces	to	place	subplots	horizontally	and
newlines	or	semicolons	to	place	them	vertically,	as	when	constructing	actual
matrices.	However,	these	@layout	matrices	don’t	need	to	have	matching
dimensions.	As	in	the	following	example,	the	rows	can	have	different
numbers	of	elements.	I	use	a	to	represent	a	subplot,	but	we	can	use	any
identifiers.	They	have	no	meaning,	as	the	layout	engine	just	uses	the	plots	in
the	order	we	supply	them	in	the	plot()	function.	Here’s	a	simple	use	of	the
macro:

plot(s[1], s[2], s[3], s[4], s[5], s[6];
     layout =  @layout [ a a a
                          a a
                           a   ] )

Figure	4-26	shows	the	resulting	layout.	Observe	how	the	arrangement	of
subplots	follows	the	arrangement	of	the	a	placeholders	used	in	the	macro.



Figure	4-26:	Using	the	@layout	macro

The	use	of	@layout	in	this	form	equalizes	the	space	allotted	to	the	subplots.
To	change	the	height	or	width	of	any	of	them,	use	the	notation	in	the
following	example:

plot(s[1], s[2], s[3], s[4], s[5], s[6];
     layout =  @layout [ a a a
                          a{0.68w} a
                            a{0.5h} ])

The	specifications	inside	the	curly	brackets	are	width	or	height	as	a
fraction	of	the	entire	plot.	This	call	creates	the	layout	in	Figure	4-27.



Figure	4-27:	Using	the	@layout	macro	with	dimension	specifications

We	can	achieve	even	greater	flexibility	in	layouts	by	using	a	call	to	grid()
within	the	@layout	argument,	as	in	the	following	example:

plot(s[1], s[2], s[3], s[4], s[5], s[6];
     layout=@layout [ grid(2, 2) a{0.3w}
                            b{0.2h} ])

The	number	of	subplots	passed	to	the	@layout	macro	must	equal	the
number	in	the	positional	arguments	to	plots().	The	grid(2, 2)	call	here
accounts	for	four	subplots,	and	the	remaining	two	are	represented	by	a	and	b.
Figure	4-28	shows	the	result.



Figure	4-28:	Using	subgrids	within	a	layout

“Detail	Insets”	on	page	106	explained	how	to	create	inset	plots	that
magnified	a	section	of	a	main	plot.	We	can	use	the	inset	and	subplot	attributes
that	we	used	there	to	make	any	kind	of	inset,	not	merely	one	using	lens!(),
and	we	can	combine	it	with	any	layout.

After	creating	the	layout	in	the	previous	example,	we	can	add	an	inset	to
it	with	this	call:

plot!(x -> sin(7x); inset=bbox(0.2, 0.2, 0.3, 0.3), subplot=7,
      background_inside=RGBA(1, 1, 1, 0.3), lw=5, framestyle=:box,
      legend=false, lc=:black)

The	inset	attribute	is	set	to	a	bbox.	Since	we	didn’t	supply	it	with	a
positional	argument,	the	bbox	parameters	will	position	the	plot	relative	to	the
entire	layout,	rather	than	any	particular	subplot.	The	subplot=7	setting	makes
the	inset	into	a	new	subplot,	which	is	necessary	to	make	this	work	as
intended,	as	the	layout	already	has	six	subplots.	RGBA	is	similar	to	the	RGB	that
we	saw	before,	but	with	a	final	parameter	for	the	opacity.



Figure	4-29	shows	the	result	of	adding	the	inset.

Figure	4-29:	Adding	a	floating	inset	to	a	layout

Conclusion
This	chapter	covered	everything	about	the	Plots	package	that	you’ll	need	for
most	scientific	graphics:	the	main	types	of	plots,	lenses	and	annotations,	how
to	customize	appearance,	and	how	to	lay	out	sets	of	graphs	to	form	a
composite	illustration.	In	Chapter	7	we’ll	find	out	how	to	make	animations
and	explore	some	packages	to	create	diagrams,	and	in	Chapter	8	we’ll	revisit
the	plotting	system	to	learn	about	plot	recipes.



FURTHER	READING

The	official	reference	for	the	Plots	package	is	available	at
https://docs.juliaplots.org/latest/.
Here’s	where	you	can	find	a	video	about	Plots	by	its	creator:
http://www.breloff.com/plots-video.
For	a	useful	guide	to	making	publication-quality	plots,	visit
https://nextjournal.com/leandromartinez98/tips-to-create-beautiful-
publication-quality-plots-in-julia.
More	information	on	the	HDF5	format	is	available	at
https://www.hdfgroup.org/solutions/hdf5.
Documentation	on	using	HDF5	files	in	Julia	is	available	at
https://juliaio.github.io/HDF5.jl/stable/.
For	more	information	on	predefined	palettes	for	plots,	visit
https://docs.juliaplots.org/latest/generated/colorschemes/.
The	Gaston	headquarters,	at	https://mbaz.github.io/Gaston.jl/stable,
contains	a	well-chosen	illustration.
Information	and	software	downloads	for	gnuplot	are	available	at
http://gnuplot.info.
The	basics	of	LaTeX	math	syntax	are	available	at
https://www.cs.princeton.edu/courses/archive/spr10/cos433/Latex/latex-
guide.pdf	(see	Section	7).
Documentation	on	a	Julia	wrapper	over	the	powerful	plotly.js
interactive	plotting	system	is	available	through	the	plotlyjs
package:	https://plotly.com/julia/.

https://docs.juliaplots.org/latest/
http://www.breloff.com/plots-video
https://nextjournal.com/leandromartinez98/tips-to-create-beautiful-publication-quality-plots-in-julia
https://www.hdfgroup.org/solutions/hdf5
https://juliaio.github.io/HDF5.jl/stable/
https://docs.juliaplots.org/latest/generated/colorschemes/
https://mbaz.github.io/Gaston.jl/stable
http://gnuplot.info
https://www.cs.princeton.edu/courses/archive/spr10/cos433/Latex/latex-guide.pdf
https://plotly.com/julia/


5
COLLECTIONS

I	don’t	want	to	belong	to	any	club	that	would	accept	me	as	one	of	its
members.

—Attributed	to	Groucho	Marx

A	collection	is	a	data	structure	that	functions	as	a	container.	The	values	that	it
holds	are	its	elements.	Julia’s	collections	are	distinguished	from	each	other	by
what	they	can	contain,	whether	or	not	they	are	mutable,	how	their	elements
are	accessed,	whether	their	contents	are	ordered,	and	several	other
characteristics.

We’ve	already	worked	with	arrays,	strings,	and	other	kinds	of	Julia
containers.	In	this	chapter,	we’ll	learn	more	about	those	collections	and	meet
some	new	ones.

Controlling	Loop	Execution
There	is	an	intimate	relationship	between	loops	and	collections	in	Julia.	The
for	loop,	for	example,	depends	on	a	collection	or	an	iterable	object	whose
elements	are	visited	in	turn.

We	already	know	how	to	write	loops	using	while	and	for	blocks.	In	this



section,	we’ll	explore	how	to	further	control	loop	execution	with	the	break
and	continue	statements,	and	how	to	write	compact	loops	with	comprehensions,
a	concise	way	to	create	collections.

The	break	Statement
Sometimes	we	need	to	end	a	loop	based	on	some	condition	and	prevent	it
from	reaching	its	“normal”	termination.	This	is	the	purpose	of	the	break
command,	which	terminates	both	while	and	for	loops.

For	example,	the	following	loop	repeatedly	asks	the	user	for	a	number
and	prints	its	square	root:

while true
    println("Enter a number, or 0 to quit.")
    x = readline()
    x = parse(Float64, x)
    if x ≤ 0
     ➊ break
    end
 ➋ println("The square root is ", sqrt(x))
end

The	while	condition	is	true,	which	never	changes,	so	the	loop	would	run
forever	were	it	not	for	the	break	statement	➊,	which	terminates	the	loop	if
the	user	enters	0	(or	a	negative	number).	This	is	a	common	pattern	when
intending	a	loop	to	run	forever	until	halted	by	a	condition	arising	with	the
loop.

The	readline()	statement	reads	a	line	of	input	from	the	terminal,
terminated	when	the	user	presses	ENTER,	and	puts	the	result	into	a	string
variable.	We	need	to	interpret	this	string	as	a	number,	which	is	what	the
parse()	function	does	for	us.	The	first	argument	to	parse()	specifies	what	data
type	to	convert	the	string	to.	The	multi-argument	version	of	the	println()
function	concatenates	its	arguments,	converting	numbers	to	strings	as
needed	➋.

The	break	statement	also	terminates	for	loops.	In	the	following	example,
we	loop	through	the	numbers	in	a	vector	and	stop	if	we	get	to	one	that’s	a
perfect	square:

n = [12, 53, 19, 64, 16, 8]

for x in n
    if round( √x ) == √x



        println("Found a perfect square in the list: ", x)
        break
    end
end

When	this	is	run,	it	prints	this:

Found a perfect square in the list: 64

A	number	is	a	perfect	square	if	its	square	root	is	an	integer.	The	code
tests	for	that	by	comparing	the	number’s	square	root	with	the	same	quantity
rounded	by	the	round()	function.	Since	round()	rounds	a	number	to	the	nearest
integer,	the	two	will	have	the	same	value	if	the	number	is	already	an	integer.
The	break	statement	terminates	the	loop	when	the	first	perfect	square	is
found,	so	we	never	hear	about	16.

The	continue	Statement
The	continue	statement	skips	further	processing	in	the	current	loop	iteration
and	proceeds	to	the	next	one.	This	program	prints	out	the	first	100	prime
numbers	(we’ll	skip	the	output):

for n in 1:100
    possibly_prime = true
    x = 2
    while x ≤ √n
     ➊ if n % x == 0
            possibly_prime = false
            break
        end
        x += 1
    end
    if !possibly_prime
     ➋ continue
    else
        println(n)
    end
end

The	program	tests	the	first	100	integers	by	checking	for	integer	divisors	up
to	the	square	root	of	the	integer.	If	x	is	a	divisor	of	n,	there	is	no	remainder
when	we	calculate	n/x;	this	is	what	n % x == 0	checks	for	➊.	If	we	find	a
divisor,	n	is	not	prime,	so	we	set	a	flag	indicating	that	and	break	out	of	the
while	loop	over	x.	In	the	outer	for	loop,	we	want	to	continue	➋	to	the	next	n	if
the	current	one	is	not	prime,	but	print	it	if	it	is.



Comprehensions	and	Generators
We	often	can	write	for	loops	that	create	arrays	more	concisely	as	array
comprehensions.	As	a	simple	example,	suppose	we	wanted	a	Vector	containing
the	first	five	perfect	squares.	We	can	construct	this	with	a	for	loop,	as	in	the
following	REPL	session	listing,	but	first	we	have	to	initialize	an	empty	Vector:

julia> xs = [];

julia> for x in 1:5
           push!(xs, x^2)
       end

julia> xs
5-element Vector{Any}:
  1
  4
  9
 16
 25

We	can	accomplish	the	same	thing	with	an	array	comprehension:

julia> xs = [x^2 for x in 1:5]
5-element Vector{Int64}:
  1
  4
  9
 16
 25

We	don’t	need	to	initialize	the	xs	vector,	as	the	comprehension	creates	and
populates	it	in	one	step.	The	types	of	the	results	in	these	examples	are
different,	a	subject	that	we’ll	examine	in	Chapter	8.

Array	comprehensions	typically	contain	two	main	parts,	separated	by	the
keyword	for.	The	first	part	is	an	expression	involving	a	dummy	variable,	in
this	case	x.	The	second	part,	beginning	with	for,	has	the	same	form	as	the
first	line	of	the	familiar	for	loop	and	uses	the	dummy	variable	from	the	first
part.	The	first	part	becomes	the	body	of	the	implied	loop,	adding	a	new
element	to	the	resulting	array	at	each	iteration.

The	array	that	the	comprehension	creates	will	have	the	same	shape	as	the
container	in	its	second	part.	Consider	the	following:

julia> [2x for x in [1 2
                     3 4]]



2×2 Matrix{Int64}:
 2  4
 6  8

Here,	since	the	container	iterates	over	a	2×2	matrix,	that	is	the	shape	of	the
result	as	well.

An	array	comprehension	can	contain	any	number	of	implied	loops.	The
shape	of	the	result	depends	on	whether	the	loops	are	separated	by	for	or	by	a
comma.	The	following	examples	illustrate	the	two	possibilities:

julia> [x * y for x in 1:3 for y in 1:3]
9-element Vector{Int64}:
 1
 2
 3
 2
 4
 6
 3
 6
 9

julia> [x * y for x in 1:3, y in 1:3]
3×3 Matrix{Int64}:
 1  2  3
 2  4  6
 3  6  9

In	the	first	case,	the	result	is	a	Vector,	as	we	might	expect	from	two	nested	for
loops.	The	second	case,	using	a	comma	to	separate	the	implied	loops,
produces	a	Matrix.	We	can	add	more	comma-separated	loop	clauses	to	extend
this	to	any	number	of	dimensions.

Consider	the	following	example	that	determines	which	even	numbers	in
the	multiplication	table	are	divisible	by	7:

julia> [x * y for x in 1:9, y in 1:9
       if x * y % 2 == 0 &&
       x * y % 7 == 0] |> unique
4-element Vector{Int64}:
 14
 28
 42
 56

An	if	statement	at	the	end	of	a	comprehension	filters	the	results;	the	final
result	of	the	comprehension	is	a	Vector.	This	example	depends	on	the	order
of	operations	to	avoid	unnecessary	parentheses:	multiplication	comes	before



(binds	more	tightly)	than	the	modulus	operator	%.	We	pass	the	result	of	the
comprehension	to	the	unique()	function,	which	removes	duplicate	entries
from	a	collection.

A	generator	expression	has	the	same	form	as	an	array	comprehension,	but
without	the	enclosing	square	brackets.	It	creates	an	iterator,	rather	than	a
populated	array.	We	can	loop,	or	iterate,	over	this	object	to	use	its	members
one	at	a	time,	but	it	occupies	almost	no	memory.	In	this	way	it	should	recall
range	expressions	and	their	relationship	to	vectors.

In	practice,	we	sometimes	need	to	enclose	the	generator	expression	in
parentheses	to	avoid	ambiguity,	as	with	any	other	expression.	This	is	the	case
in	the	following	example,	where	we	create	a	generator	version	of	our
multiplication	table:

julia> multiplication_generator = (x * y for x in 1:9, y in 1:9)

We	need	the	parentheses	because	of	the	double	for	loop.	Julia	will	not
recognize	this	as	a	generator	expression	without	them.

Now	we	can	extract,	as	before,	the	even	numbers	in	the	table	that	are
divisible	by	7:

julia> [n for n in multiplication_generator
       if n % 2 == 0 && n % 7 == 0]
       |> unique
4-element Vector{Int64}:
 14
 28
 42
 56

If	the	table	were	large,	rather	than	merely	9×9,	using	a	generator	rather	than
populating	an	array	would	provide	significant	memory	savings.	We	can
always	use	collect()	to	produce	the	realized	table	from	the	iterator.

More	Ways	to	Join	Strings
A	string	in	Julia	is	a	collection.	Its	elements	are	characters.	We	first	met	the
String	type	in	“Strings	and	Characters”	on	page	44,	and	here	we’ll	explore	the
most	important	operations	you	can	perform	on	strings.

We’ve	seen	how	we	can	join	strings	using	the	*	operator	or	using	join()	to



form	a	string	from	a	vector	of	strings.	We	can	also	use	the	string()	function,
which	joins	any	number	of	literal	strings	and	string-valued	variables	into	a
larger	String:

julia> comma_space = ", ";

julia> string("Hello", comma_space, "François")
"Hello, François"

Since	comma_space	is	a	string,	the	string()	function	simply	glues	it	to	the	other
strings	we	supplied.	If	it	were	some	other	type	of	object,	such	as	a	number,
the	call	would	still	work	if	the	object	had	a	string	representation.	In	that
case,	the	function	first	converts	it	to	a	string	and	then	performs	the	join.

The	repeat()	function	joins	a	string	to	itself	a	specified	number	of	times:

julia> repeat("ABC ", 5)
"ABC ABC ABC ABC ABC "

In	this	example,	the	new	string	is	formed	from	“ABC”	repeated	five	times,	as
specified	in	the	second	argument.

We	can	also	use	this	function	to	create	arrays,	as	we’ll	see	in	“The
repeat()	Function”	on	page	139.

Nonstandard	String	Literals
A	string	literal	is	an	expression	such	as	"abc"	that	represents	a	String	directly.
Julia	supports	a	variety	of	nonstandard	string	literals,	represented	by	placing	a
keyword	in	front	of	the	string	literal	with	the	prefix	specifying	what	kind	of
special-purpose	string	the	expression	represents.	Such	objects	carry	a
significance	beyond	their	existence	as	strings.

We’ve	already	met	an	example	of	one	of	these	objects.	In	“LaTeX	Titles
and	Label	Positioning	by	Data”	on	page	103,	we	described	how	to	use
LaTeX	strings	as	graph	labels.	These	are	prefixed	with	an	uppercase	L,	as	in
L"e^{iπ} + 1 = 0".	When	the	graphing	programs	see	an	ordinary	string	used	as
a	label,	the	string	is	printed	on	the	graph	verbatim,	but	if	the	label	is	a
LaTeX	string,	the	programs	know	to	print	its	LaTeX-processed	form.
LaTeX	strings	are	defined	in	the	LaTeXStrings	package.	Some	nonstandard
string	literals	are	defined	in	their	own	packages,	which	need	to	be	imported



before	you	can	use	them,	while	others	are	built	in.
Under	the	hood,	nonstandard	string	literals	are	implemented	as	macros

(see	“Macros”	on	page	170).	The	name	of	the	macro	is	the	tag	of	the	string
literal	followed	by	_str.	In	other	words,	the	name	of	the	macro	implementing
LaTeX	strings	is	@L_str.	To	see	the	documentation	for	a	nonstandard	string
literal	in	the	REPL,	we	enter	either	?@L_str	or	?L""	(for	LaTeX	strings).

Raw	Strings
One	useful	built-in	nonstandard	string	literal	is	the	raw	string,	written	by
prepending	raw.	Most	keywords	for	nonstandard	strings	are	single	letters,	but
raw	is	an	exception.	Raw	strings	are	used	to	represent	certain	character
sequences	literally,	where	in	standard	strings	they	would	have	an
interpretation	as	control	characters	or	something	else.	For	example,
ordinarily	the	sequence	\t	is	converted	into	a	TAB	character	when	printing	a
string,	but	in	a	raw	string	it’s	interpreted	literally:

julia> print(raw"a\tb")
a\tb
julia> print("a\tb")
a       b

In	the	second	print	command,	the	non-escaped	TAB	character	is	rendered	as
a	horizontal	space.

Within	raw	strings,	therefore,	backslashes	are	interpreted	literally,	with
one	exception—they	are	still	needed	to	escape	double	quotation	marks:

julia> print("I said, \"No\".")
I said, "No".
julia> print(raw"I said, \"No\".")
I said, "No".

If	a	backslash	appears	anywhere	in	a	raw	string	aside	from	directly	before
a	double	quotation	mark,	it’s	interpreted	literally.

Semantic	Version	Strings
Versions	of	software	releases	are	identified	with	tags	such	as	v1.7.1.
Different	projects	use	different	systems	for	version	tags;	one	such	system	is
called	semantic	versioning.	The	fields	in	the	string	refer	to	major	and	minor
versions	and,	optionally,	other	versioning	information.	See	“Further



Reading”	on	page	151	for	a	link	to	the	detailed	specification.
Prepend	a	v	to	create	a	semantic	version	string.	We	can	compare	versions

and	extract	the	numerical	value	of	fields,	which	are	returned	as	hexadecimal
numbers,	indicated	by	a	leading	0x:

julia> v"1.6.1" < v"1.6.2"
true

julia> version = v"1.7.2"
v"1.7.2"

julia> version.major, version.minor, version.patch
(0x00000001, 0x00000007, 0x00000002)

The	Julia	project	itself	uses	an	extended	version	of	this	scheme	for
numbering	language	and	package	releases,	so	semantic	version	strings	are
built	into	the	language.

Byte	Array	Literals
Prepending	a	string	with	b	creates	a	byte	array	literal:	a	sequence	of	unsigned,
8-bit	integers	representing	the	sequence	of	characters	in	the	string	in	UTF-8
encoding.	As	described	in	“Strings	and	Characters”	on	page	44,	characters
can	take	up	one	to	four	bytes.	Here’s	an	example	of	turning	a	three-character
string	into	a	byte	array:

julia> b"a2∑"
4-element Base.CodeUnits{UInt8, String}:
 0x61
 0x32
 0xce
 0xa3

The	characters	a	and	2	are	each	represented	by	a	single	byte,	but	the
character	∑	occupies	two	bytes.

We	can	enter	the	uppercase	sigma	as	a	character	in	the	REPL	to	learn
more	about	it:

julia> '∑'
'∑': Unicode U+03A3 (category Lu: Letter, uppercase)

The	response	informs	us	that	03A3	is	the	Unicode	code	point	for	the	character.
The	code	point	is	a	single,	possibly	large,	hexadecimal	integer	that	uniquely
identifies	the	Unicode	character.



NOTE

A	Unicode	character	may	not	correspond	to	a	single	character	when	printed.
Some	of	them	combine	with	one	or	more	neighboring	characters	to	create	accents
or	ligatures.

We	can	use	code	points	directly	in	strings	with	the	escape	code	\u,	where
they’ll	be	converted	into	the	characters	they	represent:

julia> "a2\u03a3"
"a2∑"

To	avoid	the	conversion,	we	can	escape	the	backslash	or	use	a	raw	string.

String	Searching	and	Replacing
The	replace()	function	replaces	a	substring	with	a	different	one.	It	can	take
any	number	of	replacements,	which	are	applied	left	to	right,	with	the	proviso
that	no	character	undergoes	more	than	one	substitution.	The	following
example	demonstrates	the	syntax	as	well	as	the	consequence	of	the	proviso:

julia> s = "abc"
"abc"

julia> replace(s, "b" => "XX", "c" => "Z")
"aXXZ"

julia> replace(s, "c" => "Z", "Z" => "WWW")
"abZ"

The	proviso	means	that	the	"Z"	in	the	first	replacement	in	the	last	example	is
not	replaced	by	"WWW".

NOTE

Multiple	replacements	in	the	string	replace()	function	first	appeared	in	Julia
v1.7.	If	you	are	using	an	earlier	version,	you	can	use	the	replace()	function	as
described	here,	but	with	only	one	replacement.

The	occursin()	function	tests	for	the	presence	of	a	substring	in	a	string:



julia> occursin("abc", "abcdef")
true

julia> occursin("abc", "abCdef")
false

This	tests	for	the	existence,	in	the	second	argument,	of	the	string	given	in
the	first	argument,	and	it’s	case-sensitive.

The	occursin()	function	follows	the	tradition	of	other	functions,	such	as
iseven(),	that	test	a	condition	and	return	true	or	false	(see	“The	filter()
Operator”	on	page	163).

The	findfirst()	and	findlast()	functions	each	search	for	the	location	of	a
character	or	string	in	another	string.	If	we	ask	for	the	location	of	a	character,
the	functions	return	the	index	of	its	first	or	last	occurence:

julia> findfirst('a', "abcabc")
1

julia> findlast('a', "abcabc")
4

If,	instead	of	a	character,	we	supply	a	string	in	the	first	argument,	the
functions	return	a	range	giving	the	location	of	the	string	in	the	second
string:

julia> findfirst("abc", "abcabc")
1:3

julia> findlast("abc", "abcabc")
4:6

These	functions	return	nothing	if	the	character	or	string	we’re	searching
for	does	not	exist	in	the	second	string.

The	findnext()	function	behaves	similarly,	but	it	accepts	a	third	argument
giving	the	location	to	begin	the	search:

   q = "To be or not to be, that is the question"
   i = 0
   locations = []

➊ while i != nothing
       i = findnext('e', q, i + 1)
       push!(locations, i)
   end



print("""The letter "e" was found at locations """,
             join(locations[1:end-1], ", ", " and "), ".")

This	demonstrates	a	third	optional	positional	argument	for	join(),	which
is	inserted	in	place	of	the	delimiter	(given	in	the	second	argument)	between
the	final	two	elements.

When	we	run	this	program,	it	prints:

The letter "e" was found at locations 5, 18, 31 and 35.

If	findnext()	or	the	other	string	search	functions	don’t	find	what	they’re
looking	for,	they	return	nothing,	or,	more	specifically,	a	particular	value
called	nothing.	We	take	advantage	of	this	in	the	while	condition	➊	to	end	the
loop	when	there	are	no	further	e	characters	to	be	found.

All	of	the	searching	and	replacing	functions	described	in	this	section	work
with	regular	expressions	as	well.	Julia	uses	Perl-compatible	regular
expressions;	consult	“Further	Reading”	on	page	151	for	a	link	to	the	syntax.

To	define	a	regular	expression,	we	use	a	nonstandard	string	literal	with
the	r	keyword.	For	example,	r"A.*B"	is	a	regular	expression	matching	A
followed	by	any	number	of	characters	ending	with	B.

Here’s	a	simple	use	of	a	regular	expression	to	delete	everything	between	a
particular	pair	of	characters:

julia> s = "abc<ABC>def"
"abc<ABC>def"

julia> replace(s, r"<.*>" => "")
"abcdef"

Parenthesized	fragments	in	the	regular	expression	become	targets	that	we
can	refer	to,	in	the	replacement	text,	using	escaped	integers.	These	integers
follow	the	order	of	the	parenthesized	fragments,	so	the	first	one	is
referenced	by	\1,	and	so	on.	In	a	normal	string	such	escaped	integers	are
interpreted	as	control	characters;	therefore,	Julia	has	another	nonstandard
string	literal	for	this	purpose,	using	the	s	keyword:

julia> replace(s, r"(.*)<(.*)>(.*)" => s"\1\3, \2")
"abcdef, ABC"

This	replacement	moves	the	delimited	string	to	the	end,	preceded	by	some
punctuation,	instead	of	deleting	the	string	between	the	angle	brackets.



String	Interpolation
Julia	happily	borrows	good	ideas	from	other	languages.	Perl	not	only	has
powerful	regular	expressions,	it	also	has	a	convenient	syntax	for	string
interpolation,	which	you	can	use	in	Julia.

We	use	string	interpolation	when	we	want	to	insert	the	values	of	variables
or	expressions	into	a	string.	The	interpolation	syntax	tells	Julia	to	create	the
string	representations	of	these	values	and	place	them	within	a	larger	string.
Interpolation	lets	us	avoid	messy	sequences	of	string	concatenations	in	favor
of	neater	code:

julia> function name_length()
           println("Hi. What's your name?")
        ➊ name = readline()
        ➋ println("Hello, $name. Your name has $(length(name)) letters.")
       end
name_length (generic function with 1 method)

julia> name_length()
Hi. What's your name?
Emily
Hello, Emily. Your name has 5 letters.

This	example	demonstrates	the	two	kinds	of	string	interpolation,	both	in
the	argument	to	the	println()	call	➋.	After	the	name	entered	by	the	user	is
stored	in	the	variable	name	➊,	we	can	access	its	value	using	string
interpolation.	To	interpolate	the	value	of	the	variable,	just	use	its	name	after
a	dollar	sign	($).	To	interpolate	another	type	of	expression,	put	it	inside
parentheses	after	the	$.	We	did	this	in	order	to	interpolate	the	length	of	the
user’s	name	➋.

We	can	interpolate	any	expression	into	a	string.	If	we	want	to	exclude
spaces	(because	they	are	not	letters)	from	the	length	of	the	name,	we	could
use	the	following:

println("Hello, $name. Your name has $(length(replace(name, " " => ""))) letters.")

If	you	need	an	actual	dollar	sign,	escape	it	with	a	backslash:	\$.	Naturally,
raw	strings	do	not	partake	of	the	interpolation	process.

Additional	Collection	Types



This	section	describes	additional	types	of	collections	that	are	all	part	of
routine	Julia	programming:	dictionaries,	sets,	structs,	and	named	tuples.

Dictionaries
Julia’s	Dict	type	is	similar	to	dictionaries	in	Python	or	associative	arrays	in
Bash.	It’s	a	one-dimensional	collection	like	a	vector	that’s	indexed	by	key
rather	than	position.	Listing	5-1	shows	one	of	two	ways	to	initialize	a
dictionary.

julia> bd = Dict("one"=>1, "two"=>2)
Dict{String, Int64} with 2 entries:
  "two" => 2
  "one" => 1

Listing	5-1:	Creating	a	dictionary	from	key-value	pairs

After	this	initialization,	the	new	dictionary	contains	two	key-value	pairs.
Each	key	in	this	dictionary	happens	to	be	the	name	of	the	number	that	it
indexes.

In	addition	to	supplying	the	key-value	pairs	as	separate	arguments,	we	can
supply	any	iterable	object	that	yields	key-value	pairs	when	iterated	over.	We
can	initialize	the	dictionary	from	Listing	5-1,	for	example,	with
Dict(["one"=>1;	"two"=>2]).

The	keys	and	values	in	a	dictionary	can	be	of	any	type.	In	bd	both	of	the
keys	are	strings,	and	the	values	they	point	to	are	integers.

The	syntax	for	indexing	dictionaries	is	the	same	as	for	indexing	vectors,
but	the	indices	are	the	keys,	not	the	positions:

julia> bd["one"]
1

julia> bd[2]
ERROR: KeyError: key 2 not found

We	initialize	the	bd	dictionary	with	two	key-value	pairs;	as	2	is	not	one	of	the
keys,	our	attempt	to	index	it	with	2	produces	an	error.

The	keys(bd)	function	returns	a	list	of	the	keys	in	bd;	a	corresponding
values()	function	returns	a	list	of	values.

The	keys	in	a	Dict	must	be	unique.	If	we	define	an	entry	with	a	key	that
already	exists,	the	later	definition	replaces	the	existing	one:



julia> bd["one"] = 9;

julia> bd
Dict{String, Int64} with 2 entries:
  "two" => 2
  "one" => 9

In	the	first	line	we	reuse	the	"one"	key.	Displaying	the	dictionary	shows	that
the	new	value	has	replaced	the	earlier	one.

The	other	way	to	initialize	dictionaries	is	to	pass	a	single	argument	to
Dict().	The	argument	can	be	any	iterable	that	yields	tuples;	each	tuple
generates	a	key-value	pair:

julia> Dict([("one", 1) ("two", 2)])
Dict{String, Int64} with 2 entries:
  "two" => 2
  "one" => 1

Notice	that	the	dictionary	is	printed	in	what	appears	to	be	a	random	order.
This	is	normal,	as	dictionaries	are	unordered	collections,	unlike	vectors.

Sets
Julia’s	Set	data	type	implements	many	of	the	properties	of	mathematical	sets.
A	set	in	Julia	is	a	collection	defined	by	what	elements	are	contained	within	it.
The	elements	have	no	order,	and	the	set	can’t	be	indexed.	If	you	add	an
element	that’s	already	there,	the	set	doesn’t	change	because	it	already
contains	the	element,	which	can	appear	only	once.

Let’s	define	two	simple	sets	that	we’ll	use	to	illustrate	some	of	the
operations	we	can	perform	on	them:

julia> s1 = Set(1:5)
Set{Int64} with 5 elements:
  5
  4
  2
  3
  1

julia> s2 = Set(4:8)
Set{Int64} with 5 elements:
  5
  4
  6
  7
  8



The	Set()	function,	which	takes	any	iterable	object,	initializes	sets.	The	sets’
members	are	listed	in	the	REPL	in	an	arbitrary	order,	as	order	is
meaningless	within	a	set.

Let’s	ask	for	the	intersection	and	union	of	the	two	sets	we	just	created:

julia> intersect(s1, s2)
Set{Int64} with 2 elements:
  5
  4

julia> union(s1, s2)
Set{Int64} with 8 elements:
  5
  4
  6
  7
  2
  8
  3
  1

The	results	in	both	examples	are	also	sets.	The	intersection	is	the	set	of
elements	common	to	both	sets,	while	the	union	is	the	set	of	elements
existing	in	either	set.

We	can	test	for	a	subset	relationship	between	sets	with	the	issubset()
function,	which	has	a	Unicode	synonym	that	we	also	can	use	as	a	binary
operator:

   julia> issubset(4:7, s2)
   true

   julia> 4:7 ⊆ s2
   true

➊ julia> 4:7 ⊇ s2
   false

To	create	the	subset	or	superset	➊	characters,	we	enter	\subseteq	or
\supseteq,	respectively,	followed	by	TAB.	The	functions	converted	the	range
4:7	into	a	set	automatically	and	told	us	that	Set(4:7)	is	a	subset	of	s2,	because
every	member	of	the	former	is	a	member	of	the	latter.

We	can	find	the	difference	between	two	sets,	which	are	the	elements	of
one	set	that	are	not	in	another	set,	using	the	setdiff()	function:

julia> s1



Set{Int64} with 5 elements:
  5
  4
  2
  3
  1

julia> setdiff(s1, 3:5)
Set{Int64} with 2 elements:
  2
  1

The	result	shows	us	what	remains	after	removing	3,	4,	and	5	from	s1.
The	mutating	form	of	this	function	removes	the	members	of	the	second

set	from	the	first.	To	add	new	elements	to	a	set,	use	push!():

julia> push!(s1, 999);

julia> setdiff!(s1, 1:3)
Set{Int64} with 3 elements:
  5
  4
  999

In	this	example,	first	we	enlarge	s1	with	the	member	999,	and	then	we
remove	the	elements	in	Set(1:3).

Structs
A	struct	is	a	collection	of	named	values	packaged	together	under	one
identifier.	For	an	example,	Listing	5-2	creates	a	struct	to	hold	two	pieces	of
information	identifying	a	web	page.

julia> struct Website
           url
           title
       end

julia> google = Website("https://google.com", "google")
Website("https://google.com", "google")

Listing	5-2:	Defining	a	struct

First	we	define	a	new	struct	called	Website,	and	then	we	create	a	variable,
google,	that	holds	a	particular	instance	of	Website	with	specific	values	for	url
and	title.

Conventional	style	is	to	capitalize	the	names	of	structs.	A	struct’s	name	is



used	as	a	constructor	that	creates	composite	objects	with	the	struct’s	type.
Therefore,	making	a	struct	extends	Julia	by	adding	a	new	type	to	the
language.	Asking	Julia	for	the	type	of	google	with	typeof(google)	returns	Website.
See	“User-Defined	Types”	on	page	234	for	more	about	the	utility	and	power
of	user-defined	types.

We	can	reference	the	fields	of	composite	objects	such	as	structs	and	the
named	tuples	(described	next)	using	property	notation:

julia> google.title
"google"

julia> google.title = "Google"
ERROR: setfield!: immutable struct of type Website cannot be changed

After	noticing	that	we	forgot	to	capitalize	the	title	of	the	website,	we	try	to
correct	it,	but	Julia	doesn’t	allow	the	change	because,	by	default,	structs	are
immutable.

We	can	fix	our	error	by	defining	google	anew,	but	if	we	plan	to	mutate
Website	objects	routinely,	we	can	define	them	as	mutable	structs:

julia> mutable struct MutableWebsite
           url
           title
       end

julia> google = MutableWebsite("https://google.com", "google")
MutableWebsite("https://google.com", "google")

julia> google.title = "Google"
"Google"

Now	we	can	change	the	values	of	google’s	fields	whenever	we	want.

Named	Tuples
A	named	tuple	is	just	like	Julia’s	ordinary	Tuple,	except	we	can	give	names	to
its	values:

julia> nt = (a=1, b=2, c=3);

julia> nt.c
3

Now	we	have	a	new	named	tuple	called	nt,	with	three	fields	called	a,	b,	and	c.
As	this	example	shows,	we	extract	values	from	a	named	tuple	using	property



notation,	just	as	with	structs.
Named	tuples	are	immutable,	just	as	(immutable)	structs	and	ordinary

tuples:

julia> nt.a = 17
ERROR: setfield!: immutable struct of type NamedTuple cannot be changed

The	attempt	to	assign	to	a	field	of	an	immutable	data	type	is	not	allowed.
Tuples	and	named	tuples	are	intimately	related	to	function	argument

lists,	as	we’ll	explore	in	“Functions	and	Their	Arguments”	on	page	154.

Initializing	Arrays	with	Functions
Julia	provides	a	handful	of	functions	to	initialize	arrays.	Using	one	of	these	is
often	more	convenient	and	concise	than	the	literal	array	definitions	that
we’ve	been	using	up	to	now.

The	repeat()	Function
The	repeat()	function	repeats	an	array	a	given	number	of	times	along	each
dimension	corresponding	to	the	arguments	you	supply:

julia> repeat(['a' 'b' '|'], 4, 3)
4×9 Matrix{Char}:
 'a'  'b'  '|'  'a'  'b'  '|'  'a'  'b'  '|'
 'a'  'b'  '|'  'a'  'b'  '|'  'a'  'b'  '|'
 'a'  'b'  '|'  'a'  'b'  '|'  'a'  'b'  '|'
 'a'  'b'  '|'  'a'  'b'  '|'  'a'  'b'  '|'

In	this	example,	the	elements	of	the	one-row	array	['a'	'b'	'|']	are	replicated
four	times	in	the	first	(column)	direction	and	three	times	in	the	second	(row)
direction.

We’ve	already	met	repeat(),	as	a	function	that	replicates	a	string,	in	“More
Ways	to	Join	Strings”	on	page	128.

The	fill()	Function
The	fill()	function	takes	the	value	supplied	in	its	first	argument	and	creates
an	array	with	a	shape	given	by	its	subsequent	arguments,	filling	it	with	the
value.	Listing	5-3	shows	how	it	works.



julia> XY = fill(['X' 'Y'], 3, 4)
3×4 Matrix{Matrix{Char}}:
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']

Listing	5-3:	Filling	an	array

Here	the	value	['X' 'Y']	is	used	to	fill	a	3×4	array.	Unlike	repeat(),	fill()	can
accept	the	dimensions	as	a	tuple	as	well	as	separate	arguments,	so	we	can
write	the	above	as	fill(['X' 'Y'], (3, 4)).

The	most	important	difference	beteen	repeat()	and	fill()	is	that	the
former	concatenates	the	elements	of	the	array	supplied	in	the	first	argument
into	the	requested	shape,	whereas	the	latter	concatenates	the	array	itself.
This	can	be	seen	in	the	results	of	the	two	examples	just	shown.

Mutability	with	the	fill()	and	repeat()	Functions
Let’s	try	to	change	one	of	the	elements	of	the	matrix	XY	defined	in	Listing	5-
3.	We’ll	try	to	change	the	'X'	to	an	'O'	in	the	top-right	element:

julia> XY[1, 4][1] = 'O';

julia> XY
3×4 Matrix{Matrix{Char}}:
 ['O' 'Y']  ['O' 'Y']  ['O' 'Y']  ['O' 'Y']
 ['O' 'Y']  ['O' 'Y']  ['O' 'Y']  ['O' 'Y']
 ['O' 'Y']  ['O' 'Y']  ['O' 'Y']  ['O' 'Y']

The	result	is	surprising	to	many	who	encounter	it	for	the	first	time.	In
altering	one	of	the	elements	of	XY,	we’ve	altered	them	all.	This	happens
because	fill()	doesn’t	copy	its	first	argument	into	multiple	locations	in	the
result.	Each	element	of	XY	is	the	identical	one-row	matrix;	the	output	here
shows	the	result	of	mutating	this	matrix.

If,	instead	of	mutating	the	element,	we	replace	it,	something	different
happens:

julia> XY = fill(['X' 'Y'], 3, 4);

julia> XY[1, 4] = ['O' 'Y'];

julia> XY
3×4 Matrix{Matrix{Char}}:
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['O' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']



 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']

Now	XY	contains	two	different	matrices,	one	of	them	appearing	11	times.
We	would	observe	exactly	the	same	behavior	using	repeat()	if	we	placed

the	first	argument	within	an	extra	set	of	square	brackets:

julia> XY = repeat([['X' 'Y']], 3, 4);

In	this	way,	after	repeat()	extracts	the	contents	of	the	first	argument	and
concatenates	them,	we	still	have	an	array	of	arrays.

To	get	an	array	of	different	arrays,	rather	than	the	array	of	references	to	a
single	array	that	fill()	constructs,	we	can	use	a	comprehension:

julia> xy = [['X' 'Y'] for i in 1:3, j in 1:4]
3×4 Matrix{Matrix{Char}}:
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']

julia> xy[1, 4][1] = 'O';

julia> xy
3×4 Matrix{Matrix{Char}}:
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['O' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']
 ['X' 'Y']  ['X' 'Y']  ['X' 'Y']  ['X' 'Y']

Now	altering	one	of	the	arrays	has	no	effect	on	the	other	elements	of	xy
because	each	element	is	a	separate	array.

The	zeros()	and	ones()	Functions
The	zeros()	and	ones()	functions	act	as	special	cases	of	fill()	with	0.0	or	1.0	as
a	first	argument.	Like	fill(),	they	accept	either	tuples	or	separate	numbers
for	dimensions:

julia> zeros(4, 5)
4×5 Matrix{Float64}:
 0.0  0.0  0.0  0.0  0.0
 0.0  0.0  0.0  0.0  0.0
 0.0  0.0  0.0  0.0  0.0
 0.0  0.0  0.0  0.0  0.0

The	zeros()	function	creates	a	4×5	matrix	and	fills	it	with	0.0.
Using	zeros()	or	ones()	is	common	when	we	need	to	initialize	an	array	of



floating-point	numbers	that’s	going	to	be	populated	by	direct	indexing.	This
method	is	faster	than	using	push!()	to	enlarge	the	array	as	it’s	populated
because	the	compiler	knows	the	size	of	the	array	at	the	start,	so	reallocating
memory	isn’t	needed.	However,	push!()	may	be	a	better	choice	if	you	don’t
know	the	size	of	the	array	ahead	of	time	and	prefer	not	to	allocate	memory
that	the	array	won’t	need.

The	reshape()	Function
You	can	transform	an	array	into	a	new	shape	with	reshape():

julia> a1 = collect(1:6);

julia> a2  = reshape(a1, (3, 2))
3×2 Matrix{Int64}:
 1  4
 2  5
 3  6

julia> reshape(a1, 2, 2)
ERROR: DimensionMismatch("new dimensions (2, 2) must
       be consistent with array size 6")

The	first	two	examples	show	how	to	use	reshape():	give	the	array	as	a	first
argument	and	its	new	dimensions	either	in	a	tuple	or	as	a	series	of	individual
arguments.	The	last	example	produces	an	error	because	reshape()	will	not
change	the	total	number	of	elements.

The	reshape()	function	does	not	create	a	new	array,	but	returns	the
original	array	molded	into	a	different	shape.	You	can	see	the	consequence	of
that	when	mutating	either	incarnation	of	the	array:

julia> a1[5] = 0;

julia> a2
3×2 Matrix{Int64}:
 1  4
 2  0
 3  6

Changing	the	fifth	element	of	a1	also	changes	the	fifth	element	of	a2,	where,
as	always,	the	elements	are	in	column-major	order.

The	behavior	of	reshape()	should	call	to	mind	the	remarks	in	“Scalar
Indexing”	on	page	38:	arrays	are	stored	contiguously	in	the	computer’s	one-
dimensional	memory,	which	is	reflected	in	their	scalar	indexing.	The



multidimensional	forms	of	arrays	that	we	use	in	our	programs	are
abstractions,	without	which	algorithms	would	be	far	more	cumbersome	to
express	in	code.

Array	Manipulations	Useful	in	Numerical	Algorithms
Arrays	are	the	most	important	data	type,	aside	from	numbers,	in	scientific
and	numerical	computing.	Our	algorithms	often	take	the	form	of	a	series	of
transformations	and	operations	upon	vectors,	matrices,	and	higher-
dimensional	arrays.	Julia’s	powerful	array	handling	helps	us	to	express	these
computations	in	terms	of	high-level	operations	on	entire	arrays,	rather	than
verbose	loops	over	their	elements.	This	style	of	programming,	when	we	can
use	it,	is	conceptually	clearer	and	less	prone	to	error.	This	section	surveys
several	array	operations	that	arise	repeatedly	in	scientific	code.

General	Concatenation
We’ve	discussed	the	semicolon	as	a	concatenation	operator	along	the	first
dimension,	as	in	this	example:

julia> m = [[1 2]; [3 4]]
2×2 Matrix{Int64}:
 1  2
 3  4

As	an	alternative,	we	can	replace	the	single	semicolon	with	a	newline,
making	the	input	resemble	the	way	Julia	prints	the	matrix	in	the	REPL.

NOTE

The	use	of	repeated	semicolons	described	in	this	section	arrived	with	Julia	v1.7.
In	earlier	versions,	repeated	semicolons	were	treated	as	a	single	semicolon.

A	series	of	n	semicolons	concatenates	along	the	nth	dimension,	adding
new	dimensions	as	needed,	so	two	semicolons	concatenate	along	the	second
dimension,	which	is	also	how	a	space	concatenates:

julia> m = [[1 2];; [3 4]]
1×4 Matrix{Int64}:
 1  2  3  4



julia> m = [[1 2] [3 4]]
1×4 Matrix{Int64}:
 1  2  3  4

Both	examples	perform	the	same	operation:	[1 2]	is	concatenated	with	[3 4]
along	the	second,	or	column,	dimension,	increasing	the	number	of	columns.

Using	three	semicolons	creates	a	new	third	dimension	and	joins	along	it:

julia> m = [[1 2];;; [3 4]]
1×2×2 Array{Int64, 3}:
[:, :, 1] =
 1  2

[:, :, 2] =
 3  4

In	this	example,	the	[3 4]	array	is	put	“on	top”	of	the	[1 2]	array,	in	what	is
sometimes	called	a	new	plane.

Logical	Indexing
Julia	can	store	an	array	of	Boolean	values	in	a	space-efficient	manner	with	its
BitArray	data	type.	In	a	BitArray,	or	the	subtypes	BitVector	and	BitMatrix,	true	and
false	are	represented	by	1	and	0.	These	logical	arrays	are	used	for	indexing,
where	they	act	as	filters,	selecting	elements	corresponding	in	position	to	the
1	values	and	rejecting	the	ones	corresponding	to	the	0	values.	When	used	for
indexing,	the	array	being	indexed	and	the	BitArray	must	have	the	same
number	of	elements.

We	create	a	BitArray	with	a	logical	condition	broadcast	into	an	array.	For
example,	the	following	creates	a	BitArray	that	picks	out	which	elements	of	1:9
are	divisible	by	3:

julia> s3 = (1:9) .% 3 .== 0
9-element BitVector:
 0
 0
 1
 0
 0
 1
 0
 0
 1



In	order	to	return	the	result,	Julia	instantiates	the	range	expression	into	an
array.	Each	location	that	gives	a	zero	remainder	when	divided	by	3	is
indicated	by	a	1,	and	the	others	by	a	0.

We	assigned	the	BitArray	to	a	variable	so	we	can	use	it	in	other
expressions.	We	can	use	it	on	the	1:9	range	itself:

julia> (1:9)[s3]
3-element Vector{Int64}:
 3
 6
 9

The	1s	in	s3	pick	out	the	elements	in	1:9	that	are	divisible	by	3.
We	can	also	use	it	to	select	every	third	element	from	any	collection	with

nine	elements:

julia> ('a':'i')[s3]
3-element Vector{Char}:
 'c': ASCII/Unicode U+0063 (category Ll: Letter, lowercase)
 'f': ASCII/Unicode U+0066 (category Ll: Letter, lowercase)
 'i': ASCII/Unicode U+0069 (category Ll: Letter, lowercase)

Although	the	collection	we’re	indexing	and	the	BitArray	must	have	the
same	number	of	elements,	the	collection	can	have	any	shape	if	the	BitArray	is
a	BitVector;	otherwise,	the	array	and	the	BitArray	must	have	the	same	shape.

Here’s	an	example	of	using	BitArray	indexing,	also	called	logical	indexing,
as	a	concise	way	to	print	out	all	the	integers	in	[1,	100]	that	are	divisible	by
17:

julia> (1:100)[(1:100) .% 17 .== 0]
5-element Vector{Int64}:
 17
 34
 51
 68
 85

The	only	difference	here	is	that	we	create	the	bit	index	and	use	it	in	an
indexing	expression	in	one	step,	rather	than	storing	it	in	a	variable	for	later
use.

Adjoints	and	Transposes
The	transpose	of	a	matrix	is	the	matrix	formed	by	flipping	it	across	its



diagonal,	so	that	 	when	M'	is	the	transpose	of	M.	The	adjoint	of	a
matrix	is	formed	by	taking	its	transpose	and	replacing	each	of	its	elements	by
its	complex	conjugate	(the	terminology	is	consistent	with	the	concept	of	the
adjoint	of	a	linear	operator,	if	matrices	are	regarded	as	linear	transformations
applied	to	vectors	through	conventional	matrix	multiplication).

To	flip	a	matrix	MR	containing	real	numbers	across	its	diagonal,	we	can	use
three	notations:	MR', adjoint(MR),	or	permutedims(MR).	Listing	5-4	shows	that	they
all	give	the	same	results.

julia> MR = [[1 2]; [3 4]]
2×2 Matrix{Int64}:
 1  2
 3  4

julia> MR'
2×2 adjoint(::Matrix{Int64}) with eltype Int64:
 1  3
 2  4

julia> MR' == adjoint(MR) == permutedims(MR)
true

Listing	5-4:	Matrix	adjoint	notations

Since	the	elements	of	MR	are	their	own	complex	conjugates,	its	adjoint	is	just
its	transpose.

However,	if	the	matrix’s	elements	are	almost	anything	else,	adjoint()	and
permutedims()	generally	give	different	results;	the	'	operator	is	a	synonym	for
adjoint().	The	permutedims()	function	flips	the	matrix	around	the	diagonal	and
does	nothing	else,	as	shown	here,	and	adjoint()	does	the	same	flip,	called	a
transpose,	but	also	takes	the	complex	conjugate	of	each	element.	This
operation	is	also	known	as	the	Hermitian	adjoint.	Consider	this	example:

julia> M = [[1+im 2+2im]; [3+3im 4+4im]]
2×2 Matrix{Complex{Int64}}:
 1+1im  2+2im
 3+3im  4+4im

julia> M'
2×2 adjoint(::Matrix{Complex{Int64}}) with eltype Complex{Int64}:
 1-1im  3-3im
 2-2im  4-4im

The	matrix	is	flipped,	as	before,	but	now	with	each	element	replaced	by	its



complex	conjugate.	Note	that	we	can’t	use	the	adjoint()	function	on	non-
numerical	matrices,	where	the	complex	conjugate	of	the	elements	has	no
meaning.

In	addition	to	adjoint()	and	permutedims(),	we	have	the	transpose()	function:

julia> Mt = transpose(M)
2×2 transpose(::Matrix{Complex{Int64}}) with eltype Complex{Int64}:
 1+1im  3+3im
 2+2im  4+4im

The	result	looks	like	the	simple	transposition	of	M,	with	no	complex
conjugates	taken,	but	this	is	what	permutedims()	is	supposed	to	do.	Why	do	we
have	two	functions	that	seem	to	do	the	same	thing?

The	adjoint()	and	transpose()	functions,	on	the	one	hand,	and	permutedims(),
on	the	other,	behave	quite	differently.	The	first	two	functions	mentioned	act
recursively:	if	the	elements	of	M	are	themselves	matrices,	adjoint()	and
transpose()	will	first	act	on	M,	then	on	the	elements	of	M,	and	so	on,	all	the	way
down.	In	contrast,	permutedims()	just	flips	M	and	stops.

The	second	difference	is	that,	like	reshape(),	adjoint()	and	transpose()	return
the	same	array	in	a	different	form,	so	mutating	the	result	mutates	the
original,	unlike	permutedims(),	which	returns	a	new	array.

In	general,	to	flip	around	tables	of	numbers,	we	turn	to	the	permutedims()
function.	The	other	two	functions	are	intended	for	more	specialized	linear
algebra	applications.

The	conj()	function,	which	takes	the	complete	conjugate	of	a	number,	can
of	course	be	broadcast	to	work	on	each	element	of	an	array	by	using	the	dot
operator.	However,	unlike	most	other	math	functions,	it	acts	elementwise	on
arrays	without	broadcasting:

julia> conj(M)
2×2 Matrix{Complex{Int64}}:
 1-1im  2-2im
 3-3im  4-4im

Here	we’ve	taken	the	complex	conjugate	of	each	element	to	transform	the
matrix.

Matrix	Multiplication
The	multiplication	operator	(*)	performs	matrix	multiplication	when



supplied	with	a	pair	of	matrices	or	a	matrix	and	a	vector.	As	an	example,	we’ll
make	a	rotation	matrix	and	matrix-multiply	to	rotate	a	vector:

julia> a = π/2
1.5707963267948966

julia> RM = [[cos(a) -sin(a)]; [sin(a) cos(a)]];

julia> RM * [1, 0]
2-element Vector{Float64}:
 6.123233995736766e-17
 1.0

The	exact	result	should	be	[0, 1]:	the	rotation	of	a	unit	vector	pointing	“to
the	right”	when	rotated	π/2	radians	counterclockwise.	The	answer	we	get	is
the	result	of	roundoff	in	floating-point	arithmetic.

For	serious	work	with	matrices,	systems	of	linear	equations,	and	related
fields,	you	should	import	the	LinearAlgebra	package,	which	we’ll	visit	in	“The
LinearAlgebra	Package”	on	page	399.	That	package	has	a	function	for
calculating	the	inverse	of	a	matrix,	but	we	can	calculate	matrix	inverses
without	importing	the	package	with	an	intuitive	notation:

julia> MR^-1
2×2 Matrix{Float64}:
 -2.0   1.0
  1.5  -0.5

julia> MR^-1 * MR
2×2 Matrix{Float64}:
 1.0          0.0
 2.22045e-16  1.0

In	this	example	we	use	the	matrix	MR	defined	in	Listing	5-4.	The	result	of
multiplying	a	matrix	by	its	inverse	(with	matrix	multiplication)	should	be	the
identity	matrix	(1s	along	the	diagonal	and	0s	elsewhere),	which,	within
floating-point	roundoff,	is	what	we	get.

Enumeration	and	Zipping
Julia	comes	with	several	functions,	common	in	modern	high-level	languages,
for	enumerating	and	zipping	arrays.	The	former	refers	to	the	association	of
indices	with	the	elements	of	a	collection,	while	the	latter	refers	to	the
joining,	element	by	element,	of	two	collections.	All	the	functions	in	this



section	return	iterators,	either	over	a	collection	of	tuples	or	over	a	collection
of	key-value	pairs.

The	enumerate()	Function
The	enumerate()	function	takes	a	collection	and	returns	an	iterator	into	a
collection	of	tuples	that	contains	the	number	of	the	iteration	as	their	first
elements	and	the	member	of	the	collection	retrieved	as	their	second
elements.	Listing	5-5	shows	that	the	collection	of	tuples	has	the	same	shape
as	the	original	collection.

julia> collect(enumerate([10 20; 30 40]))
2×2 Matrix{Tuple{Int64, Int64}}:
 (1, 10)  (3, 20)
 (2, 30)  (4, 40)

Listing	5-5:	Using	enumerate()

Since	enumerate()	returns	an	iterator,	we	need	to	collect()	it	to	see	it.	These
iterators,	like	ranges	and	other	iterators,	such	as	the	ones	created	by
generators	(see	“Comprehensions	and	Generators”	on	page	125),	take	up
almost	no	space	until	we	use	them	to	loop	over	a	collection	or	turn	them
into	an	actual	array	with	the	collect()	function.

The	array	that	collect()	returns	in	Listing	5-5	is	laid	out	as	specified	in	the
argument	to	enumerate(),	and	the	iteration	numbers,	the	first	elements	of	the
tuples,	reflect	the	column-major	order	in	which	the	array	was	traversed.

The	iteration	numbers	that	enumerate()	returns	aren’t	guaranteed	to	be
legal	indices	of	the	array.	Even	when	they	are,	they	don’t	necessarily	return
the	element	that	they	index.	In	other	words,	if	one	of	the	tuples	enumerate(A)
returns	is	(i, e),	A[i]	may	be	an	error.	If	it’s	not	an	error,	it	may	be	the	case
that	A[i]	does	not	equal	e.

In	the	case	of	a	numerical	array,	such	as	in	Listing	5-5,	the	first	elements
of	the	tuples	can	be	used	as	scalar	indices	into	the	array,	and	enumerate()	is
sometimes	used	for	this	purpose.

An	example	of	where	the	iteration	number	cannot	be	used	as	an	index
involves	our	old	friend	François:

julia> for letter in enumerate("François")
           println("Letter number $(letter[1]) is $(letter[2]).")
       end
Letter number 1 is F.



Letter number 2 is r.
Letter number 3 is a.
Letter number 4 is n.
Letter number 5 is ç.
Letter number 6 is o.
Letter number 7 is i.
Letter number 8 is s.

The	iteration	number	tells	us	where	each	character	appears	in	the	string,
but,	as	we	saw	in	“Strings	and	Characters”	on	page	44,	not	all	of	these
character	positions	are	legal	indices:

julia> "François"[5]
'ç': Unicode U+00E7 (category Ll: Letter, lowercase)

julia> "François"[6]
ERROR: StringIndexError: invalid index [6], valid nearby indices [5]=>'ç', [7]=>'o'

In	summary,	don’t	confuse	iteration	numbers	with	indexing.

The	pairs()	Function
The	pairs()	function	is	similar	to	enumerate(),	except	it	creates	an	iterator	over
key-value	pairs	rather	than	over	tuples:

julia> collect(pairs("François"))
8-element Vector{Pair{Int64, Char}}:
 1 => 'F'
 2 => 'r'
 3 => 'a'
 4 => 'n'
 5 => 'ç'
 7 => 'o'
 8 => 'i'
 9 => 's'

The	indices	returned	by	pairs()	are	legal	indices	into	the	collection	rather
than	iteration	numbers	as	with	enumerate().

The	objects	in	the	iterator	returned	by	enumerate()	are	tuples;	those	in	the
iterator	returned	by	pairs()	are	key-value	pairs.	Such	pairs	have	their	own
data	type:	Pair.	If	p	is	a	Pair,	we	can	access	its	key	with	p.first	and	its	value
with	p.second.	Therefore,	if	we	need	a	vector	of	indices	into	the	name	of	our
French	friend,	we	can	get	it	this	way:

julia> [p.first for p in pairs("François")]
8-element Vector{Int64}:
 1



 2
 3
 4
 5
 7
 8
 9

We	can	create	a	Pair	with	a	constructor	like	Pair(9, 's'),	or	by	using	the	=>
operator—for	example,	9 => 's'.

In	Listing	5-1,	we	created	a	dictionary	from	a	series	of	key-value	pairs
entered	directly.	Each	of	those	literal	key-value	pairs	is	a	Pair;	here’s	another
way	to	construct	the	dictionary:

julia> p1 = "one" => 1
"one" => 1

julia> p2 = Pair("two", 2)
"two" => 2

julia> Dict([p1, p2]) == Dict("one"=>1, "two"=>2)
true

We	make	the	pair	p1	using	the	=>	operator	and	p2	using	the	Pair()	constructor.
Passing	them	to	the	Dict()	function	creates	the	same	dictionary	as	in	Listing
5-1.

A	dictionary	is	an	unordered	collection	of	Pairs.	Iterating	through	a
dictionary	produces	each	Pair	in	turn,	but	in	an	unpredictable	order:

julia> Dict(pairs("François"))
Dict{Int64, Char} with 8 entries:
  5 => 'ç'
  4 => 'n'
  7 => 'o'
  2 => 'r'
  9 => 's'
  8 => 'i'
  3 => 'a'
  1 => 'F'

The	zip()	Function
The	zip()	function	takes	any	number	of	collections	and	returns	an	iterator
into	a	collection	of	tuples	that	combines	the	elements	of	the	collections.

When	the	collections	passed	in	have	the	same	shape,	the	returned	iterator
will	have	that	shape	as	well:



julia> zip([1 2; 3 4], ['a' 'b'; 'c' 'd']) |> collect
2×2 Matrix{Tuple{Int64, Char}}:
 (1, 'a')  (2, 'b')
 (3, 'c')  (4, 'd')

The	first	elements	of	each	collection	are	paired	together,	followed	by	the
second,	and	so	on.	In	this	use	of	zip(),	the	shapes	of	the	arguments	must
match.

If	one	of	the	collections	is	a	list,	the	other	can	have	any	shape.	The
elements	of	the	list	are	paired	with	the	elements	of	the	other	collection	in
column-major	order:

julia> zip([1, 2, 3, 4], ['a' 'b'; 'c' 'd']) |> collect
4-element Vector{Tuple{Int64, Char}}:
 (1, 'a')
 (2, 'c')
 (3, 'b')
 (4, 'd')

Here	a	one-dimensional	list	is	zipped	with	a	2×2	matrix;	each	has	four
elements.

When	using	a	vector,	the	numbers	of	elements	need	not	match;	zip()	will
continue	until	it	runs	out	of	elements:

julia> zip(1:3, ['a' 'b'; 'c' 'd']) |> collect
3-element Vector{Tuple{Int64, Char}}:
 (1, 'a')
 (2, 'c')
 (3, 'b')

julia> zip(1:5, ['a' 'b'; 'c' 'd']) |> collect
4-element Vector{Tuple{Int64, Char}}:
 (1, 'a')
 (2, 'c')
 (3, 'b')
 (4, 'd')

In	the	first	example,	the	three-element	vector	is	exhausted	before	we	run	out
of	elements	in	the	2×2	matrix.	In	the	second	example,	the	second	argument
is	exhausted	before	we	use	up	all	the	elements	in	1:5.

Conclusion
Julia	is	a	somewhat	“big”	language:	it	has	a	lot	of	syntax	and	a	large	stable	of



data	types.	These	features	have	a	purpose,	and	they	contribute	to	Julia’s
power	and	convenience.	Fortunately,	you	don’t	have	to	use	everything	in	the
language	in	every	program.	In	this	chapter,	we’ve	encountered	some	new
syntax	that	makes	working	with	collections	more	concise	and	intuitive.	In	the
next	chapter,	we’ll	explore	some	new	concepts	that	afford	the	Julia
programmer	higher	levels	of	flexibility	and	control.

FURTHER	READING

The	specification	for	semantic	versioning	is	available	at
https://semver.org.
For	more	information	on	Perl-compatible	regular	expressions,
visit	http://www.pcre.org.

https://semver.org
http://www.pcre.org


6
FUNCTIONS,	METAPROGRAMMING,	AND	ERRORS

A	small	error	at	the	beginning	of	something	is	a	great	one	at	the	end.
—Thomas	Aquinas

In	this	chapter,	we’ll	explore	three	topics	that	afford	greater	power,	control,
and	flexibility	when	writing	programs.	We’ll	delve	deeper	into	the	central
subject	of	functions,	and	further	explore	function	arguments	and	higher-
order	functions.	We’ll	see	how	metaprogramming	and	macros	let	us	create
new	syntax	and	bend	Julia	to	our	will	in	a	way	that’s	not	possible	with	most
programming	languages.	Finally,	we’ll	see	how	to	take	control	of	the	error
system	and	use	it	to	manipulate	program	execution.

Functions	and	Their	Arguments
In	Chapter	4,	we	learned	about	positional	and	keyword	arguments	to
functions.	In	this	section	we’ll	extend	our	knowledge	of	functions	and	learn
additional	ways	to	supply	them	with	arguments.

Concise	Syntax	for	Keyword	Arguments
Keyword	arguments	tend	to	have	names	that	reflect	their	purposes,	which



means	when	calling	a	function	using	variables	for	some	of	the	keyword
arguments,	the	names	of	those	variables	often	are	the	same	as	their	names	in
the	function	definition.	This	is	even	more	likely	to	happen	if	we’ve	defined
these	variables	with	their	eventual	use	in	calling	the	function	in	mind.

Under	such	circumstances	our	function	calls	look	something	like	this:

somefunction(pos1, pos2; keyword1=keyword1, keyword2=keyword2)

Julia	has	a	syntax	option	that	reduces	this	visual	noise	and	unnecessary
typing.	We	can	replace	the	previous	call	with:

somefunction(pos1, pos2; keyword1, struct.keyword2)

As	the	example	shows,	we	can	use	either	a	variable	with	the	same	name	as	the
keyword	or	a	composite	object	that	has	a	property	name	matching	a	keyword
name.

The	Splat	and	Slurp	Operators
The	...	operator	(three	dots)	is	either	a	splat	or	a	slurp,	depending	on
context.	When	we’re	supplying	arguments	to	a	function,	we	can	splat,	and
when	we’re	defining	a	function,	we	can	slurp.

Splatting
Suppose	we	make	a	function	that	takes	three	arguments	and	adds	them
together:

   julia> function addthree(a, b, c)
              return a + b + c
          end;

   julia> addthree(1, 2, 3)
   6

   julia> v3 = [1, 2, 3];

   julia> addthree(v3)
➊ ERROR: MethodError: no method matching addthree(::Vector{Int64})

When	we	supply	three	arguments,	as	the	function	definition	demands,
the	sum	is	returned.	However,	if	the	three	values	are	part	of	a	vector,	we	get
an	error	➊	if	we	call	the	function	with	the	vector	as	an	argument.	That’s



because	its	definition	includes	no	method	that	accepts	a	single	Vector
argument;	the	only	option	is	three	separate	values.

We	could	handle	this	situation	by	extracting	the	values	within	v3	into
three	separate	variables	and	passing	those	to	addthree(),	but,	since	this
situation	arises	frequently,	Julia	provides	an	easier	way,	through	an	operator
spelled	as	three	dots	and	called	splat:

julia> addthree(v3...)
6

Here	the	splatting	operator	unpacks	the	values	in	a	collection	and	supplies
them	as	separate	arguments	to	the	called	function.

Listing	6-1	shows	how	we	can	also	splat	keyword	arguments	stored	in	a
named	tuple.

   julia> function addthreeWithCoefficients(a, b, c; f1=1, f2=1, f3=1)
              return f1 * a + f2 * b + f3 * c
          end;

   julia> coeffs = (f1=100, f2=10)
   (f1 = 100, f2 = 10)

➊ julia> addthreeWithCoefficients(1, 2, 3; coeffs...)
   123

Listing	6-1:	Splatting	a	named	tuple

In	this	example,	we	create	a	new	function,	addthreeWithCoefficients(),	that	takes
the	three	keyword	arguments	f1,	f2,	and	f3	and	multiplies	the	positional
arguments	by	them	before	returning	the	sum.	We	then	create	a	named	tuple,
coeffs,	that	has	two	properties	with	names	matching	two	of	the	keyword
arguments.	When	we	call	the	function	with	a	splat	applied	to	the	named
tuple	➊,	f1	and	f2	get	values	assigned	from	the	corresponding	properties	of
the	tuple.	The	argument	f3	does	not	exist	in	the	tuple,	so	it	gets	its	default
value	of	1.

Although	structs	also	have	properties,	we	can’t	use	them	for	splatting	in
this	way.	This	limitation	is	related	to	the	fact	that	we	can’t	iterate	over	a
struct	as	we	can	over	a	named	or	ordinary	tuple.

However,	dictionaries	will	work,	as	long	as	the	keyword	names	appear	as
symbols:

julia> csd = Dict(:f1=>100, :f2=>10);



julia> addthreeWithCoefficients(1, 2, 3; csd...)
123

Here	the	dictionary	keys	:f1	and	:f2	correspond	to	the	arguments	f1	and	f2	in
the	function	definition	in	Listing	6-1.

Slurping
In	a	function	definition,	the	three	dots	indicate	the	slurp	operator.	Slurping
is	a	kind	of	inverse	operation	to	splatting:	instead	of	unpacking	a	collection
into	separate	arguments,	it	packs	any	number	of	separate	arguments	into	a
single	iterable	object.	If	we	want	a	function	to	accept	an	unknown,	or
variable,	number	of	positional	arguments,	we	can	use	slurping:

julia> function addonlythreeWithNote(a, b, c, more...)
           if length(more) > 0
               println("Ignoring $(length(more)) additional arguments.")
           end
           return a + b + c
       end;

julia> addonlythreeWithNote(1, 2, 3, 99, 100, 101)
Ignoring 3 additional arguments.
6

The	addonlythreeWithNote()	function	returns	the	sum	of	the	first	three
arguments	we	supply,	just	as	the	addthree()	function	did.	This	version,
however,	accepts	any	number	of	additional	arguments,	which	it	packs	into	a
tuple	called	more.

We	can	also	slurp	keyword	arguments.	The	function	defined	in	the
following	example	performs	two	optional	tests	on	the	string	supplied	as	its
positional	argument.	If	it	gets	a	keyword	called	palindrome,	it	tests	for	the
thusly	named	property,	and	if	it	gets	one	called	onlyascii,	it	uses	the	isascii()
function	to	check	for	the	presence	of	non-ASCII	characters	in	the	string:

julia> function examine_string(s; checks...)
           if :palindrome in keys(checks)
               if s == reverse(s)
                   println("\"$s\" is a palindrome.")
               end
           end
           if :onlyascii in keys(checks)
               if isascii(s)
                   println("\"$s\" contains only ASCII characters.")



               else
                   println("\"$s\" contains non-ASCII characters.")
               end
           end
       end;

➊ julia> examine_string("step on no pets"; kw1=17, palindrome=1, onlyascii=1)
"step on no pets" is a palindrome.
"step on no pets" contains only ASCII characters.

julia> examine_string("step on no pets"; palindrome=1)
"step on no pets" is a palindrome.

Because	we	define	examine_string()	using	slurping	for	keyword	arguments,	it
doesn’t	matter	if	it’s	called	with	extra	arguments	➊;	they	will	be	ignored.
Since	we	supply	default	values	for	the	keyword	arguments	in	the	function
definition,	it	also	doesn’t	matter	if	some	are	missing.	Finally,	since	the
program	checks	only	for	the	presence	of	the	keyword	arguments,	the	values
assigned	in	the	call	are	arbitrary.

We	can	also	call	the	function	with	a	splatted	value	as	before.	The
difference	now	is	that	the	object	we	splat	into	the	call	may	contain
superfluous	keywords	without	creating	an	error	condition.	Here’s	an
example:

julia> kws = Dict(:palindrome => 1, :anyOtherKeyword => 17)
julia> examine_string("step on no pets"; kws...)
"step on no pets" is a palindrome.

Defining	functions	with	slurped	keyword	arguments	can	be	convenient
for	users.	For	example,	some	of	the	functions	in	the	Plots	package	work	this
way.	We	can	call	them	with	keywords	that	they	don’t	use;	they’ll	use	the
ones	they	can	handle	and	ignore	the	others.	This	might	happen	in	the	REPL
if	we	create	a	plot	using	one	plotting	function	supplied	with	a	list	of
keywords	and	then	decide	we	want	to	use	a	different	one.	We	can	press	the
up	arrow	and	change	the	function’s	name	without	having	to	consult	its
documentation	to	see	whether	it	understands	all	the	keywords	we	used
previously.

Julia	allows	one	more	way	to	supply	keyword	arguments	to	such
functions.	We	can	list	them	separately	in	the	form	:kw=>value,	with	keywords
appearing	as	symbols,	or	we	can	splat	a	dictionary,	but	all	of	its	keys	must	be
symbols.



Destructuring
Destructuring	refers	to	the	unpacking	of	a	tuple	of	values	into	named
variables	with	a	single	assignment:

julia> x, y = (3, 4);

julia> x
3

julia> y
4

This	feature	is	especially	convenient	in	unpacking	tuple	return	values
from	functions.	As	mentioned	previously,	tuples	need	not	be	written	with
parentheses	as	long	as	omitting	them	doesn’t	create	an	ambiguity,	so	we	can
write	the	assignment	in	the	example	just	shown	as	x, y = 3, 4.

Listing	6-2	shows	another	form	of	destructuring	that	unpacks	keyword
arguments	from	a	struct,	using	the	following	syntax:

julia> (; url, title) = google
Website("https://google.com", "google")

julia> url
"https://google.com"

julia> title
"google"

Listing	6-2:	Destructuring	a	struct

In	this	example,	the	definition	of	google	from	Listing	5-2	is	in	force.	In
this	type	of	destructuring,	the	variable	names	on	the	left-hand	side	of	the
assignment	must	match	the	field	names	of	the	composite	type	on	the	right-
hand	side.

NOTE

Keyword	destructuring	from	structs	first	appeared	in	Julia	v1.7.	In	earlier
versions,	(; a, b)	is	a	syntax	error.

The	utility	of	this	form	of	destructuring	may	not	be	immediately	obvious.
After	all,	without	this	peculiar	syntax,	we	can	still	do	this:



julia> url, title = google.url, google.title

It’s	not	much	more	verbose	than	the	form	in	Listing	6-2	and	has	the	same
effect.

However,	one	advantage	of	this	destructuring	syntax	is	in	providing	a
succinct	way	to	define	functions	that	take	keyword	arguments	extracted	from
structs.	In	the	following	example,	we	first	define	a	struct	with	three	fields
and	create	an	object	from	the	struct:

   julia> struct Fco
              f1
              f2
              f3
          end

   julia> someco = Fco(100, 10, 1)
   Fco(100, 10, 1)

➊ julia> function addthreeWithCoefficients(a, b, c, (; f1, f2, f3))
              return f1 * a + f2 * b + f3 * c
          end;

   julia> addthreeWithCoefficients(1, 2, 3, someco)
   123

Then	we	make	a	different	version	of	the	addthreeWithCoefficients()	function
that	we	created	in	Listing	6-1	➊.	Instead	of	a	list	of	keyword	arguments,	this
version	takes	a	fourth	positional	argument	that	has	the	syntax	of	a	struct
destructuring.	When	we	call	the	function,	supplying	the	composite	object	as
the	fourth	positional	argument,	the	function	makes	the	assignment(; f1, f2,
f3) = someco.	Referring	to	the	syntax	in	Listing	6-2,	we	can	see	that	this	will
assign	100	to	f1,	10	to	f2,	and	1	to	f3.	The	struct	used	as	an	argument	may
contain	fields	that	are	not	extracted	by	the	function,	as	the	destructing	syntax
doesn’t	require	all	fields	to	be	unpacked.

Operators	Are	Functions	Too
Binary	operators	in	Julia,	such	as	*	and	+,	also	called	infix	operators,	are
functions	of	two	arguments.	Each	one	has	a	more	explicit	functional	form:

julia> +(1, 2, 3)
6

julia> *(8, 2)
16



In	the	first	example,	the	+	function	operates	on	the	arguments	1,	2,	and	3,
adding	them	up	to	return	6.	The	functional	form	of	infix	operators	can	be
more	concise	when	we	have	many	arguments.

Since	binary	operators	are	functions,	we	can	pass	them	as	arguments	to
higher-order	functions	(see	Listing	6-5	for	an	example).

In	an	expression	involving	infix	operators,	the	order	of	operations,	or
precedence	rules	for	operators,	determines	the	result.	For	example,	the
expression	3 + 2 * 5	evaluates	to	13	because	multiplication	happens	before
addition.

When	using	the	functional	forms	of	operators,	there	are	no	precedence
rules,	because	the	function	application	syntax	makes	the	order	of	operations
explicit.	For	example,	the	expression	3 + 2 * 5	is	equivalent	to	+(3, *(2, 5)).
The	syntax	shows	that	the	multiplication	occurs	before	the	addition.

Julia	allows	us	to	use	certain	characters	to	define	our	own	binary
operators.	If	we	create	a	function	and	give	it	one	of	these	characters	for	its
name,	we	can	use	the	function	in	an	infix	position.

We	can’t	create	an	infix	operator	from	any	character,	however.	The
source	code	for	Julia’s	interpreter	provides	a	complete	list	of	available
characters	(see	“Further	Reading”	on	page	187).	The	source	also	indicates
the	precedence	of	each	character	by	grouping	them	in	classes	with	equal
precedence.	When	deciding	on	a	symbol	for	an	infix	operator,	it’s	not
enough	to	pick	one	that	looks	right.	We	must	decide	how	the	operator	is	to
fit	within	the	hierarchy	of	precedence	and	choose	a	symbol	in	the
appropriate	group.

The	three	major	precedence	groups	are	multiplication,	addition,	and
comparison.	Figure	6-1	shows	a	small	selection	of	characters	from	each
group.

Figure	6-1:	A	few	operator	characters

Comparison	operators	have	the	lowest	precedence	of	these	three	types,	so



the	expression	2 * 3 + 2 > 7	is	equivalent	to	((2 * 3) + 2) > 7	and	returns	true.
Let’s	use	one	of	these	characters	to	create	a	new	infix	operator	that

extends	the	idea	of	subtraction	to	give	us	the	Euclidean	distance	between
two	vectors.	We	want	it	to	have	the	same	precedence	as	addition	and
subtraction	operators,	so	we’ll	pick	a	symbol	from	that	group	that	looks	like
it	has	something	to	do	with	subtraction	(enter	\boxminus	followed	by	TAB	to
enter	the	function’s	name	in	the	REPL).

julia> function ⊟(a, b)
           return sqrt((b[1] - a[1])^2 +
                       (b[2] - a[2])^2)
       end;

NOTE

To	learn	the	shortcut	for	any	other	special	character,	paste	it	in	after	entering
help	mode.

After	this	definition,	we	have	a	new	function	with	a	single-character
name.

Since	the	character	is	in	the	list	of	characters	blessed	for	use	as	infix
operators,	it	should	work:

julia> v1 = [0, 1];

julia> v2 = [1, 0];

julia> v1 ⊟ v2
1.4142135623730951

This	result	is	correct.
Let’s	use	the	new	operator	in	an	expression	containing	a	higher-

precedence	operation	to	check	that	it	follows	the	desired	precedence	rules:

julia> 3 .* v1 ⊟ 4 .* v2
5.0

The	multiplications	were	taken	before	the	vector	subtraction,	as	expected
(the	result	may	remind	you	of	the	3-4-5	right	triangle	from	high	school
trigonometry).

We	can	transform	infix	operators	we	create	ourselves	into	broadcast



versions	using	the	dot	prefix,	just	like	built-in	operators:

julia> v1a = [v1, v1, v1]
3-element Vector{Vector{Int64}}:
 [0, 1]
 [0, 1]
 [0, 1]

julia> v2a = [v1, v2, [0, 0]]
3-element Vector{Vector{Int64}}:
 [0, 1]
 [1, 0]
 [0, 0]

julia> v2a .⊟ v1a
3-element Vector{Float64}:
 0.0
 1.4142135623730951
 1.0

The	broadcasting	operation	applies	our	function	to	all	corresponding
elements	of	the	pair	of	vectors	(of	vectors).	The	result	is	a	vector	containing
the	Euclidean	distance	between	each	pair	of	corresponding	vectors.

The	Mapping,	Filtering,	and	Reduction	Operators
A	higher-order	function	is	a	function	that	takes	one	or	more	functions	as	some
of	its	arguments.	Usually	they	either	transform	functions	into	other
functions	or	apply	them	to	data	supplied	as	further	arguments.	The	three
operators	map(),	filter(),	and	reduce()	are	higher-order	functions	that	apply	a
supplied	function	to	a	collection.

The	map()	Operator
The	map()	operator	applies	a	function	to	each	element	of	a	collection	and
returns	another	collection:

julia> double(x) = 2x
double (generic function with 1 method)

julia> map(double, [2 3; 4 5])
2×2 Matrix{Int64}:
 4   6
 8  10

Here	map()	applies	double()	to	each	element	of	the	matrix	individually,



returning	a	result	with	the	same	shape	as	the	matrix.
In	the	case	of	an	infix	operator,	map	applies	it	between	corresponding

elements	of	all	the	collections	supplied:

julia> map(+, [2 3], [4 5], [6 7])
1×2 Matrix{Int64}:
 12  15

The	result	has	the	same	shape	as	the	collections	that	map()	is	operating	on.
The	result’s	first	element	comes	from	applying	+	to	the	first	elements	of	all
the	collections;	the	second	element,	15,	is	3	+	5	+	7.

The	key	to	understanding	map()	is	understanding	zip()	because	the	map()
operator	combines	the	elements	of	the	arrays	we	give	it	using	zip():

julia> map(+, 20:10:40, [2 3; 4 5])
3-element Vector{Int64}:
 22
 34
 43

julia> map(+, 20:10:90, [2 3; 4 5])
4-element Vector{Int64}:
 22
 34
 43
 55

In	these	examples,	map()	applies	the	+	operator	between	the	elements	of	the
vector	and	the	2×2	matrix	in	column-major	order.	In	both	cases,	it	stops
when	it	runs	out	of	elements	in	one	of	the	collections.

In	some	cases,	map()	returns	the	same	result	as	an	equivalent	broadcast
using	the	dot.	The	map	of	double()	earlier	could	have	been	written	this	way:

julia> double.([2 3; 4 5])
2×2 Matrix{Int64}:
 4   6
 8  10

However,	mapping	and	broadcasting	are	not	the	same.	We	can	see	this
clearly	in	the	case	of	an	infix	operator:

julia> [20 30] .+ [2 3; 4 5]
2×2 Matrix{Int64}:
 22  33
 24  35



In	this	example,	the	array	on	the	left-hand	side	has	a	different	shape	from	the
one	on	the	right-hand	side.	However,	its	shape	fits	the	shape	of	the	rows	of
the	right-hand	array.	The	broadcasting	operator	.+	extends,	or	broadcasts,
the	array	[20 30]	over	the	rows	of	the	other	array.

If	we	make	the	left-hand	array	a	single	column	instead	of	a	single	row,	it’s
broadcast	over	the	columns	of	the	other	array:

julia> [20, 30] .+ [2 3; 4 5]
2×2 Matrix{Int64}:
 22  23
 34  35

Examining	the	examples	in	this	section	should	make	the	difference
between	mapping	and	broadcasting	clear.	Unlike	broadcasting,	map()	does	not
perform	operations	on	entire	arrays,	but	goes	element	by	element,	using
zip()	under	the	hood.	Using	map()	in	this	last	example	yields	a	different	result:

julia> map(+, [20, 30], [2 3; 4 5])
2-element Vector{Int64}:
 22
 34

The	[3, 5]	column	of	the	last	argument	is	never	used	because	map()	runs
out	of	elements	before	it	gets	there.

The	filter()	Operator
The	filter()	operator	takes	a	function	of	one	variable	as	its	first	argument;
this	function	should	return	true	or	false.	It	applies	this	function	to	each
element	of	its	second	argument,	which	should	be	a	collection.	It	returns	a
new	collection	with	the	elements	for	which	the	function	returned	false
filtered	out,	or	removed.

As	with	map(),	Listing	6-3	shows	how	filter()	is	often	used	with
anonymous	functions.

julia> filter(x -> x % 17 == 0, 1:100)
5-element Vector{Int64}:
 17
 34
 51
 68
 85



Listing	6-3:	Using	filter()	with	an	anonymous	function

Here	we’ve	created	a	list	of	the	integers	from	1	to	100	that	are	divisible	by
17.

Julia	provides	a	collection	of	test	functions	that	can	be	convenient	to	use
with	filter(),	such	as	isodd(),	iseven(),	isfinite(),	and	isfile(),	which	answer	the
questions	indicated	by	their	names.

The	isascii()	function	tells	you	whether	a	character	is	part	of	the	old
ASCII	character	set;	we	can	use	it	on	a	string	to	filter	out	non-ASCII
characters:

julia> filter(isascii, "François")
"Franois"

We	get	the	string	back	with	“ç”	filtered	out.	We	can	also	invert	the
condition	to	filter	out	the	ASCII	characters	with	filter(!isascii, "François"),
which	returns	"ç".

The	reduce()	Operator
We’ve	used	the	sum()	function	several	times.	It	adds	up	all	the	numbers	in	an
array,	reducing	it	to	a	single	number.	The	reduce()	higher-order	function
generalizes	this	concept.	It	applies	a	function	of	two	variables,	supplied	as	its
first	argument,	to	a	collection	supplied	as	its	second	argument.

Let’s	consider	an	example	to	visualize	how	it	works.	If	there	were	no	sum()
function,	we	could	use	reduce()	instead.	We	can	calculate	the	sum	1 + 2 + 3
with	sum([1, 2, 3]),	but	also	with	reduce(+, [1, 2, 3]).

We	can	use	any	binary	operator,	or	any	function	of	two	variables,	with
reduce().	For	example,	Listing	6-4	shows	a	function	that	divides	its	first
argument	by	its	second	and	uses	it	in	reduce().

julia> q(a, b) = a/b
q (generic function with 1 method)

julia> reduce(q, 1:3)
0.16666666666666666

julia> (1/2)/3
0.16666666666666666

Listing	6-4:	The	reduce()	function



The	last	line	shows	how	reduce()	inserts	the	function	between	elements,
accumulating	partial	results	as	it	goes.

However,	reducing	with	division	introduces	a	complication.	While	the	+
and	*	operators	are	associative,	division	and	subtraction	are	not.	Associativity
means	that	it	doesn’t	matter	how	we	group:	(1 + 2) + 3	gives	the	same	result
as	1 + (2 + 3).	Division	is	not	associative:	1/(2/3)	is	equal	to	1.5.

NOTE

In	fact,	addition	and	multiplication	are	associative	when	operating	on	real
numbers	(and	other	number	systems	in	the	realm	of	mathematics),	but	they	are
not	truly	associative	when	applied	to	floating-point	numbers	in	a	computer.
Although	the	numerical	effect	of	association,	the	difference	between	(a	+	b)	+	c
and	a	+	(b	+	c),	is	usually	small,	it’s	better	to	use	the	folding	operators,	which
we’ll	introduce	next,	when	numerical	accuracy	or	reproducibility	are	important.

In	cases	where	the	function	or	operator	is	not	associative,	the	result	of
using	reduce()	is	undefined:	we	cannot	assume	that	it	works	from	left	to	right.
In	such	cases,	we	should	use	foldl()	or	foldr(),	which	work	just	like	reduce(),
but	associate	from	the	left	or	the	right:

julia> foldl(q, 1:3)
0.16666666666666666

julia> foldr(q, 1:3)
1.5

Listing	6-5	shows	how	the	reduce()	operator,	but	not	foldl()	or	foldr(),
accepts	the	keyword	argument	dims	to	reduce	along	the	specified	dimension.

julia> reduce(+, [1 2; 10 20]; dims=2)
2×1 Matrix{Int64}:
  3
 30

julia> reduce(+, [1 2; 10 20]; dims=1)
1×2 Matrix{Int64}:
 11  22

Listing	6-5:	Reducing	along	a	specified	dimension

Here	dims=1	causes	a	reduction	along	the	rows,	while	dims=2	reduces	along	the
columns.	If	we	omit	the	dims	argument,	the	result	is	a	reduction	over	all



elements,	giving	the	single	number	33.
All	three	reducing	functions	accept	another	keyword	argument	that	acts

as	a	default	in	case	they	encounter	an	empty	collection.	This	argument	is
called	init:

julia> reduce(+, []; init=0)
0

In	this	example,	when	faced	with	the	empty	collection	[],	reduce()	returns	the
specified	value	0.

If	a	reducing	function	encounters	an	empty	collection,	no	default	neutral
element	exists,	and	no	init	argument	has	been	supplied,	it	returns	an	error.
Some	reducing	functions	may	use	the	value	of	init	as	a	starting	value	for	the
reduction	when	the	collection	is	not	empty,	but	this	behavior	is	formally
unspecified	and	may	change	in	future	implementations	of	these	functions.
For	that	reason,	to	assure	correct	results,	when	init	is	present	it	should	be
the	correct	neutral	element	for	the	applied	operation.	For	addition,	this	is	0,
and	for	multiplication,	the	neutral	element	is	1.

Some	reducing	operations	arise	so	frequently	in	programs	that	Julia	has
purpose-built	versions	for	them.	We’ve	already	seem	sum();	prod()	is	similar
but	multiplies	rather	than	adds:

julia> prod(1:7)
5040

julia> factorial(7)
5040

The	first	expression	in	this	example	multiplies	together	all	the	integers	from
1	to	7	inclusive;	as	this	is	the	definition	of	7!,	we	get	the	same	result	returned
from	the	second	expression.

The	maximum()	and	minimum()	reducers	find	the	largest	or	smallest	element	of
a	collection:

julia> maximum(sin.(1:.01:2π))
0.9999996829318346

julia> minimum(sin.(1:.01:2π))
-0.999997146387718

In	this	example,	we	create	the	collections	by	broadcasting	the	sin()	function



over	an	interval.
The	any()	and	all()	reducing	tests	apply	a	test	over	a	collection:

julia> any(iseven, 3:2:11)
false

julia> all(isodd, 3:2:11)
true

These	two	operations	answer	the	questions:	do	any	or	all	elements	of	the
collection	satisfy	the	test	in	the	first	argument?

The	mapreduce()	Function
The	powerful	mapreduce()	function	does	what	its	name	suggests:	it	combines	a
map()	and	a	reduce().	For	example,	here	are	two	ways	to	add	up	the	first	100
squares:

julia> mapreduce(x -> x^2, +, 1:100)
338350

julia> reduce(+, map(x -> x^2, 1:100))
338350

The	second	method	shows	exactly	what	a	mapreduce()	call	does.	However,	it’s
almost	always	better	to	use	mapreduce()	instead	of	combining	a	map()	and	a
reduce()	because	the	former	uses	far	less	memory	and	is	much	faster;	the	gain
in	efficiency	grows	dramatically	as	the	collection	gets	larger.	The	main
reason	is	that	combining	map()	and	reduce()	creates	an	intermediate	collection
to	reduce	over,	whereas	mapreduce()	performs	the	calculation	in	one	go,
without	allocating	a	collection.

do	Blocks
Many	functions	in	Julia	take	functions	as	their	first	arguments,	and	we	often
want	to	supply	an	anonymous	function,	as	we	have	no	need	to	reuse	the
function	elsewhere.	We’ve	seen	this	with	plot()	and	related	plotting	routines,
and	with	the	mapping	and	reducing	functions	described	in	this	chapter.

Constructing	an	anonymous	function	can	be	cumbersome	or	impossible
using	the	x -> ...	syntax.	For	example,	we	might	want	it	to	contain	loops	or



if	blocks.	In	those	situations,	we	can	resort	to	first	creating	a	named	function
and	then	passing	it	to	the	higher-level	function,	but	Julia	provides	another
way.

The	do	block	is	a	type	of	function	definition	block	solely	for	the	purpose
of	creating	anonymous	functions.	The	function	is	inserted	as	the	first
argument	of	the	function	call	immediately	preceding	the	do	block.

Let’s	revisit	reducing	using	our	q()	function	from	Listing	6-4.	If	any	of
the	denominators	taken	from	the	collection	is	0,	the	reduction	will	return
Inf.	But	what	if	we	want	to	simply	skip	those	denominators?

julia> foldl(q, 3:-1:0)
Inf

julia> foldl(3:-1:0) do x, y
           if y == 0
               return x
           else
               return x/y
           end
       end
1.5

The	do	block	defines	an	anonymous	function	of	two	variables	that	returns
the	first	divided	by	the	second,	handling	0	denominators	as	a	special	case.
The	call	to	foldl()	looks	wrong	because	it	passes	only	a	single	argument,	but
the	function	defined	by	the	do	block	is	inserted	as	the	missing	first	argument.

Symbols	and	Metaprogramming
We’ve	used	the	Symbol	type	in	several	places—for	example,	when	setting
attributes	in	plotting	functions—but	we’ve	deferred	a	thorough	discussion	of
what	symbols	in	Julia	actually	are	until	now.

To	grasp	the	meaning	of	symbols,	we	must	introduce	the	concept	of
metaprogramming	in	Julia.	Metaprogramming	refers	to	a	general	class	of
language	facilities	and	associated	techniques	for	writing	code	that	examines
itself,	modifies	itself,	and	can	even	modify	or	add	to	the	syntax	of	the
language.	In	this	section,	we’ll	introduce	the	basic	concepts	and	apply	them
to	the	code-transforming	programs	called	macros	described	in	the	next
section.

Scientific	code	does	not	typically	use	much	metaprogramming.	However,



Julia,	and	many	of	its	packages,	provides	some	indispensable	macros,	such	as
the	@layout	macro	that	we	used	in	“Creating	Complex	Layouts	Using
@layout”	on	page	118.	Even	if	you	never	write	a	macro	yourself,	having	a
basic	understanding	of	how	they	work	is	worthwhile.	Programming	in	Julia
routinely	uses	a	handful	of	indispensable	macros,	so	it’s	important	to	be	able
to	use	them	intelligently	and	debug	them	if	something	goes	wrong.

Expression	Objects
Julia	has	the	ability	to	manipulate	Julia	code.	That’s	possible	because	Julia
code	itself	is	expressible	as	a	data	type	that	the	language	can	operate	on,	just
as	it	operates	on	numbers,	strings,	and	arrays.	This	data	type	is	called	Expr.
Objects	with	this	data	type	are	referred	to	as	Expr	objects	or	expression	objects.
Expression	objects	are	different	from	expressions,	which	are	language	forms
that	return	results,	such	as	3 * 5.

Expression	objects	often	involve	Julia	Symbols.	We	can	create	a	Symbol	by
prepending	a	colon	to	a	name,	as	with	the	attributes,	such	as	:red,	that	we
used	when	making	plots.	We	can	convert	a	string	to	a	symbol	with	the
Symbol()	function	as	well:	Symbol("red") == :red.

We	can	also	use	colons	to	construct	expression	objects	by	following	the
colon	with	an	expression	in	parentheses.	To	reiterate:	3 * 5	is	an	expression,
while	:(3 * 5)	is	an	expression	object.	If	we	enter	3 * 5	in	the	REPL,	Julia
evaluates	the	expression	and	returns	15.	If	we	enter	:(3 * 5),	or	any	other
expression	object,	it	simply	returns	what	we	entered.

In	order	to	evaluate	the	expression	that	the	Expr	object	represents,	the	part
inside	the	parentheses,	we	use	the	eval()	function.	If	we	enter	eval(:(3 * 5))	in
the	REPL,	Julia	returns	15.

NOTE

We	can	turn	a	string	into	an	expression	using	Meta.parse()—for	example,
Meta.parse("3 * 5")	returns	:(3 * 5).

Sometimes	putting	the	entire	expression	object	on	one	line	is
inconvenient.	Julia	has	a	block	called	quote	for	defining	such	objects:

julia> ex = quote
           a = 3
           a + 2



       end;

julia> typeof(ex)
Expr

julia> a
ERROR: UndefVarError: a not defined

julia> eval(ex)
5

julia> a
3

The	assignment	beginning	the	example	assigns	the	result	of	the	quote	block
to	ex.	Since	quote	blocks	create	expression	objects,	that’s	the	type	of	ex,	as	we
confirm	in	the	following	line.	Evaluating	the	expression	performs	the
operations	within	the	block,	as	the	next	two	lines	confirm.

The	block	gets	its	name	from	the	concept	of	quoting,	which	means
turning	an	expression	into	an	expression	object,	whether	we	accomplish	that
by	surrounding	an	expression	with	:(...)	or	using	the	quote	block.

In	English,	sometimes	we	need	to	distinguish	between	using	a	word	or
expression	and	talking	about	the	word	or	expression.	We	do	this	by
surrounding	the	terms	we	are	discussing	with	quotes.	Quoting	in	Julia	serves
the	same	purpose.	We	quote	an	expression	so	that	we	can	act	on	it	as	an
expression;	the	expression	object	is	simply	the	quoted	expression.

Most	languages	have	no	way	to	talk	about	themselves.	All	those	that	do,
such	as	Julia,	all	Lisps,	and	Elixir,	have	a	way	to	quote	expressions.

Expression	Object	Interpolation
We	can	interpolate	values	into	an	expression	object	similarly	to	how	we	can
interpolate	into	a	string.	As	a	simple	example,	let’s	define	a	variable	and
create	two	expression	objects,	one	that	uses	the	variable	and	one	that	uses
the	interpolated	value	of	the	variable:

julia> w = 3
3

julia> ex = :(w * 5)
:(w * 5)

julia> ey = :($w * 5)
:(3 * 5)



In	the	definition	of	ey,	the	value	of	w	was	interpolated	into	the	expression
object	at	the	time	of	its	creation.	The	expression	object	ex	contains	the
variable	w	instead.	Applying	eval()	to	those	expression	objects,	before	and
after	changing	the	value	of	w,	clarifies	the	consequences	of	this:

julia> eval(ex)
15

julia> eval(ey)
15

julia> w = 4
4

julia> eval(ex)
20

julia> eval(ey)
15

Changing	the	value	assigned	to	w	does	not	change	the	result	of	evaluating	ey
because	that	expression	does	not	contain	w	as	a	variable.	Instead,	it	uses	the
value	of	w	in	its	definition.

With	just	these	few	simple	metaprogramming	tools,	we	can	already
perform	a	whole	category	of	programming	tricks	that	are	impossible	without
them.	For	example,	suppose	we	want	to	create	a	function	that,	given	a	string
and	a	value,	creates	a	variable	from	the	string	and	assigns	the	value	to	it.
Listing	6-6	shows	a	function	that	performs	this	task.

mkvar(s, v) = eval(:($(Symbol(s)) = $v))

Listing	6-6:	Putting	expression	objects	to	work

The	mkvar()	function	converts	the	s	string	into	a	Symbol.	It	then	creates	an
expression	object	that	assigns	to	the	interpolated	value	of	that	symbol	the
value	of	v.	Finally,	it	applies	eval()	to	the	expression	object.	The	result	of	this
eval()	is	a	new	variable	with	a	name	identical	to	the	supplied	string	s,	and
with	the	value	v.

Here	it	is	in	action:

julia> mkvar("Arthur", 42);

julia> Arthur
42



This	kind	of	functionality	requires	metaprogramming.	In	particular,	we
can’t	do	"Arthur" = 42,	because	we	can’t	assign	to	a	string.

The	previous	example	makes	clear	exactly	what	symbols	are:	they	are	the
way	Julia	represents	variables	within	expression	objects.	In	other	words,
symbols	are	how	Julia	represents	variables	to	itself.	They	are	also,	as	we’ve
shown,	often	drafted	for	service	as	keyword	arguments	and	for	other
purposes,	but	that	usage	is	tangential	to	their	fundamental	identity.	Symbols
are	popular	for	these	purposes	simply	because	they’re	more	efficient	than
strings.

The	mkvar()	function	is	more	than	just	a	magic	trick.	The	strings	it
consumes	may	be	taken,	for	example,	from	the	headings	of	a	table	of	data
read	from	a	file.	In	that	case,	mkvar(),	or	something	like	it,	could	create
variables	named	after	those	headings	and	assign	them	to	the	columns	of	data
underneath	them.	We’ll	explore	applications	of	these	ideas	in	Chapter	10.

Macros
A	macro	is	a	function	that	accepts	expressions,	symbols,	and	literals	as
arguments	and	returns	an	expression	object.	The	expression	object	is
automatically	evaluated	at	runtime.

There	is	a	crucial	difference	between	macros	and	the	other	functions	that
we’ve	studied	up	to	now,	including	functions	that	manipulate	expression
objects.	Functions	are	evaluated	at	runtime,	using	the	current	values	of	any
global	variables.

The	processing	inside	a	macro,	in	contrast,	happens	during	a	separate
compilation	stage	before	the	program	runs.	The	expression	object	returned
by	the	macro	is	inserted	into	the	code	at	the	location	of	the	macro	and
eval()ed.	This	property	allows	us	to	use	macros	to	alter	or	add	to	the	syntax
of	the	language.

How	to	Create	Macros
The	following	is	a	macro	version	of	the	mkvar()	function	that	we	defined	in
Listing	6-6:

   julia> macro mkvarmacro(s, v)
              ss = Symbol(s)



           ➊ return esc(:($ss = $v))
          end
   @mkvarmacro (macro with 1 method)
   
➋ julia> @mkvarmacro "color" 17
   17
   
   julia> color
   17

Normally,	to	avoid	collisions	with	names	in	the	calling	context,	macros
change	the	names	of	all	the	variables	they	contain	into	private	versions.	In
cases	where	we	want	these	variables	to	refer	to	variables	of	the	same	name
when	we	use	the	macro,	we	use	esc()	➊	to	bypass	the	private	naming	process.
This	is	one	of	those	cases	because	the	purpose	of	this	macro	is	to	create	a
variable	from	the	string	we	supply	and	to	assign	it	a	value.

We	invoke	a	macro	by	prepending	an	@	sign	to	its	name	➋.	The	syntax
for	supplying	arguments	is	more	flexible	than	in	the	case	of	functions.	We
can	list	the	arguments	separately	using	spaces,	as	in	this	example,	or	place	a
comma-separated	list	inside	parentheses,	as	we	do	with	functions:
@mkvarmacro("color", 17).	If	the	argument	is	a	literal	array,	we	can	dispense	with
the	space	and	the	parentheses	and	call	the	macro	as	@macroname[1 2 3].

As	soon	as	the	macro	is	invoked,	the	Expr	object	($ss = $v),	with
interpolation	substituting	a	literal	color	for	ss	and	17	for	v,	is	evaluated,	so	17
is	assigned	to	the	variable	color.

As	an	example	of	how	we	can	use	macros	to	add	new	syntax	to	Julia,
suppose	we	don’t	like	using	the	end	keyword	in	while	loops.	In	Listing	6-7
we’ll	create	a	simple	macro	that	accepts	a	condition	and	a	loop	body,	with	no
end	required.	We’re	not	allowed	to	reuse	the	while	keyword,	so	we’ll	call	our
macro	@during.

macro during(condition, body)
    return quote
        while $condition
         ➊ $(esc(body))
        end
    end
end

Listing	6-7:	Creating	new	syntax	with	a	macro

We	use	the	esc()	function	➊	because	we	want	the	loop	body	to	be	able	to
use	variables	defined	outside	the	macro.



Here’s	how	to	use	this	macro:

julia> i = 0
0

julia> @during i < 10 (println(i^2); i+=1)
0
1
4
9
16
25
36
49
64
81

julia> i
10

The	last	two	lines	show	that	the	macro	indeed	references	the	variable	i	in
the	global	scope.

With	our	new	powers,	we	can	invent	a	kind	of	loop	that	doesn’t	exist	in
the	language.	Let’s	create	an	“until”	loop	that	repeats	a	block	until	a
condition	is	met.	This	is	the	same	thing	as	a	while	loop	that	continues	while
the	condition	is	not	met.	With	this	insight,	our	new	macro	is	a	simple
modification	of	the	one	in	Listing	6-7:

macro until(condition, body)
    return quote
        while !$condition
            $(esc(body))
        end
    end
end

Let’s	test	it	in	the	REPL	to	see	if	it	does	what	we	expect:

julia> i = 0
0

julia> @until i == 11 (println(i^3); i+=1)
0
1
8
27
64
125
216
343



512
729
1000

Our	@until	loop	works	as	intended,	incrementing	i	until	i == 11.
Writing	macros	is	inherently	more	difficult	than	writing	normal

functions,	partly	due	to	the	necessity	to	keep	track	of	levels	of	quoting	and
self-reference.	Fortunately,	you’ll	never	need	to	write	a	single	macro	to
perform	scientific	calculations	or	numerical	work.	However,	if	you	find
you’re	repeating	“boilerplate”	code	often,	and	this	repeated	code	can’t	be
expressed	using	a	normal	function,	you	may	have	a	situation	where	the	code-
writing	powers	of	macros	can	save	you	some	work.

Useful	Macros
Although	you	may	never	write	your	own	macros,	you’ll	use	them	often.	Both
the	standard	library	and	many	packages	provide	useful	functionality	through
various	macros.	This	section	surveys	several	convenient	macros	for	general
use.

The	Broadcast	Macro
We’ve	described	how	Julia’s	dot	operator	can	extend	functions	and	operators
to	act	element-wise	over	entire	arrays	(see	“Broadcasting”	on	page	51).	We
often	want	to	write	long	expressions	in	which	all,	or	the	great	majority,	of
the	functions	need	to	be	broadcast	over	their	array	arguments.	The
broadcast	macro	frees	us	from	having	to	sprinkle	dots	everywhere	in	such	an
expression—for	example:

julia> r = 1:10

julia> [r (@. exp(r) > r^4) (exp.(r) .> r.^4)]
10×2 BitMatrix:
  1  1  1
  2  0  0
  3  0  0
  4  0  0
  5  0  0
  6  0  0
  7  0  0
  8  0  0
  9  1  1
 10  1  1



This	example	constructs	a	three-column	matrix	showing	when	the
exponential	function	becomes	larger	than	its	argument	to	the	fourth	power
(exp(x)	is	the	Julia	function	for	ex).	The	second	column	is	made	from	an
expression	using	the	broadcast	macro,	while	the	third	is	an	expression	with
the	identical	meaning,	but	with	explicit	dots.	The	two	columns	are	identical.

To	exclude	a	function	from	the	macro’s	automatic	broadcasting,	precede
it	with	a	dollar	sign	($).	As	an	example,	here	is	the	sum	of	the	first	10	squares:

julia> sum((1:10).^2)
385

The	sum()	function,	which	adds	all	the	numbers	in	an	array,	does	not	have	a
dot	because	it	acts	on	the	array	as	a	whole,	rather	than	element	by	element.

If	we	rewrite	the	expression	using	the	broadcast	macro,	we	should	exempt
sum()	from	the	auto-dotting:

julia> @. $sum((1:10)^2)
385

Without	the	prepending	dollar	sign,	sum()	would	be	applied	to	each	element
individually;	however,	this	is	not	what	we	want,	as	sum(n)	is	simply	equal	to	n
when	n	is	a	single	number.

The	@chain	Macro
The	@chain	macro,	which	is	not	part	of	the	standard	library	and	must	be
imported	from	the	Chain	package,	is	a	more	convenient	alternative	to	the	pipe
operator	(|>)	for	transforming	data	through	a	series	of	expressions.	The	pipe
operator	has	certain	limitations.	For	example,	it’s	designed	to	work	only	with
functions	that	have	a	single	argument.	The	@chain	macro	is	one	of	several
approaches	in	the	Julia	ecosystem	that	creates	a	more	flexible	pipelining
mechanism.

First,	let’s	look	at	the	syntax	of	the	built-in	pipe	with	a	simple	example:

julia> "hello" |> uppercase |> reverse
"OLLEH"

We’ve	passed	the	string	"hello"	through	two	functions	to	transform	it.
Suppose	we	want	to	continue	the	pipeline,	adding	occursin()	as	a	third



function,	to	check	for	the	occurrence	in	the	result	of	the	string	"OL".	The
occursin()	function	takes	the	string	to	search	in	as	the	second	argument,	so
there’s	no	obvious	way	to	extend	the	pipeline	to	use	it.

Instead	of	the	pipe	operator,	we	can	use	the	@chain	macro	to	accomplish
this	task:

julia> @chain "hello" begin
           uppercase
           reverse
        ➊ occursin("OL", _)
       end
true

The	@chain	macro	creates	a	pipeline	from	a	series	of	expressions	without
the	use	of	any	extra	operators.	It	handles	functions	of	any	number	of
arguments.	By	default,	the	result	of	each	expression	is	fed	into	the	first
argument	of	the	following	function.	To	insert	the	result	into	an	argument	in
a	position	other	than	the	first,	indicate	its	slot	with	an	underscore	➊.

The	@time	Macro
The	@time	macro	tells	how	much	machine	time	a	computation	consumes,	plus
some	information	about	memory	allocations:

julia> @time sum((1:1e8).^2)
  0.661141 seconds (2 allocations: 762.940 MiB, 1.01% gc time)
3.333333383333333e23

First	the	REPL	prints	a	line	with	information	about	the	resources	used,	and
then	the	result	of	the	computation.

NOTE

The	@time	macro	is	handy	for	getting	a	rough	idea	of	timings,	but	for	more
systematic	benchmarking	or	profiling,	I	recommend	importing	the	BenchmarkTools
package	and	using	the	@btime	macro	and	other	tools	therein.	The	BenchmarkTools
macros	can	run	an	expression	multiple	times	and	take	an	average,	separate	run
time	from	compilation	time,	and	more.

Macros	for	Performance



Julia	comes	with	several	macros	we	can	use	to	alter	the	behavior	of	the
compiler,	sometimes	leading	to	more	efficient	code.	They	need	to	be	used
with	care,	as	their	use	is	not	without	risk.	The	two	macros	discussed	in	this
section	can	provide	significant	speedups	in	some	circumstances;	in	others,
they	have	little	or	no	effect.	One	usually	has	to	experiment	to	find	out	if
they’ll	provide	any	benefit.	These	two	macros,	and	similar	strategies,	should
be	explored	at	the	final	stages	of	performance	tuning.	During	the
development	of	an	algorithm	or	a	program,	such	attempts	at	optimization
would	likely	be	a	counterproductive	distraction.

Normally	the	compiler	checks	our	indexing	expressions	to	make	sure
we’re	not	indexing	array	elements	that	don’t	exist,	returning	a	BoundsError	if
we	index	beyond	the	end	of	an	array,	or	wind	up	using	a	nonpositive	index.
In	some	routines,	this	bounds	checking	can	affect	performance.	If	we’re	sure
that	an	area	of	code	cannot	contain	an	indexing	error,	we	can	instruct	the
compiler	to	skip	the	bounds	checking	for	that	location	using	the	@inbounds
macro:

x = (1:1e6).^2; s = 0
@inbounds for i in 1:2:1000
    s += x[i]
end

The	@inbounds	instruction	at	the	start	of	the	for	loop	tells	the	compiler	not	to
worry	about	x[i]	being	an	illegal	access	during	the	loop.	We’re	responsible
for	ensuring	that	i	stays	within	the	bounds	of	x.

The	utility	of	inbounds	is	much	reduced	in	recent	versions	of	Julia;	there’s
no	longer	a	good	reason	to	use	it	for	versions	more	recent	than	1.8.
However,	we’ll	encounter	it	in	much	existing	code,	so	it’s	important	to	know
what	it’s	supposed	to	do.

NOTE

A	common	error	is	to	try	to	generate	the	indices	for	the	array	A	with	1:length(A).
This	does	not	create	legal	indices	for	every	type	of	array,	and,	if	used	to	access	A
within	an	@inbounds	section,	it	can	create	silent	bounds	errors.	Instead,	we	should
use	eachindex(A),	which	always	returns	an	iterator	over	legal	indices	of	A.

As	mentioned	earlier	in	this	chapter,	addition	and	multiplication	on	floats
are	not	associative:	the	results	can	depend	on	the	order	in	which	we	add	or



multiply	numbers.	For	this	reason,	the	Julia	compiler	will	normally	perform
arithmetic	exactly	the	way	we	spell	it	out,	even	if	it	would	be	faster	to	change
the	order	of	operands	or	rewrite	expressions	to	“real	number	equivalents”
that	would	be	more	efficient.	This	ensures	that	running	a	program	on
different	versions	of	the	compiler	will	produce	the	same	numerical	results,	as
all	the	arithmetic	will	occur	in	the	same	order.

In	situations	where	the	last	few	decimal	places	of	a	result	are	not
important,	we	can	sacrifice	some	of	this	reproducibility	to	gain	speed	by
allowing	the	compiler	to	rearrange	our	expressions.	The	instruction	is
provided	by	the	@fastmath	macro:

julia> const d = 1.0045338347428372e6
1.0045338347428372e6

julia> @time sum(i/d for i in 1:1e9)
  5.248617 seconds
4.9774331456739935e11

julia> @time @fastmath sum(i/d for i in 1:1e9)
  3.856526 seconds
4.977433145673994e11

Here	we’ve	performed	the	same	sum

twice,	the	second	time	using	the	@fastmath	directive.	Our	expression
needlessly	performs	an	extra	billion	divisions.	One	obvious	optimization
available	for	@fastmath	is	to	factor	out	the	constant	d.	The	macro	gets	us	a
speedup	of	about	26	percent.	It	also	changes	the	result	slightly	in	the	two
final	digits.	Neither	result	is	more	“correct."	This	is	an	example	of	how
arithmetic	on	floats	depends	on	the	details	of	the	calculation.

Macros	for	String	Formatting
The	Printf	package	provides	two	macros	that	format	strings	using	the	C-style
specifications	that	have	become	a	de	facto	standard	across	multiple
programming	languages.	The	following	example	shows	how	a	macro	makes
our	code	neater,	allowing	us	to	list	the	variables	to	be	formatted	without
parentheses	and	commas:



julia> using Printf

julia> @printf "10! is about %.2e and √2 is approximately %.4f" factorial(10) √2
10! is about 3.63e+06 and √2 is approximately 1.4142

The	format	specifiers	are	the	fragments	in	the	string	beginning	with	%;	the
digit	after	the	decimal	point	determines	the	number	of	digits	after	the	point
printed	in	the	result.	For	a	list	of	all	the	format	specifiers	and	a	guide	to	their
syntax,	see	“Further	Reading”	on	page	187.

A	companion	to	this	macro	is	sprintf,	which	behaves	the	same	way	but
returns	the	formatted	string	as	a	result	rather	than	printing	it.	Use	sprintf	to
store	the	generated	string	in	a	variable.

Macros	for	Information
Several	macros	that	provide	information	about	the	environment	in	which
they	are	invoked	are	always	available.	The	@__MODULE__,	@__DIR__,	@__FILE__,	and
@__LINE__	macros	return	the	module,	directory,	filepath,	and	line	number,
respectively,	where	they	are	called.	These	macros	can	be	useful	for
debugging,	writing	build	scripts,	code	formatting,	testing,	and	other
purposes.	(Each	of	the	macro	names	in	this	paragraph	begins	and	ends	with	a
double	underscore.)

One	essential	aid	when	debugging	macros	is	a	macro	called	@macroexpand.
Simply	prepend	it	to	your	macro	call,	and	it	will	show	you	what	the	macro	is
using	for	each	variable	and	reference.

Error	Handling
Like	most	modern	languages,	Julia	has	methods	for	handling,	manipulating,
and	creating	errors	(also	called	exceptions).	We’ve	seen	plenty	of	examples	of
errors	in	this	book	so	far:	they	occurred	in	REPL	sessions	or	as	a	result	of
running	programs	when	Julia	encountered	a	situation	that	prevented	it	from
continuing	with	the	computation.	These	situations	have	included	calling
functions	with	arguments	that	they	were	not	designed	to	accept,	indexing
arrays	outside	their	bounds,	using	an	undefined	name,	and	others.	Each	one
was	introduced	in	order	to	illustrate	a	characteristic	of	the	language,	but	in
practice	we	encounter	errors	when	something	unexpected	happens,	or



something	happens	that	we	need	to	guard	against.
In	this	section	we’ll	explore	how	to	handle	errors	and	some	methods	for

making	them	part	of	our	programs’	flow	control.	Julia’s	type	system	and	its
method	of	function	dispatch,	covered	in	Chapter	8,	provide	a	cleaner	way	to
accomplish	some	of	what	relies	on	exception	handling	in	other	languages.
These	more	idiomatic	Julia	techniques	should	be	preferred	because	they
allow	the	compiler	to	perform	more	optimizations.	Nevertheless,	sometimes
the	methods	described	in	this	section	are	the	most	convenient	way	to
accomplish	a	programming	task.

Types	of	Errors
Julia	uses	about	25	distinct	kinds	of	exceptions.	Some	occur	rarely,	while
others	we	may	only	wish	were	rare.	Here	are	the	most	common	ones:

julia> 1 + "1"
ERROR: MethodError: no method matching +(::Int64, ::String)

julia> [1, 2, 3][4]
ERROR: BoundsError:
  attempt to access 3-element Vector{Int64} at index [4]

julia> notdefined
ERROR: UndefVarError: notdefined not defined

julia> 'abc'
ERROR: syntax: character literal contains multiple characters

julia> [1 2] * [3 4 5] ➊
ERROR: DimensionMismatch:
  matrix A has dimensions (1,2), matrix B has dimensions (1,3)

julia> log(-1)
ERROR: DomainError with -1.0:
log will only return a complex result if called with a complex argument.
Try log(Complex(x)).

julia> 1 ÷ 0 ➋
ERROR: DivideError: integer division error

julia> Int(2.1) ➌
ERROR: InexactError: Int64(2.1)

julia> Dict(["a" => 1, "b" => 2])["c"]
ERROR: KeyError: key "c" not found

julia> factorial(55)
ERROR: OverflowError: 55 is too large to look up in the table;
consider using `factorial(big(55))` instead ➍



julia> "François"[6]
ERROR: StringIndexError: invalid index [6], valid nearby indices [5]=>'ç', [7]=>'o'

The	identifier	immediately	following	the	word	ERROR:	is	the	name	of	the
error.	It’s	usually	followed	by	some	explanation	and	even	occasionally	some
advice.

Most	of	the	error	messages	are	self-explanatory.	A	MethodError	means	that
someone	tried	to	call	a	function	with	argument	types	that	it	doesn’t	support.
Operators	such	as	+	are	functions	written	with	an	infix	syntax.	(See
“Creating	Multiple	Methods”	on	page	230	for	more	information	on	methods
and	the	precise	meaning	of	the	error	message.)

The	*	operator,	when	applied	to	arrays,	performs	matrix	multiplication,
which	requires	that	the	second	dimension	of	the	first	argument	match	the
first	dimension	of	the	second	argument	➊.

We’re	allowed	to	divide	by	a	floating-point	0,	which	results	in	Inf	or	-Inf,
which	means	that	we	can	do	1/0	because	the	/	operator	converts	to	floating
point.	However,	dividing	by	0	using	the	integer	division	operator	(÷)	results
in	a	DivideError	➋.

If	we	try	a	conversion	between	numerical	types	that	would	lose
information,	an	InexactError	is	the	result	➌.

The	usual	types	of	integers	aren’t	large	enough	to	hold	the	result	of
factorial(55),	but,	as	the	advice	following	the	error	message	➍	suggests,	we
can	turn	to	another	type	of	number.	We’ll	cover	big	numbers	in	“‘Big’	and
Irrational	Types”	on	page	216.

The	Call	Stack
Suppose	we	have	a	series	of	function	calls,	where	a	function	calls	a	second
function,	which	calls	a	third,	and	so	on.	When	the	final	function	in	this	chain
finishes	its	job,	the	compiler	needs	to	know	what	to	do	next.	In	order	to
know	what	the	next	instruction	should	be,	the	compiler	keeps	track	of	“how
we	got	here.”	That	information,	which	includes	the	details	of	the	chain	of
function	calls,	is	called	the	call	stack.	It	forms	the	sometimes	lengthy	part	of
error	messages	that	I	usually	omit	from	the	listings	in	this	book	to	save
space.

NOTE



In	practice,	the	compiler	optimizes	nested	function	calls	through	“inlining”	when
possible.	This	optimization	replaces	the	nested	calls	with	direct	insertion	of	the
called	function’s	code	into	the	calling	function.	But	there	is	still	the	logical	notion
of	the	call	stack,	and	the	error	report	prints	this	logical	stack,	noting	any
inlining.

To	illustrate	how	the	call	stack	works,	Listing	6-8	sets	up	a	series	of	five
functions,	each	one	defined	to	call	the	next	one	by	name,	except	the	last,
which	calls	the	log()	function.

function a(n)
    b(n)
end

function b(n)
    n -= 1
    c(n)
end

function c(n)
    n -= 1
    d(n)
end

function d(n)
    n -= 1
    e(n)
end

function e(n)
    return log(n)
end

Listing	6-8:	A	chain	of	functions

Function	a()	calls	b(),	passing	the	supplied	argument	n.	Function	b()
decrements	that	argument	and	calls	c(),	passing	its	new	value,	then	c()	calls
d()	similarly.	Finally,	e()	calls	log(n),	where	now	n	is	3	less	than	the	original	n.

Listing	6-9	shows	calling	a()	a	couple	of	times.

julia> a(5)
0.6931471805599453

julia> a(2)
ERROR: DomainError with -1.0:
log will only return a complex result if called with a
complex argument. Try log(Complex(x)).
Stacktrace:



  [1] throw_complex_domainerror(f::Symbol, x::Float64)
    @ Base.Math ./math.jl:33
  [2] _log(x::Float64, base::Val{:e}, func::Symbol)
    @ Base.Math ./special/log.jl:292
  [3] log
    @ ./special/log.jl:257 [inlined]
  [4] log
    @ ./math.jl:1350 [inlined]
  [5] e
    @ ./REPL[215]:2 [inlined]
  [6] d
    @ ./REPL[214]:3 [inlined]
  [7] c
    @ ./REPL[213]:3 [inlined]
  [8] b
    @ ./REPL[212]:3 [inlined]
  [9] a(n::Int64)
    @ Main ./REPL[211]:2
 [10] top-level scope
    @ REPL[217]:1

Listing	6-9:	A	call	stack	when	an	error	occurs

First	we	call	a(5),	which	ultimately	leads	to	a	call	to	log(5-3),	or	log(2),	and
returns	the	expected	result.	When	we	call	a(2),	that	results	in	log(2-3),	or
log(-1),	and	the	attempt	to	take	the	logarithm	of	a	negative	number	produces
the	expected	DomainError.	What	follows	is	the	stacktrace:	information	about
the	call	stack	at	the	moment	that	the	error	occurred.	This	data,	which	can
become	far	lengthier	than	in	this	artificial	example,	is	an	aid	to	debugging,
informing	us	about	the	state	of	the	program	that	led	to	an	error	condition.

The	numbers	in	square	brackets	are	part	of	the	trace	as	printed	in	the
REPL,	showing	the	sequence	of	function	calls,	beginning	with	the	most
recent,	where	the	error	was	raised,	and	proceeding	up	the	chain.	The	first
entry	is	the	function	that	actually	handles	the	error.	This	is	followed	by	the
log	functions	themselves,	and	then	our	functions	e()	up	through	a().	The
final	entry	informs	us	that	a()	was	called	from	the	REPL.	The	stacktrace	also
tells	us	which	functions	were	inlined	by	the	compiler.

try...catch	Blocks
Instead	of	allowing	errors	to	simply	stop	our	program,	we	can	intercept
them.	We	do	this	in	Julia	with	the	try...catch	block,	another	form	of	flow
control	like	the	if	block.	Here’s	an	example:

function friendly_log(n)
    try



        return log(n)
    catch oops
        if oops isa DomainError
            @warn "you may have supplied a negative number: $n"
         ➊ @info "Trying with $(-n)."
            log(-n)
        elseif oops isa MethodError
         ➋ @error "please supply a positive number."
        end
    end
end

The	friendly_log()	function	wraps	the	built-in	log()	function	in	some	error
handling.	The	normal	log()	rejects	negative	arguments	with	a	DomainError,	but
this	version	tries	again	with	the	argument’s	absolute	value,	warning	the	user
about	what	it’s	doing.	The	try	part	of	the	block	contains	the	code	whose
errors	we	want	to	intercept;	the	catch	part	intercepts	them,	optionally
assigning	the	error	itself	to	a	variable,	here	oops.	Inside	the	catch	block	we	put
an	ordinary	if	block,	using	isa	to	test	for	the	type	of	error	(“Types	in
Practice”	on	page	214	explains	more	about	isa	and	types).	If	oops	happens	to
be	a	DomainError,	the	@warn	macro	prints	a	warning	to	the	terminal,	after	which
we	issue	another	message,	using	the	@info	macro,	explaining	how	the
program	plans	to	change	the	faulty	argument	➊.	We	then	call	log()	with	the
argument	made	positive.

If	the	error	is	not	a	DomainError,	but	instead	is	a	MethodError,	something	else
is	wrong	with	the	argument.	In	this	case,	we	don’t	know	what	to	do	and	the
program	should	halt.	The	@error	macro	➋	prints	an	error	message,	after	which
the	program	continues.	Since	there’s	nothing	else	for	it	to	do,	it	exits.	The
@error	macro,	like	the	@warn	macro,	simply	prints	an	appropriately	formatted
message;	neither	macro	creates	an	error	condition	nor	has	any	effect	on	flow.
On	a	color	device,	warnings	are	signaled	in	yellow	and	errors	in	red,	and
both	attempt	to	indicate	where	in	the	program	the	problem	occurred.
Messages	generated	by	@info	appear	in	blue	in	the	REPL,	and	don’t	include	a
program	location.	All	three	macros	are	part	of	Julia’s	logging	system.	See	the
link	to	the	documentation	in	“Further	Reading”	on	page	187	for	information
about	more	of	what	you	can	do	with	this	logging	information.

Since	we	“handle”	the	errors	in	the	catch	block,	they	won’t	stop	the
program	or	lead	to	a	stacktrace:

julia> function call_fl(n)
           friendly_log(n)



       end

julia> call_fl(-3)
 Warning: you may have supplied a negative number: -3
 @ Main REPL[222]:6
[ Info: Trying with 3.
1.0986122886681098

If	we	had	not	intercepted	the	error	in	the	catch	block,	it	would	have	led	to	a
stacktrace	as	in	the	previous	section,	with	call_fl()	as	part	of	the	call	stack.

Using	throw()
The	REPL’s	help	mode	explains	that	throw()	throws	an	object	as	an
exception.	Most	Julia	tutorials	describe	it	as	a	way	for	the	programmer	to
create	errors.	Both	of	these	descriptions	are	true,	but	they	tell	only	part	of
the	story.	Before	delving	into	the	full	power	of	throw(),	let’s	look	at	a	simple
example	of	where	we	might	want	to	create	an	error	where	there	otherwise
would	not	be	one.

Creating	Errors
The	log()	function	allows	us	to	call	it	with	an	argument	of	0,	returning	-Inf	as
the	result.	Suppose	we	wanted	to	have	a	logarithm	function	that	did	not
allow	0	as	an	argument	because	we	wanted	to	exclude	infinities	from	its
results.	The	finite_log()	function	would	be	one	way	to	accomplish	this:

function finite_log(n)
    if n == 0
        throw(DomainError(n, "please supply a positive argument; log(0) = -Inf."))
    end
    return log(n)
end

An	if	block	checks	for	the	0	input	and	calls	throw()	if	it	finds	one.	The
argument	of	throw()	is	the	name	of	an	error	turned	into	a	function;	each	of
Julia’s	errors	has	such	an	associated	function	for	constructing	the	error.	The
finite_log()	function	raises	a	DomainError	if	it	gets	0	as	an	argument.	We	can
raise	any	error	we	want,	but	as	the	idea	here	is	to	exclude	a	value	from	the
domain,	a	DomainError	makes	sense:

julia> finite_log(2)
0.6931471805599453



julia> finite_log(0)
ERROR: DomainError with 0:
please supply a positive argument; log(0) = -Inf.
Stacktrace:
 [1] finite_log(n::Int64)
   @ Main ./REPL[230]:3
 [2] top-level scope
   @ REPL[234]:1

julia> log(0)
-Inf

Here	finite_log()	behaves	like	log()	unless	it	gets	a	0,	when	it	halts	with	a
DomainError.	The	message	that	we	included	in	throw()	is	printed	out	with	the
error	message.

Most	of	the	error	constructors	accept	arguments	for	information	for	Julia
to	include	in	the	error	message.	To	see	what	arguments	are	permitted,	ask
the	REPL:

help?> DomainError
search: DomainError

  DomainError(val)
  DomainError(val, msg)

  The argument val to a function or constructor is outside the valid domain.

The	documentation	informs	us	that	there	are	two	versions,	one	with	just	the
offending	value,	and	the	version	that	we	used,	with	an	explanatory	message
as	well.

Combining	throw()	with	try...catch	Blocks
Combining	throw()	with	try...catch	blocks	unleashes	its	full	power.	In
combination,	they	create	a	new	form	of	flow	control	that	allows	us	to	pass
any	value	up	the	call	stack	until	it	is	intercepted	by	a	catch,	at	which	point	we
can	halt	the	program	or	do	something	else.

As	an	example,	Listing	6-10	modifies	the	chain	of	functions	from	Listing
6-8.

function a(n)
    try
        b(n)
    catch oops
        if oops[1] == 0



            @warn "$(oops[2]) Attempted to call log(0) = Inf."
        else
            @error "$(oops[2]) Attempted to call log($(oops[1]))."
        end
    end
end

function b(n)
    n -= 1
    c(n)
end

function c(n)
    n -= 1
    d(n)
end

function d(n)
    n -= 1
    e(n)
end

function e(n)
    if n < 0
     ➊ throw((n, "Got a negative number."))
    elseif n == 0
        throw((0, "Got 0."))
    end
    return log(n)
end

Listing	6-10:	Throwing	and	catching

Looking	at	the	e()	function	first,	we’ve	added	an	if	block	above	what	used
to	be	its	only	line.	Before	trying	to	calculate	the	logarithm,	it	checks	the
argument	n.	If	this	argument	is	not	positive,	it	calls	throw()	with	a	Tuple	as	an
argument	➊.	In	both	cases,	the	tuple’s	first	element	is	n	and	its	second
element	is	a	string.	The	throw()	function	sends	this	tuple	up	the	call	stack	and
returns	from	e()	without	attempting	to	calculate	the	logarithm.	If	n == 0,	we
send	a	different	message	up	the	call	stack.

The	message	sent	by	throw()	travels	from	function	call	to	function	call
until	it’s	intercepted	by	the	try...catch	block	in	function	a().	The	catch
statement	assigns	the	message,	in	this	case	a	Tuple,	to	the	variable	oops,	where
it’s	examined	in	the	if	block,	which	prints	the	appropriate	warning	or	error
message.

Here	it	is	in	action:

julia> a(5)



0.6931471805599453

julia> a(3)
 Warning: Got 0. Attempted to call log(0) = Inf.
 @ Main REPL[1]:6

julia> a(2)
 Error: Got a negative number. Attempted to call log(-1).
 @ Main REPL[1]:8

This	exhibits	a	dramatic	difference	from	the	error	reporting	shown	in
Listing	6-9.	Here	we	see	no	call	stack,	but	merely	the	messages	constructed
in	our	try...catch	block.	The	throw()...catch	mechanism	lets	us	toss	a	message
“over	the	heads”	of	any	number	of	functions	in	a	call	stack,	directly	to	the
first	one	ready	with	the	appropriate	catch	statement.	Listing	6-9	had	no	catch
in	place	to	intercept	the	error,	so	Julia	halted	the	program	and	printed	out
the	complete	call	stack	for	our	diagnostic	use.

The	finally	Clause
The	try...catch	block	can	optionally	end	with	a	finally	clause,	which	is
executed	before	the	program	exits.	We	typically	use	this	for	“cleanup,”	such
as	releasing	external	resources	or	file	handles	that	an	error	condition
otherwise	might	leave	in	an	uncertain	state.

Let’s	add	a	finally	clause	to	a()	from	Listing	6-10:

function a(n)
    try
        b(n)
    catch oops
        if oops[1] == 0
            @warn "$(oops[2]) Attempted to call log(0) = Inf."
        else
            @error "$(oops[2]) Attempted to call log($(oops[1]))."
        end
    finally
        @info "Calculation completed with input n = $n."
    end
end

Calling	it	as	before,	we’ll	see	the	following:

julia> a(5)
[ Info: Calculation completed with input n = 5.
0.6931471805599453

julia> a(2)



 Error: Got a negative number. Attempted to call log(-1).
 @ Main REPL[11]:8
[ Info: Calculation completed with input n = 2.

This	example	shows	how	the	finally	clause	is	always	executed,	whether	there
is	a	message	to	catch	or	not.

Conclusion
With	the	more	advanced	language	features	discussed	in	this	chapter,	we’ve
attained	a	higher	level	of	Julia	mastery.	We’re	now	better	prepared	for	the
detailed	applications	in	Part	II,	where	we’ll	see	how	to	apply	our	skills	to
address	problems	across	a	variety	of	fields.

FURTHER	READING

The	source	containing	the	lists	of	characters	available	for	infix
operators,	with	their	precedences,	is	available	at
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm.
For	more	information	on	page	tabulating	C	format	specifiers,	visit
https://web.archive.org/web/20220127135451/https://www.journaldev
.com/35137/format-specifiers-in-c.
You	can	read	Stefan	Karpinski’s	masterful	explanation	of	what
symbols	really	are	at	https://stackoverflow.com/a/23482257.
Documentation	about	the	logging	system	and	further	uses	for	the
@info,	@warn,	and	@error	macros	is	available	at
https://docs.julialang.org/en/v1/stdlib/Logging/.

https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
https://web.archive.org/web/20220127135451/https://www.journaldev.com/35137/format-specifiers-in-c
https://stackoverflow.com/a/23482257
https://docs.julialang.org/en/v1/stdlib/Logging/


7
DIAGRAMS	AND	ANIMATIONS

Tell	me,	Steed.	Is	everything	to	scale?
—Mrs.	Peel

Diagrams	are	an	essential	form	of	scientific	communication	and	education.
The	type	of	diagram	treated	in	this	chapter	is	distinct	from	the	plots	of	data
or	mathematical	functions	we	worked	with	in	Chapter	4.	Diagrams	in	this
context	refers	to	illustrations	of	mathematical	structures,	drawings	of
experimental	setups,	flowcharts	describing	algorithms	or	processing
pipelines,	and	similar	graphical	descriptions.

Animations	now	frequently	accompany	scientific	papers	reporting	on
simulations,	as	supplementary	material	offered	online.	They’re	also	a
valuable	tool	in	education	and	have	a	myriad	of	uses	in	scientific	and
mathematical	communication.	In	this	chapter,	we’ll	explore	several	Julia
packages	that	can	help	you	create	a	variety	of	types	of	diagrams	and
animations.

Diagramming	with	Luxor
The	Luxor	package	is	sophisticated	and	highly	versatile,	allowing	you	to	create
almost	any	type	of	diagram.	To	install	it,	enter	add Luxor	in	the	package



manager.
The	package	uses	an	imperative	style	to	build	up	a	picture	in	stages.	You

enter	a	series	of	commands	that	manipulate	a	global	state,	each	command
potentially	adding	something	to	the	drawing.	The	effect	of	each	drawing
command	depends	on	the	state	at	the	time	it	is	entered.	For	example,	to
draw	a	blue	circle,	first	set	the	color	to	blue	and	then	enter	the	circle-
drawing	command,	with	arguments	giving	its	position,	size,	and	whether	it
should	be	“stroked”	(an	outline	drawn)	or	filled.	The	outline	or	fill	will	use
the	currently	set	color.	Each	element—circles,	polygons,	lines,	text,	or	any	of
a	variety	of	objects—requires	a	separate	command,	and	colors,	styles,
opacities,	and	other	settings	are	set	globally	before	each	command	is	issued.

For	a	concrete	example,	let’s	create	a	simple	diagram	(shown	in	Figure	7-
1)	of	the	relative	sizes	of	the	planets	in	the	solar	system,	arranged	in	order	of
their	distance	from	the	Sun.

Figure	7-1:	The	relative	sizes	of	the	planets

Listing	7-1	shows	the	complete	REPL	session	that	creates	the	diagram	in
Figure	7-1.

   julia> using \captionlst{Luxor}

➊ julia> planet_diameters = [4879 12104 12756 ;;
    3475 6792 142984 120536 51118 49528 2370];

   julia> planet_names = ["Mercury", "Venus", "Earth", "Moon",
    "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", "Pluto"];



   julia> dimenx = 1000;

   julia> dimeny =  500;

➋ julia> @png begin
              dscale = 500.0
            ➌ origin(Point(planet_diameters[1]/(2*dscale), dimeny/2))
              ledge = 0.0
              diameter = 0
            ➍ fontface("Liberation Sans")
               fontsize(32)
               for i in 1:10
                   ledge += diameter/2.0
                   name = planet_names[i]
                   diameter = planet_diameters[i]/dscale
                 ➎ ledge += diameter/2.0
                    setcolor("black")
                    setdash("solid")
                    circle(Point(ledge , 0), diameter/2.0, :stroke)
                    txtstart = Point(100*(i-1), 180 + 35*(i%2))
                    text(planet_names[i], txtstart)
                    setcolor("blue")
                 ➏ setdash("dot")
                    line(txtstart, Point(ledge, 0), :stroke)
              end
       ➐ end dimenx dimeny "planets.png"

Listing	7-1:	Creating	a	diagram	of	the	solar	system	using	Luxor

The	program	gets	its	planetary	diameters,	which	are	in	kilometers,	from	a
NASA	website	(see	“Further	Reading”	on	page	211).	When	copying	and
pasting	from	the	NASA	table	there,	the	numbers	are	space	separated.	This
creates	a	1\times10	array	(Earth’s	moon	and	Pluto	are	included),	which	is	fine;
we	just	need	a	list	we	can	iterate	over.

The	double	semicolon	at	the	end	of	the	line	➊	breaks	the	literal	input	of
the	array	over	two	lines	(this	feature	was	added	in	Julia	v1.7).	Although
spaces	and	double	semicolons	both	signify	concatenation	along	the	second
dimension,	normally	you	may	not	mix	them	in	a	single	literal	array
definition.	The	usage	here	is	an	exception	just	for	this	purpose.

The	two	variables	dimenx	and	dimeny	hold	the	dimensions	of	our	diagram.
Dimensions	in	Luxor	are	points,	which	are	1/72	of	an	inch.

Luxor	supplies	several	macros	for	conveniently	setting	up	the	drawing
environment.	The	@png	macro	➋	initializes	a	PNG	illustration,	defines	the
origin	of	the	coordinate	system	to	be	the	center	of	the	picture,	and	displays
the	result	upon	reaching	the	end	of	the	block	➐.	After	the	final	end



statement,	we	give	the	dimensions	of	the	image	and	its	filename	(you	can
leave	this	out,	but	probably	won’t	want	to).	The	default	size	is	600×600,	and
the	default	filename	is	luxor-drawing-	followed	by	a	timestamp	and	the	file
extension.	This	can	lead	to	a	profusion	of	files	on	your	disk	as	you	develop
your	drawing	code,	so	you	probably	want	to	specify	a	filename,	which	will
get	overwritten	on	each	run.	The	file	extension	is	optional	and	Luxor	will
supply	one	if	you	leave	it	out.

We	need	a	scaling	factor	to	deal	with	the	large	planetary	diameters,	which
we	assign	to	dscale.

The	macro	sets	the	origin	of	the	coordinate	system	to	the	center	of	the
diagram,	which,	using	our	variables,	would	be	(dimenx/2, dimeny/2).	The	code
will	be	neater	if	we	set	the	origin	➌	in	the	x-direction	such	that	the	left	edge
of	the	first	planet	starts	at	the	left	boundary.

I	discovered	that,	on	my	system,	if	I	don’t	set	a	fontface	➍,	I	get	ugly
bitmapped	fonts	in	the	output.	This	particular	font	may	not	exist	on	your
system,	so	adjust	as	needed.	If	you	ask	for	a	font	that	Luxor	can’t	find,	it	will
carry	on,	making	a	substitution.

The	x-coordinate	of	the	current	circle’s	center	is	assigned	to	ledge,	which
is	updated	twice	➎	for	each	planet:	once	to	increase	it	by	the	radius	of	the
previous	planet	and	once	by	the	planet	about	to	be	drawn.	The	result	is	a
series	of	osculating	circles.

The	color	is	set	to	blue	and	the	dash	style	to	dot	➏	before	each	label	is
printed.	As	with	other	diagrams	in	this	chapter,	you	can	find	color	versions
in	the	online	supplement	at	https://julia.lee-phillips.org.

If	you	run	the	code	from	Listing	7-1	in	the	REPL,	your	default	image
viewing	application	will	open	a	window	displaying	the	diagram	file	when	you
run	the	code.	The	REPL	will	hang	until	you	quit	the	application.	If	you	run
this	in	Pluto	or	Jupyter,	the	diagram	will	be	embedded	in	the	cell	below	the
code.

Other	options	for	macros	are	@svg	and	@pdf,	which	create	files	of	the
respective	types.	However,	PDFs	will	not	be	embedded	into	notebooks.

In	addition	to	lines,	circles,	and	text,	Luxor	has	commands	for	drawing
several	other	shapes,	and	even	such	geometrical	constructions	as	tangent
lines	to	circles.	(See	“Further	Reading”	on	page	211	for	a	link	to	the
manual.)

https://julia.lee-phillips.org


The	Graphs	Package
With	enough	patience,	you	can	use	Luxor	to	create	any	type	of	diagram.
However,	it’s	usually	easier	to	use	a	specialized	package	for	diagrams	of	a
specific,	standard	type.

This	section	is	about	graphs	in	the	mathematical	sense	and	their
visualization.	The	word	graph	is	often	used	synonymously	with	the	types	of
plots	that	were	the	subject	of	Chapter	4,	but	to	a	mathematician,	a	graph	is	a
set	of	nodes	connected	by	edges,	and	that’s	the	type	of	graph	we	consider
here.	Graphs	of	this	type	are	used	to	represent	a	huge	variety	of	systems.
Anytime	you	have	a	collection	of	objects	that	are	connected	together	in	a
network	of	relationships,	you	have	a	graph.	Examples	include	a	taxonomy	of
plants	or	animals,	call	sites	in	a	computer	program,	grammatical	structures	in
a	sentence,	organizational	charts,	and	the	relationships	among	characters	in	a
novel.	In	such	a	graph,	the	objects	(parts	of	the	organization	or	characters	in
the	novel)	are	called	nodes	and	the	connections	between	nodes	are	called
edges.

The	Julia	Graphs	package	contains	functions	for	making	several	types	of
graphs.	It	depends	upon	Plots	and	GraphRecipes	to	actually	draw	the	pictures
representing	the	graphs.	The	first	of	these	we’re	familiar	with	from	Chapter
4;	the	second	is	a	collection	of	plotting	recipes	that,	in	turn,	use	Plots	to	draw
pictures.	The	recipe	mechanism	allows	users	and	package	authors	to	extend
Plots	so	that	it	can	visualize	new	data	types	or	make	new	types	of	plots.	To
understand	how	these	recipes	work,	we	need	to	know	more	about	the	type
system,	so	plot	recipes	are	covered	in	“Plot	Recipes”	on	page	252.

As	an	introduction	to	the	Graphs	package,	we’ll	build	a	program	to	create	a
diagram	of	the	predator–prey	relationships	among	14	species	living	in	the
Chesapeake	Bay	in	the	eastern	United	States:

using Plots
using Graphs
using GraphRecipes

creatures = ["Striped bass", "Atlantic croaker", "White perch",
             "Summer flounder", "Clearnose skate", "Bay anchovy",
             "Worms", "Mysids", "Amphipods", "Juvenile weakfish",
             "Sand shrimp", "Mantis shrimp", "Razor clams",
             "Juvenile Atlantic croaker"]

foodchain = SimpleDiGraph(14)



First,	we	import	the	three	necessary	libraries	(Plots,	Graphs,	and	Graph
Recipes)	and	create	a	vector	of	the	names	of	the	creatures.	These	names	will
become	labels	in	the	diagram	and	will	also	serve	as	references	for	the	graph’s
nodes.

The	final	line	of	the	program	so	far	creates	an	empty	directed	graph	with
14	nodes	(called	“vertices”	by	Graphs.jl).	A	directed	graph	is	one	where	the
edges	have	a	direction,	usually	represented	visually	as	an	arrowhead.	For	this
example,	the	direction	of	the	edge	will	represent	what	creature	eats	what.	In
an	undirected	graph,	the	edges	simply	represent	connections,	with	no
hierarchy	involved.

The	next	step	is	to	add	edges	to	foodchain	representing	information	about
the	predator–prey	relationships.	The	add_edge!(foodchain, a, b)	function
mutates	the	graph	in	its	first	argument	by	adding	an	edge	going	from	node	a
to	node	b.	That’s	what	we	want,	but	it’s	not	convenient,	because	a	and	b	need
to	be	integers	representing	the	orders	of	the	nodes	in	the	list.	To	enter	these
arguments,	we	would	have	to	count	through	the	list	of	creatures	for	each
relationship.	For	example,	to	enter	an	edge	representing	the	fact	that	striped
bass	eat	worms,	we	would	have	to	call	add_edge!(foodchain, 1, 7).

Let’s	make	the	process	more	convenient	by	defining	a	dictionary	and	a
function	that	will	allow	us	to	refer	to	the	creatures	by	name:

food_dict = Dict([creatures[i] => i for i in 1:14])

function ↪(predator, prey)
    add_edge!(foodchain, food_dict[predator], food_dict[prey])
end

The	food_dict	dictionary	simply	associates	each	creature	string	with	its
order	in	the	list,	for	easy	reference.	The	new	function	allows	us	to	add	edges
by	naming	the	predator	and	its	prey.	We’re	using	a	name	for	this	function
that	can	serve	as	an	infix	operator	(see	“Operators	Are	Functions	Too”	on
page	159).	The	REPL	shortcut	(and	LaTeX	command)	for	that	character	is
\hookrightarrow.

With	the	hooked	arrow	function	in	place,	we	can	list	a	set	of	predator–
prey	relationships	taken	from	a	study	of	the	ecology	of	the	Chesapeake	Bay:

"Striped bass" ↪ "Worms"
"Striped bass" ↪ "Amphipods"
"Striped bass" ↪ "Mysids"
"Striped bass" ↪ "Bay anchovy"



"Atlantic croaker" ↪ "Mysids"
"Atlantic croaker" ↪ "Worms"
"White perch" ↪ "Worms"
"White perch" ↪ "Amphipods"
"Summer flounder" ↪ "Bay anchovy"
"Summer flounder" ↪ "Mysids"
"Summer flounder" ↪ "Juvenile weakfish"
"Summer flounder" ↪ "Sand shrimp"
"Summer flounder" ↪ "Mantis shrimp"
"Clearnose skate" ↪ "Mantis shrimp"
"Clearnose skate" ↪ "Razor clams"
"Clearnose skate" ↪ "Juvenile Atlantic croaker"

graphplot(foodchain; names=creatures, nodeshape=:rect, fontsize=5,
          nodesize=0.14, method=:stress)

The	add_edge!()	function	mutates	the	foodchain	graph	by	adding	edges.	The
last	call	produces	the	illustration	shown	in	Figure	7-2.	In	the	diagram,	the
arrows	point	from	predator	to	prey,	reflecting	the	directions	of	the	edges	we
defined.



Figure	7-2:	The	predator–prey	food	net	in	the	Chesapeake	Bay

If	you	run	this	program,	you	will	find	that	your	picture	looks	somewhat
different.	In	fact,	each	time	you	run	it	the	diagram	will	be	arranged
differently	in	space,	although	the	structure	will	always	be	the	same—the	same



creatures	being	eaten	by	the	same	predators.	This	happens	because	of	a
random	element	in	how	the	nodes	and	edges	are	arranged.	In	fact,	I	had	to
run	the	program	about	five	times	before	I	got	a	result	that	I	liked.	Some	of
the	generated	graphs	were	rather	poor,	with	overlapping	nodes.

The	final	argument	in	the	call	to	graphplot(),	method,	selects	an	algorithm
for	laying	out	the	graph:	for	turning	the	structure	into	a	picture	by	deciding
where	to	place	the	nodes.	The	stress	algorithm	does	this	by	trying	to
maximize	a	global	measure	of	how	far	the	distances	between	nodes	differ
from	a	theoretical	optimum.	The	random	element	comes	in	because	the
algorithm	finds	this	maximum	by	deforming	a	random	initial	state.

The	Adjacency	Matrix
Internally,	the	list	of	edges	established	by	calls	to	add_edge!()	gets	transformed
into	an	adjacency	matrix.	We	can	see	the	adjacency	matrix	as	shown	in	Listing
7-2.

julia> foodchain_matrix = adjacency_matrix(foodchain)
14×14 SparseArrays.SparseMatrixCSC{Int64, Int64} with 16 stored entries:
 . . . . .  1  1  1  1 . . . . .
 . . . . . .  1  1 . . . . . .
 . . . . . .  1 .  1 . . . . .
 . . . . .  1 .  1 .  1  1  1 . .
 . . . . . . . . . . .  1  1  1
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .
 . . . . . . . . . . . . . .

Listing	7-2:	The	adjacancy	matrix	is	a	sparse	array.

The	result	is	returned	as	a	sparse	array,	one	of	a	collection	of	data	types
defined	in	the	SparseArrays	package,	which	the	Graphs	package	loads
automatically.	A	sparse	array	behaves	similarly	to	a	normal	array,	but	is
specialized	to	be	efficient	when	only	a	small	proportion	of	its	elements	are
defined.	The	REPL	displays	them	as	shown	in	Listing	7-2,	with	dots
representing	undefined	locations.

The	elements	of	an	adjacency	matrix	are	set	to	1	to	record	the	existence
of	edges	in	the	graph.	For	example,	foodchain_matrix[1, 6]	has	a	1,	because



there’s	an	edge	going	from	node	1	to	node	6	(established	by	"Striped bass"↪
"Bay anchovy").	The	adjacency	matrix	encodes	the	structure	of	the	graph,	and
therefore	contains	its	complete	definition,	because	a	graph	is	identical	to	its
structure.	We	can	plot	the	graph	with	a	call	to	graphplot(foodchain_matrix);	the
remaining	arguments	simply	supply	details,	such	as	names	for	labeling	the
nodes,	for	its	display.	If	the	adjacency	matrix	is	symmetrical	(M[i, j]	== M[j,
i]),	it	represents	an	undirected	graph.	Otherwise,	as	in	the	food	chain
example,	it	represents	a	directed	graph,	and	graphplot()	will	draw	it	using
arrows	rather	than	simple	lines.	The	adjacency	matrix	must	have	at	least	one
nonzero	element,	or	at	least	one	edge	defined	with	add_edge!(),	before
plotting	a	graph.

The	package	uses	sparse	matrices	for	efficiency,	but,	if	we’re	constructing
an	adjacency	matrix	directly,	as	in	the	next	example,	we	have	the	option	of
using	normal	matrices.	In	this	case,	a	0	element	indicates	the	absence	of	an
edge	and	nonzero	elements	show	where	the	edges	are.

Factor	Trees
At	the	risk	of	awakening	bad	memories	from	high	school	algebra	class,	our
next	example,	found	in	Listing	7-3,	will	be	a	program	to	draw	factor	trees:
graph	diagrams	showing	the	division	of	a	number	into	ever-smaller	factors,
ending	with	its	unique	prime	factors.	It	will	show	how	to	build	a	graph	by
constructing	its	adjacency	matrix	and	provide	an	example	of	an	undirected
graph	with	a	tree	structure.	Here’s	the	complete	program	that	produces	the
factor	tree.

using Primes: factor
using Plots
using Graphs
using GraphRecipes
function factree(n)
 ➊ factors = factor(Vector, n)
    lf = length(factors)
    if lf == 1
        println("$n is prime.")
     ➋ return
    end
    names = [n; n ÷ factors[1]; factors[1]]
    for f in factors[2:end-1]
        push!(names, names[end-1] ÷ f, f)
    end
    nel = length(names)
 ➌ a = zeros(nel, nel)



    println("Prime factors: $factors")
    j = 1; i = 1
    a[1, 2] = 1
    a[1, 3] = 1
    for i in 2:2:nel-3
        a[i, i+2] = 1
        a[i, i+3] = 1
    end
    graphplot(a;
              nodeshape=:circle,
           ➍ nodesize=0.12 + log10(n) * .01,
              axis_buffer=0.3,
              curves=false,
              color=:black,
              linewidth=2,
              names=names,
              fontsize=10,
           ➎ method=:buchheim)
end

Listing	7-3:	A	program	to	create	a	factor	tree

The	new	import,	the	first	line	of	the	program,	gets	us	the	factor()
function	➊,	which	returns	the	prime	factors	of	its	argument.	The	program
works	only	for	integers	n	greater	than	1.	The	first	argument	supplied	to
factor()	tells	it	to	return	the	results	in	a	vector,	the	form	that	we	need	to
construct	the	factor	tree.	The	default	is	to	return	the	results	in	a	special-
purpose	type	that	lists	factors	and	multiplicities.	If	there	is	only	one	of	those,
n	is	a	prime	number,	so	we	stop	immediately	➋,	announcing	why.	The
program	proceeds	through	the	list	of	primes,	dividing	and	concatenating	the
results	onto	the	names	vector.	We	then	initialize	the	adjacency	matrix	a	➌	and
record	the	links	between	each	pair	of	factors	and	their	product	up	the	tree.
The	final	call	to	graphplot()	takes	the	adjacency	matrix	as	its	first	argument;
the	keyword	arguments	set	details	for	the	illustration.	The	nodesize	argument
sets	the	extra	size	of	the	circles	beyond	what	is	required	for	them	to	contain
their	labels.	The	algorithm	for	enlarging	them	does	not	quite	succeed	in
making	them	grow	big	enough,	so	we	add	something	extra	proportional	to
the	number	of	digits	in	the	label	➍.	Calling	factree(14200)	produces	Figure	7-
3.



Figure	7-3:	A	factor	tree	for	the	number	14,200

The	package	provides	two	layout	methods	for	creating	tree-like	graphs.
The	:tree	method	works,	but	the	results	are	a	bit	free-form.	The	:buchheim
method	➎	produces	the	regular	tree	shown	in	Figure	7-3.	Although	the
prime	factorization	is	unique,	the	factor	tree	that	leads	to	it,	and	thus	the
result	of	the	program,	may	not	be.

Animations	with	Javis
The	widely	used	Javis	package	is	a	good	choice	for	making	almost	any	type
of	animated	diagram.	It’s	built	on	top	of	Luxor	(see	“Diagramming	with
Luxor”	on	page	190),	which	means	you	can	build	on	your	knowledge	of	that
package	to	create	animations.	A	Javis	program	creates	objects	from	Luxor
drawing	commands	and	turns	them	into	videos	by	means	of	a	fairly	intuitive
set	of	calls	to	rotate,	translate,	or	move	them	along	paths,	as	well	as	by
changing	shape	parameters	in	time.



Closures
To	use	Javis	effectively,	it	helps	to	be	familiar	with	a	programming	technique
called	a	closure.	Experienced	programmers	who	know	how	to	use	closures	can
safely	skip	this	section.

A	closure	is	a	function	that	is	created	and	returned	by	another	function.
We’ll	refer	to	the	returned	function	as	the	inner	function	and	the	one	that
creates	it	as	the	outer	function.	Most	modern	languages	allow	the	programmer
to	create	closures,	but	some	are	more	convenient	for	this	than	others.	Julia,
because	of	its	lexical	scoping	and	convenient	syntax	for	function	definition,
makes	closures	easy	and	intuitive.

The	key	aspect	to	closures	is	that	the	inner	function	can	access	variables
defined	in	the	outer	function.	We	say	that	they	are	closed	over,	hence	the
name.	The	outer	function	becomes	a	function	factory,	returning	a	function
whose	behavior	depends	on	the	arguments	passed	to	the	outer	function,	but
with,	potentially,	a	completely	different	function	signature.

Listing	7-4	shows	a	simple	example	of	a	closure	that	we’ll	find	a	useful
application	for	shortly.

function power(n)
    return function(x)
        x^n
    end
end

Listing	7-4:	Defining	a	closure

With	this	definition,	when	we	call,	for	example,	power(5),	we	get	a	function	of
a	single	variable	that	raises	that	variable	to	the	fifth	power	and	returns	the
result.	In	other	words,	if	we	define	two	functions	this	way:

p = power(5)

q = x -> x^5

then	p	and	q	have	the	same	behavior:

julia> p(4) == q(4) == 1024
true

The	function	power()	returns	is	anonymous,	but	we	can	assign	it	to	a
variable,	in	this	case	p,	as	we	can	any	other	function.



Now	power()	is	a	function	factory	that	makes	functions	that	raise	their
arguments	to	any	desired	exponent.	As	mentioned	in	“Plotting	Functions”
on	page	88,	one	version	of	the	plot()	function	from	the	Plots	package
accepted	the	simple	names	of	functions	of	one	variable	to	plot.	We	can	plot
such	functions	without	mentioning	variables	or	defining	arrays.

It	would	seem	that	this	convenience	could	not	be	exploited	to	plot,	say,
functions	that	depend	on	a	parameter	in	addition	to	the	independent
variable,	and	that	we	would	need	to	use	named	functions	or	the	anonymous
function	syntax	to	pass	such	functions	to	plot().	For	example,	if	we	want	to
plot	f(x, n) = x^n,	we	can’t	just	call	plot(f),	because	f()	needs	two	arguments,
but	we	could	call	plot((x) -> x^n)	if	n	were	already	defined.	Closures	are	an
alternative	to	passing	anonymous	functions	in	cases	such	as	this.

Once	we	have	the	closure	defined	in	Listing	7-4,	we	can	make	the
following	plotting	call:

plot([power(1), power(2), power(3)]; legend=:top)

This	produces	the	plot	in	Figure	7-4.



Figure	7-4:	Plotting	with	closures

This	plotting	example	is	simply	one	application	of	closures.	They	are	a
powerful	technique	for	generating	functions	that	capture	the	state	under
which	they	are	defined.

Epicycle	Animation
The	pattern	for	using	Javis	is	to	define	functions	that	produce	each	of	the
objects	you	intend	to	animate,	and	then	call	a	series	of	statements	that	refer
to	those	objects	and	animate	them,	changing	their	positions	or	other
properties	in	time.

NOTE



Since	Javis	is	built	on	Luxor,	it	imports	Luxor	itself	and	re-exports	that	package’s
functions.	The	consequence	is	that	a	program	that	contains	using Javis	must	not
also	contain	using Luxor,	because	that	would	lead	to	name	conflicts.	If	you’ve	been
using	Luxor	in	the	REPL,	you	must	start	a	new	REPL	before	using	Javis.

The	object-creating	functions	use	one	or	more	Luxor	functions	for	circles,
lines,	text,	or	other	graphical	entities	available	through	Luxor,	and	optionally
return	information	about	the	object	for	use	in	the	animation	calls.

The	Luxor	documentation	describes	three	methods	for	passing	the	object-
creating	functions	into	the	animation	functions.	We’ll	learn	another	method,
based	on	closures,	that’s	more	general	and	leads	to	neater	and	easier-to-read
code.

The	goal	for	this	example	is	to	create	a	program	that	produces	animations
of	models	of	the	solar	system	in	the	style	of	Ptolemy.	This	ancient
cosmology	put	our	Earth	at	the	center	of	the	universe	and	explained
observations	of	planets	as	caused	by	their	circular	orbits,	which	themselves
circled	around	larger	orbits.	These	circular	orbits	are	called	epicycles;	any	one
planet’s	motion	might	be	modeled	by	one	or	more	epicycles,	ending	with	a
large	circle	around	a	point	somewhat	displaced	from	Earth	by	a	distance
called	the	eccentricity.

To	build	the	program,	we’ll	start	with	functions	that	create	the	planets
and	orbits.	Here’s	the	one	for	a	planet:

function planet(radius=15, color="green"; action = :fill, p=0)
    return function(video, object, frame)
        sethue(color)
        circle(p, radius, action)
        return p
    end
end

This	is	a	closure.	A	call	to	planet()	returns	a	function	that	accepts	three
positional	arguments	and	draws	a	circle	with	a	radius,	color,	and	position
determined	not	by	the	arguments	passed	to	the	returned	function,	but	by	the
original	arguments	passed	to	planet().

This	indirection	is	necessary	because	the	Javis	functions	that	do	the
animation	expect	a	function	as	their	first	and	only	required	argument.	They
don’t	accept	a	shape	as	an	argument,	but	a	function	that	draws	a	shape.	They
pass	the	three	values	(video, object, frame)	to	this	function:	data	types



representing	the	video,	the	object	being	animated,	and	the	integer	frame
number.	The	function	can	use	any	of	them,	or	as	in	the	case	of	the	function
created	by	planet(),	none	of	them.

The	closure	returns	the	circle’s	position.	We	must	do	this	if	other
animation	functions	need	to	know	that	position,	as	is	the	case	in	our	video.

The	function	for	drawing	orbits	will	be	almost	the	same:

function orbit(radius, color="orchid1"; p=O)
    return function(video, object, frame)
        sethue(color)
        circle(p, radius, :stroke)
        return p
    end
end

Orbits	will	have	an	outline,	but	won’t	be	filled	in.
With	these	two	functions,	we	can	draw	animatable	planets	and	orbits,

which	is	most	of	what	we	need.	But	it	would	also	be	nice	to	show	how	the
wandering	of	the	planet	around	the	solar	system	translates	into	changes	in	its
observed	location	in	the	sky	relative	to	the	fixed	stars	as	the	days	go	by.
We’ll	approximate	this	movement	by	the	projection	of	the	planet’s	position
along	the	horizontal	coordinate.	The	pos()	function	supplied	by	Javis	returns
an	object’s	position,	and	it	has	convenient	x	and	y	fields	for	extracting	the
respective	coordinates.

The	following	function	accepts	an	object	and	draws	another	circle	that
shares	its	horizontal	coordinate,	close	to	the	top	of	the	video:

function observed_position(orbiter; radius=10, color="orangered")
    return function(video, object, frame)
        sethue(color)
     ➊ y = 0 - video.height/2 + 50
        x = pos(orbiter).x
        circle(Point(x, y), radius, :fill)
    end
end

Here	observed_position()	uses	the	video	argument’s	height	field	➊
automatically	supplied	by	the	animation	functions.

We	would	like	to	draw	one	more	object:	a	curve	in	space	visualizing	the
path	taken	by	the	planet.	We’ll	record	this	path	as	a	series	of	points	in	a
global	positions	vector.	At	every	frame,	this	function	pushes	the	new	position
onto	the	vector	and	draws	a	series	of	tiny	circles	tracing	the	path:



function track!(positions, orbiter)
    return function(video, object, frame)
        sethue("cadetblue1")
        push!(positions, pos(orbiter))
        circle.(positions, 2, :fill)
    end
end

We	need	one	more	drawing	function,	used	in	nearly	all	Javis	animations,
for	defining	the	background:

function ground(args...)
    background("black")
    sethue("white")
end

This	definition	for	ground()	creates	a	drawing	canvas	with	a	black
background	and	uses	white	as	the	default	drawing	color.

With	functions	for	each	object	we	want	to	draw,	we	can	create	the
animation:

using Javis

function epicycles(inputcycles; eccentricity=0.1, file=nothing)
    box = 200
    eccentricity *= -box
    cycles = [(box*s, f) for (s,f) in inputcycles[1:end-1]]
    R = sum(c[1] for c in cycles)
    # Some encoders require a multiple of 2:
    box_length = 1.5*(2box + R) ÷ 2 * 2
 ➊ solar_system = Video(box_length, box_length)
    positions = []
 ➋ Background(1:500, ground)
    earth = Object(planet(), Point(0, eccentricity))
    origin = Object(planet(2, "white"))
    inner_orbit = Object(orbit(box))
    for (radius, frequency) in cycles
        outer_orbit = Object(orbit(radius), Point(0, box))
        box += radius
     ➌ act!(outer_orbit, Action(anim_rotate_around(frequency * 2π, inner_orbit)))
        inner_orbit = outer_orbit
    end
    wanderer = Object(planet(6, "bisque"), Point(0, box))
    act!(wanderer, Action(anim_rotate_around(inputcycles[end] * 2π,
         inner_orbit)))
 ➍ Object(track!(positions, wanderer))
    Object(observed_position(wanderer))
    if file == nothing
     ➎ render(solar_system; liveview=true)



    else
        render(solar_system; pathname=file, framerate=30)
    end
end

The	epicycles()	function	accepts	one	required	positional	argument,
inputcycles,	in	the	form	[(s1, f1), (s2, f2), ..., fp].	Each	(s, f)	pair	gives	the
size	s	as	a	fraction	of	the	main	orbit	radius	of	an	epicycle	with	an	orbital
frequency	of	f.	Frequencies	here	refer	to	the	number	of	cycles	completed
during	the	animation.	The	final	fp	is	the	planet’s	frequency.

After	some	calculations	to	scale	the	orbits	according	to	the	video’s	overall
size,	and	to	adjust	this	size	to	account	for	the	epicycles	input	by	the	user,	we
have	the	one	statement	➊	that	all	Javis	animations	require:	defining	the	Video
and	its	dimensions.

The	first	animation	command	➋	establishes	the	background	to	be	drawn
for	the	first	500	frames.	The	next	three	animation	commands	are	calls	to
Object();	this	is	the	Javis	command	that	places	the	graphical	element	on	the
background.	The	Object()	function	accepts	a	range	of	frames	as	a	first
argument,	but	uses	the	range	supplied	to	the	most	recent	Background()	or
Object()	command	as	a	default.	Javis	is	an	imperative	system	that	maintains	a
state	to	which	animation	statements	apply,	containing	the	current	Video	and
range	of	frames.

Next	we	have	a	loop	that	adds	orbits	for	each	epicycle	supplied	in	the
argument.	The	act!()	function	➌	is	how	we	create	most	types	of	motion	in
Javis.	Its	first	argument	is	the	object	we	want	to	animate,	and	the	second
argument	is	a	function	defining	the	motion.	The	only	such	motion	we	use	in
this	program	is	anim_rotate_around(),	which	takes	an	angle	(in	radians)	and	the
object	that	becomes	the	center	of	rotation.	The	complex,	compound
motions	in	the	epicycle	model	are	easy	to	construct	because	the	object
rotated	around	can	itself	be	in	motion.

The	final	two	Object()	calls	➍	create	the	path	tracking	the	planet	and	the
projection	showing	its	approximate	observed	position.	Although	these	are
animated	objects,	they	don’t	need	an	act!()	call	because	they’re	defined	with
reference	to	other	animated	objects.

The	epicycles()	function	also	accepts	two	optional	keyword	arguments.
The	eccentricity	gives	the	displacement	of	Earth	from	the	center	of	the	main
orbit.	If	file	is	supplied,	the	program	creates	a	video	file	and	saves	it	there;	if



not,	it	displays	the	result	in	an	interactive	viewer.
As	an	example,	to	produce	an	animation	with	a	planet	that	goes	around

once	during	the	movie,	with	two	epicycles	going	around	two	and	three	times
as	fast,	the	first	with	a	diameter	half	of	the	orbit’s	diameter,	and	the	second
with	a	diameter	half	the	first’s,	make	the	following	call:

epicycles([(0.5, 2), (0.25, 3), 1]; file="ptolemaic.mp4")

This	call	saves	the	rendered	animation	in	an	MP4	file.
The	type	of	viewer	depends	on	the	coding	environment.	In	the	REPL,

Javis	opens	a	window	with	controls	to	step	or	scrub	through	the	animation
frames.	In	a	Pluto	notebook,	the	frames	appear	in	a	horizontal	list	with	a
scroll	bar.	A	change	to	the	rendering	call	when	using	a	notebook,	setting
liveview=false	➎,	will	embed	an	animated	GIF	directly	in	the	notebook
instead.	The	Javis	package	can	save	animations	as	GIFs	or	MP4	files;	the
choice	is	controlled	with	the	file	extension.	As	GIFs	can	become	quite	large,
the	MP4	format	is	a	good	option;	however,	either	one	requires	significant
time	to	render	compared	with	the	liveview	option,	which	is	remarkably	fast.

Figure	7-5	shows	one	frame	from	the	rendered	video.	(See	the	book’s
online	supplement	at	https://julia.lee-phillips.org	for	the	full	video.)

https://julia.lee-phillips.org


Figure	7-5:	A	frame	from	an	animation	created	using	Javis

We	are	able	to	create	this	visualization	using	only	one	type	of	motion,	the
anim_rotate_around()	call.	To	make	an	object	spin	around	its	origin,	the	call	is
anim_rotate().

Some	of	the	other	motions	that	we	can	create	by	supplying	them	as
arguments	to	Action()	include	the	following:

appear()	and	disappear()	Accept	any	of	the	arguments	:fade,	:scale,	and
:fade_line_width,	and	make	the	object	come	into	or	out	of	existence	by
changing	the	specified	property.	Using	:draw_text	makes	text	appear	with
a	typing	effect.

follow_path()	Causes	an	object	to	follow	a	path	given	as	a	series	of	points.

anim_scale()	Shrinks	or	grows	an	object.

anim_translate()	Moves	an	object	along	a	line.

change()	Changes	any	property	of	an	object.



Animations	with	Reel
The	Reel	package,	like	Javis,	creates	animations,	but	it	serves	a	different
purpose.	While	Javis	makes	it	easy	to	create	animations	by	programmatically
describing	objects	and	their	motions,	Reel	lets	us	create	a	video	from	any
function	that	creates	images	depending	on	a	parameter	(typically	time).

We	use	an	exported	function	from	Reel,	called	roll(),	to	which	we	pass	an
image-creating	function	of	two	positional	arguments:	the	duration	that	we
want	for	the	video	and	the	frames	per	second	(fps).	The	two	aforementioned
positional	arguments	are	time	(t)	and	timestep	(dt);	roll()	calculates	both	of
these,	setting	dt = duration/fps,	and	passes	them	to	the	function,	calling	it
repeatedly,	each	time	with	an	updated	t.	It	returns	a	video	object	that	we
turn	into	either	a	GIF	or	an	MP4	file	with	a	call	to	write().	Arranging	for	a
function	to	accept	t	and	dt	and	create	the	desired	video	frame	is	our
responsibility.

NOTE

The	Reel	package	is	not	updated	frequently,	and	may	not	work	properly	in	every
computing	environment.	An	alternative,	that	only	creates	GIFs	but	is	simple
and	convenient,	is	built	into	recent	versions	of	Plots.	See	“Further	Reading”	on
page	211	for	documentation	of	the	@animate	and	@gif	macros.

Listing	7-5	calculates	the	displacement	of	one	axisymmetric	mode	of	a
vibrating	drumhead	and	creates	a	video	visualizing	the	motion	as	a	heatmap.

   using SpecialFunctions
   using Plots
   using Reel
   R = 1.0 # Drum radius
   z2 = 5.52008 # 2nd zero of J0
   λ2 = z2/R
   c = 1
   A = 1; B = 1

   function vibe(r; t=0)
       if r > R
           return 0
       else
        ➊ return (A * cos(c*λ2*t) + B * sin(c*λ2*t)) * besselj0(λ2*r)
       end
   end
   r = 0:R/100:R



   theta = 0:2π/100:2π
➋ function drum_frame(t, dt)
       heatmap(theta, r, (theta, r) ->
           vibe(r; t=t); colorbar=false, clim=(-1, 1),
           c=:curl, proj=:polar, ticks=[], size=(100, 100))
   end
   drum_video = roll(drum_frame, fps=30, duration=2)
   write("drum_video.mp4", drum_video)

Listing	7-5:	Animating	the	vibration	of	a	circular	drum	head

First	we	import	three	packages.	The	vibrating	circular	drumhead	has	a
radial	dependence	described	by	a	Bessel	function,	available	from	the
SpecialFunctions	package.	We	use	a	plotting	function	from	Plots	to	create	our
movie	frames,	and	then	use	Reel	to	stitch	the	animation	together.

After	defining	a	few	constants	for	the	solution,	we	define	the	vibe()
function,	which	takes	the	radial	coordinate	and	a	keyword	argument	t	and
returns	the	solution	at	that	time	and	coordinate.	The	Bessel	function	J0	from
the	SpecialFunctions	package	is	named	besselj0()	➊.

The	next	two	lines	define	the	coordinate	arrays	for	plotting.	A	polar
coordinate	system	is	most	natural	in	this	circular	geometry:	r	is	the	radial
coordinate	and	theta	is	the	angular	coordinate.	We	have	to	wrap	➋	the
plotting	function	in	a	function	of	t	and	dt	so	that	roll()	can	generate	the
animation	frames.	For	this	application,	we	don’t	use	dt	for	anything,	but	the
function	still	needs	to	accept	two	arguments.	The	call	to	heatmap()	uses	the
:curl	color	spectrum,	which	has	a	thin	white	region	near	0,	letting	us	see	the
nodal	lines	and	clearly	distinguishing	the	positive	and	negative	regions.	The
proj	argument	selects	the	polar	geometry.

Figure	7-6	shows	one	frame	from	the	resulting	animation.	(See	the	online
supplement	at	https://julia.lee-phillips.org	for	the	complete	video.)

https://julia.lee-phillips.org


Figure	7-6:	One	frame	from	a	vibrating	drumhead	animation

After	we	create	the	video	with	the	roll()	function,	we	save	the	result	to	a
file	using	write().	The	file	extension	specifies	the	video	format;	the	other	two
choices	are	GIF	and	WEBM.

The	write()	function	is	Julia’s	standard	for	writing	data	to	files.	The	Reel
package	defines	a	version	of	it	that	converts	the	video	to	the	requested
format	when	it	sees	a	Reel	video	in	its	second	argument.	Chapter	8	explains
how	this	is	possible	and	how	you	can	make	your	own	specialized	versions	of
functions	activated	by	the	types	of	their	arguments.

Interactive	Visualizations	in	Pluto
The	Pluto	notebook	(see	“Pluto:	A	Better	Notebook”	on	page	17)	provides



an	easy	way	to	create	interactive	animations	through	its	@bind	macro.	This
macro	binds	the	output	of	any	of	the	standard	HTML	input	controls	to	a
Julia	variable.	When	we	execute	a	cell	containing	a	@bind	macro	call,	Pluto
creates	the	control	in	the	output	area	for	the	cell.	When	the	user
manipulates	the	control,	Pluto	instantly	updates	the	value	of	the	variable	to
which	the	control	is	bound.	Because	of	the	reactive	nature	of	the	notebook,
any	cells	that	depend	on	that	value	are	automatically	re-executed.	If	any	of
those	cells	produce	a	graph	or	other	visualization,	the	graphic	will	change	in
response	to	the	user	interaction.	Input	controls	in	HTML	include	sliders,
numerical	or	text	input	boxes,	file	choosers,	color	pickers,	checkboxes,
selection	menus,	and	more.

We	don’t	need	to	actually	write	any	HTML	(or	know	anything	about	it)
thanks	to	the	PlutoUI	package,	which	provides	a	convenient	Julia	interface	to
the	HTML	input	controls.	For	HTML	experts,	however,	the	option	to	use
the	web’s	markup	language	directly	is	supported.	It’s	even	possible	to	create
custom	controls	using	JavaScript.	See	“Further	Reading”	on	page	211	for
links	to	more	information	and	for	PlutoUI	documentation.

Let’s	look	at	a	few	examples	of	how	to	use	the	@bind	macro	with	PlutoUI
controls.	The	following	uses	the	browser’s	date-picker	widget:

@bind some_date DateField()

This	command	assigns	the	date	the	user	selected	to	some_date,	which	will	have
Julia’s	Dates.DateTime	data	type.

This	example	uses	the	HTML	checkbox:

@bind a_setting CheckBox()

Here	a_setting	becomes	a	Boolean:	true	if	the	user	clicks	the	box	and	false
otherwise.

The	following	uses	an	HTML	text	field:

@bind label TextField()

This	call	will	assign	whatever	the	user	types	into	a	text	box	as	a	String	to	the
variable	label.

There	are	many	more.	All	of	these	functions	accept	a	default	keyword
argument,	and	some	accept	other	arguments	as	well.	For	example,	TextField()



accepts	an	optional	tuple	argument;	if	supplied,	it	creates	a	multiline	textarea
with	the	number	of	columns	and	rows	taken	from	the	tuple’s	first	and	second
elements.

As	an	example	of	an	interactive	visualization,	let’s	return	to	the	vibrating
drumhead	problem	from	Listing	7-5.	The	goal	is	to	create	a	notebook
containing	a	plot	of	the	drumhead	where	the	user	can	move	in	time	by
manipulating	a	slider.

We’ll	make	a	few	small	changes	to	the	code	from	Listing	7-5.	First,	we
need	one	additional	import,	using PlutoUI,	to	be	able	to	use	the	HTML
widgets,	and	we	won’t	need	to	import	Reel.

The	vibe()	function	needs	no	changes,	but	let’s	alter	the	plotting	function
to	make	a	surface	plot	rather	than	a	heatmap	and	to	show	the	time	in	a	title.
The	surface()	function	from	Plots	doesn’t	understand	polar	coordinates,	so	we
need	to	use	x	and	y	and	convert	manually:

function drum_frame(t)
    surface(x, y, (x, y) ->
        vibe(sqrt(x^2 + y^2); t=t); colorbar=false, clim=(-1, 1),
        c=:curl, zrange=(-1.2, 1.2), title="t = $t")
end

We	want	the	interactivity	to	be	responsive,	so	we’ll	sacrifice	some
smoothness	in	the	plot	by	using	a	coarser	gridding:

x = -1:0.05:1
y = -1:0.05:1

We’re	not	making	a	movie,	so	we	don’t	need	the	last	two	lines	of	Listing	7-
5.	To	make	the	notebook,	we	import	Pluto	in	the	REPL	and	execute
Pluto.run(),	which	opens	a	new	tab	in	the	default	web	browser	with	the	Pluto
start	page.	After	clicking	the	link	to	create	a	new	notebook,	we	can	enter	all
these	variable	and	function	definitions	into	cells.	The	final	cell	will	contain
the	line:

@bind t Slider(0:0.01:1.1382)

The	range	supplied	as	an	argument	will	become	the	starting,	step	size,	and
ending	values	for	the	slider.	The	ending	value	is	the	time	for	one	complete
vibration	cycle.

A	picture	in	a	book	can’t	convey	the	experience	of	using	the	notebook.



For	that,	there	is	no	substitute	for	trying	it	yourself.	But	Figure	7-7	shows	a
screenshot	of	the	plot	and	slider.

Figure	7-7:	The	vibrating	drumhead	in	a	Pluto	notebook

Interactive	Pluto	notebooks	are	a	powerful	means	to	create	explanatory
documents	and	educational	material.	The	fact	that	they’re	stored	as	text	files
makes	them	easy	to	share,	at	least	with	other	Julia	users.

Conclusion
The	packages	we’ve	explored	in	this	chapter	make	it	easy	to	create	a	wide



variety	of	diagrams	and	animations.	This	facility	is	a	boon	to	the	community
of	Julia	users,	as	many	of	the	scientists	and	engineers	who	form	a	large
segment	of	its	audience	are	also	teachers,	conference	presenters,	and	creators
of	online	educational	materials.	All	of	these	activities	are	enhanced	by	having
tools	at	hand	to	construct	explanatory	visualizations.	The	ability	to	create
complex	visualizations	within	Julia	is	important:	much	of	the	time	they	will
require	computations	that	we’re	already	performing	in	our	Julia	programs.
Indeed,	often	they	will	be	part	of	the	dissemination	of	the	results	of	those
computations.	Packages	such	as	Luxor	and	Javis	free	us	from	the	need	to	reach
for	external	programs	and	from	becoming	mired	in	another	“two	language
problem.”

In	the	next	chapter,	we’ll	return	to	the	language	itself	and	learn	about	the
type	system.	This	is	the	final	piece	required	for	Julia	mastery;	putting	it	in
place	will	unlock	a	new	level	of	programming	power.

FURTHER	READING

Videos	and	color	images	are	available	in	the	online	supplement	at
https://julia.lee-phillips.org.
The	Luxor	documentation	is	available	at
http://juliagraphics.github.io/Luxor.jl/stable/.
The	Javis	documentation	is	available	at
https://juliaanimators.github.io/Javis.jl/stable/.
For	GraphRecipes	attributes,	including	a	complete	list	of	available
layout	algorithms,	visit
https://docs.juliaplots.org/stable/generated/graph_attributes/.
Documentation	for	the	NetworkLayout	package	that	supplies	the
different	graph	layout	algorithms,	where	you	can	see	interesting
animations	of	the	workings	of	the	various	layout	strategies,	is
available	at	https://juliagraphs.org/NetworkLayout.jl/stable/.
For	details	on	how	to	use	the	@gif	and	@animate	macros,	visit
https://docs.juliaplots.org/latest/animations/.
A	tutorial	on	making	custom	interface	components	for	Pluto	using
JavaScript	is	available	at	https://cotangent.dev/how-to-make-custom-

https://julia.lee-phillips.org
http://juliagraphics.github.io/Luxor.jl/stable/
https://juliaanimators.github.io/Javis.jl/stable/
https://docs.juliaplots.org/stable/generated/graph_attributes/
https://juliagraphs.org/NetworkLayout.jl/stable/
https://docs.juliaplots.org/latest/animations/
https://cotangent.dev/how-to-make-custom-pluto-ui-components/


pluto-ui-components/.
The	creator	of	Pluto	explains	how	to	create	custom	interactions
using	JavaScript	in	this	video:	https://www.youtube.com/watch?
v=SAC_RCjyRRs.
For	documentation	on	the	functions	available	in	PlutoUI,	visit
https://docs.juliahub.com/PlutoUI/.

https://www.youtube.com/watch?v=SAC_RCjyRRs
https://docs.juliahub.com/PlutoUI/


8
THE	TYPE	SYSTEM

Object-oriented	programming	is	an	exceptionally	bad	idea	which	could
only	have	originated	in	California.

—Edsger	Dijkstra

Up	to	now	we’ve	been	using	and	creating	a	lot	of	functions.	We	can	think	of
functions	as	the	verbs	of	the	Julia	language.	And	just	as	in	natural	languages,
verbs	act	on	nouns.	The	nouns	in	Julia	are	numbers,	collections,	strings,	and
other	instances	of	types.

We’ve	encountered	many	data	types	in	our	journey	up	to	this	point:
different	varieties	of	numbers,	strings,	characters,	and	collections	such	as
arrays	and	maps.	Although	our	focus	hasn’t	been	on	types,	it’s	impossible	to
talk	much	about	Julia	programming	without	making	some	reference	to	them.
Julia	is	unusual	in	that	it	allows	us	to	create	very	fast	code	without	having	to
specify	the	types	of	variables,	unlike	other	fast	languages	such	as	Fortran
(where	the	specifications	can	be	implicit)	and	C.	However,	effective	Julia
programming	requires	some	knowledge	of	its	type	system.	The	main	reason
for	this	is	that	Julia	programs	are	organized	around	functions	and	methods
through	its	dispatch	system,	which	relies	on	argument	types.	A	secondary
reason	has	to	do	with	those	occasions	where	an	awareness	of	types	allows	us
to	write	more	efficient	programs.	This	chapter	covers	both	of	these



concerns.

Types	in	Practice
Rather	than	delve	into	the	abstract	theory	of	type	systems,	let’s	approach
types	from	a	practical	point	of	view.

To	find	the	type	of	any	value,	Julia	provides	the	typeof()	function:

   julia> typeof(17)
   Int64

   julia> typeof(17.0)
   Float64

   julia> typeof(17//1)
➊ Rational{Int64}

   julia> typeof("7")
   String

   julia> typeof('7')
   Char

We’ve	already	considered	the	difference	between	strings	and	characters,	and
the	related	difference	between	single	and	double	quotes;	however,	it’s
important	to	have	some	understanding	of	the	various	numeric	types.
Although,	for	example,	17,	17//1,	and	17.0	have	the	same	values,	they	are
different	types	of	objects,	and	their	behavior	is	potentially	different.	The
difference	in	their	types	reflects	this	reality.

The	curly	brackets	used	in	reporting	the	type	of	a	rational	number	➊
indicate	that	this	is	a	parametric	type,	a	topic	we’ll	return	to	in	“Parametric
Types”	on	page	248.	For	now,	it’s	sufficient	to	understand	that	this	is	a
Rational	made	up	of	Int64	pieces.

The	type	reported	for	the	floating-point	literal	is	Float64,	which	means	it’s
a	floating-point	number,	or	a	number	with	a	decimal	point,	and	that	it’s
stored	in	a	64-bit	segment	of	memory.	The	64	bits	are	apportioned	as
follows:	1	for	the	sign,	11	for	the	exponent,	and	52	for	the	“fraction.”	The
maximum	absolute	value	of	a	Float64	is	about	10300,	and	it	has	17	significant
digits,	or	16	digits	of	precision	beyond	the	decimal	point.	(This	agrees	with
the	observation	that	it	takes	three	binary	digits	to	represent	a	decimal	digit.)
We	can	see	this	using	the	@printf	macro,	supplied	by	the	Printf	package:



julia> using Printf

julia> @printf "%.16f" 1/3
0.3333333333333333

julia> @printf "%.17f" 1/3
0.33333333333333331

julia> @printf "%.18f" 1/3
0.333333333333333315

This	shows	incorrect	digits	appearing	if	we	ask	for	more	than	16.
We’ll	see	more	incorrect	digits	if	we	use	floating-point	types	with	lower

precision:

julia> @printf "%.16f" Float32(1/3)
0.3333333432674408
julia> @printf "%.16f" Float16(1/3)
0.3332519531250000

Here	we	used	the	names	of	the	types	as	functions	to	cast	their	arguments	to
the	named	types.	Without	the	cast,	expressions	like	1/3	are	Float64	by	default
on	most	systems.

The	default	integer	type	on	typical	systems,	Int64,	ranges	between	−263

and	263	−	1,	with	one	bit	used	for	the	sign.
Julia	supplies	built-in	functions	for	finding	the	maximum	and	minimum

values	representable	with	each	numeric	type:

julia> typemax(Int32)
2147483647

julia> typemin(Int32)
-2147483648

julia> typemax(Int16)
32767

julia> typemin(Int16)
-32768

But	typemax()	and	typemin()	aren’t	very	helpful	if	we	ask	them	about	floats:

julia> typemax(Float64)
Inf

julia> typemax(Float16)
Inf16



julia> Inf64 === Inf
true

Apparently	infinity	is	a	floating-point	number,	and	Julia	has	infinities	for
each	size	float.	This	is	consistent:	since	nothing	is	larger	than	infinity,	if	Inf16
is	a	Float16	it	must	be	the	largest	possible	Float16.

Julia	has	another	function	that	comes	to	the	rescue	here:

julia> floatmax(Float64)
1.7976931348623157e308

julia> floatmin(Float64)
2.2250738585072014e-308

julia> floatmax(Float16)
Float16(6.55e4)

julia> floatmin(Float16)
Float16(6.104e-5)

The	functions	floatmax()	and	floatmin()	return	the	maximum	finite	float	and
the	minimum	positive	float	of	the	requested	type.

Usually	we	should	perform	arithmetic	in	our	programs	using	these	native
types,	which	are	the	most	efficient	choices.	If	needed,	and	if	possible,	we	can
use	smaller	numbers	to	save	space—for	example,	Int16—and	we	can	get
larger	integers	using	Int128.	However,	if	the	native	types	are	not	adequate	for
our	purposes,	it’s	usually	because	we	need	a	lot	of	precision—in	other	words,
many	digits—in	our	computation.	This	is	the	subject	of	the	next	section.

To	check	whether	a	particular	value	has	a	certain	type,	use	the	isa()
function.	We	can	use	it	as	a	normal	function	or	in	infix	position:

julia> isa(17, Int64)
true

julia> 17 isa Number
true

julia> 17 isa String
false

This	function	returns	a	Boolean	value.	The	first	two	calls	return	true	because
17	is	both	an	Int64	and	a	Number.	The	former	implies	the	latter	(see	“The	Type
Hierarchy”	on	page	222).



“Big”	and	Irrational	Types
Julia	makes	it	easy	to	perform	arbitrary	precision	arithmetic	using	types	whose
precision	grows	as	needed:	where	the	number	of	digits	can	grow	without
bound.	Arithmetic	with	these	types	is	slower	than	normal	computation	with
native	types,	but	for	some	jobs	it’s	the	only	choice.

Arbitrary	Precision
As	a	simple	example	of	where	we	would	need	arbitrary	precision	types,
suppose	we	want	to	graph	the	factorial	function.	This	is	the	function	usually
spelled	with	an	exclamation	mark:

The	corresponding	Julia	function	is	factorial(n).	The	function	grows
extremely	quickly:

julia> factorial(20)
2432902008176640000

julia> factorial(21)
ERROR: OverflowError: 21 is too large to look up in the table;
       consider using `factorial(big(21))` instead

This	shows	that	20	is	the	largest	factorial	that	fits	in	an	Int64.	We	can	go	up
to	33!	if	we	use	Int128,	but	what	if	we	want	to	go	bigger?

The	error	message	provides	a	hint.	The	big()	function	converts	its
argument	to	a	corresponding	type	with	unlimited	size	and	precision.	For
integers,	this	is	called	BigInt,	and	for	floats	it’s	BigFloat.

Let’s	use	BigInt	to	make	a	plot	of	the	factorial	function:

julia> plot(factorial.(big.(1:50)), yscale=:log10,
               legend=:topleft, label="Factorial")

Here	we’re	plotting	up	to	50!,	which	is	far	beyond	what	can	fit	in	a	native
integer.	Figure	8-1	shows	the	result.



Figure	8-1:	The	factorial	function	calculated	using	BigInt

We’ll	revisit	the	factorial	in	“Factorials”	on	page	312,	where	it	appears	as
the	number	of	ways	to	permute	n	objects.

The	BigFloat	type	also	offers	unlimited	magnitude.	Its	default	precision	is
256,	giving	us	about	80	significant	digits.	We	can	set	the	BigFloat	precision	to
be	anything	we	need,	using	the	setprecision()	function:

julia> big(1.0)/3
0.333333333333333333333333333333333333333333333333
  3333333333333333333333333333348

julia> setprecision(512);

julia> big(1.0)/3



0.3333333333333333333333333333333333333333333333333
  3333333333333333333333333333333333333333333333333
  3333333333333333333333333333333333333333333333333
  333333346

To	retrieve	the	precision,	we	have	the	precision()	function,	which	accepts
the	type	that	we’re	asking	about:

julia> precision(big(1.0))
512

julia> precision(float(1.0))
53

The	number	of	digits	used	for	a	BigInt	grows	as	needed,	so	it	doesn’t	come
with	the	concept	of	a	fixed	precision	applicable	to	the	floating-point
numbers.

Irrationals
An	unusual	attribute	of	Julia	is	the	existence	of	the	irrational	type:

julia> π
π = 3.1415926535897...

julia> typeof(π)
Irrational{:π}

The	number	represented	by	the	Greek	letter	π	is	printed	with	three	dots
appended	to	suggest	that	there	is	more	to	the	story.	Although	it	appears	to
be	a	floating-point	number,	its	type	is	not	given	as	Float64,	but	as	something
new:	Irrational.	That’s	because	in	Julia,	π	represents	not	a	floating-point
number,	but	the	exact	value	of	the	ratio	of	a	circle’s	circumference	to	its
diameter.	The	three	dots	remind	us	that	the	digits	presented	are	simply	the
first	few	in	an	endless,	nonrepeating	series.

Julia	calculates	and	presents	more	digits	as	and	when	needed:

julia> big(π)
3.1415926535897932384626433832795028841971693993751
  05820974944592307816406286198

The	number	is	not	printed	with	trailing	dots,	as	it’s	no	longer	a
representation	of	an	exact	value,	but	an	approximation	to	it.

Several	other	irrational	numbers	are	built	into	Julia;	the	most	important



of	these	for	general	purposes	is	e,	the	base	of	the	natural	logarithms.	To
insert	this	character,	which	is	the	Unicode	codepoint	212F	(Script	Small	E),
enter	\euler	and	press	TAB	in	the	REPL:

   julia> e
   e = 2.7182818284590...

   julia> big(e)
➊ 2.7182818284590452353602874713526624977572470936999
     59574966967627724076630353555

   julia> log(e)
➋ 1

   julia> log(2.71828182845904)
   0.9999999999999981

   julia> log(2.718281828459045)
   1.0

As	with	π,	Julia	displays	the	value	of	e	with	three	trailing	dots	to	indicate	that
it’s	showing	us	a	few	digits	of	an	exact	value.

We	can	see	an	approximation	to	e	➊	to	any	desired	number	of	digits	by
converting	it	to	a	BigFloat.	By	definition,	the	value	of	the	natural	logarithm	of
e	is	exactly	the	integer	1	➋,	but	if	we	take	the	logarithms	of	approximations
to	e,	we	get	an	approximate,	or	floating-point,	result.

Type	Promotion
When	performing	arithmetic	on	a	mixture	of	different	numerical	types,	Julia
will	silently	promote	types	as	needed:

julia> 1 + 1
2

julia> 1 + 1.0
2.0

The	addition	of	two	integers	provides	no	reason	to	leave	integer	land,	so	the
result	is	also	an	Int64.	But	if	one	of	the	numbers	is	a	Float64,	the	other	is
promoted	to	that	type,	which	is	also	the	type	of	the	result.

Julia	will	not	promote	nonnumerical	types	to	numbers:

julia> 1 + "1"
ERROR: MethodError: no method matching +(::Int64, ::String)



Its	treatment	of	types	and	promotion	is	therefore	similar	to	Python	and
dissimilar	from	JavaScript.

The	promote()	function	takes	any	number	of	numerical	arguments	and
returns	a	tuple	with	(possibly)	some	of	them	promoted	as	necessary	to	give
them	all	a	common	type	so	they	can	be	used	in	subsequent	calculations
without	further	promotion.	It	performs	the	same	promotions	as	would	be
performed	automatically	when	doing	arithmetic:

julia> promote(big(2.0), 3.5, 3.4)
(2.0, 3.5, 3.3999999999999999111821580299874767661
 09466552734375)

julia> typeof(promote(big(2.0), 3.5, 3.4))
Tuple{BigFloat, BigFloat, BigFloat}

julia> typeof(promote(2, 3.5, 3.4))
Tuple{Float64, Float64, Float64}

The	promotion	in	the	first	line	shows	how	some	numbers	(2.0,	3.5)	have	an
exact	binary	representation,	but	others	(3.4)	do	not.	The	two	following
commands	provide	examples	of	how	promote()	converts	its	arguments	to	a
common	type.

Collections
Julia	prints	the	types	of	collections	in	the	REPL	when	printing	their	values
more	often	than	it	announces	simple	numerical	types,	so	we’ve	seen	more	of
the	former:

   julia> [1 2]
   1×2 Matrix{Int64}:
    1  2

   julia> [1.0; 2]
   2-element Vector{Float64}:
    1.0
    2.0

   julia> [[1 2];;; [3 4]]
➊ 1×2×2 Array{Int64, 3}:
   [:, :, 1] =
    1  2

   [:, :, 2] =
    3  4



Julia	prints	the	type	of	collection	(Matrix,	Vector,	or	Array)	and	its
dimensions.	A	Vector	is	one-dimensional,	and	a	Matrix	is	two-dimensional.	For
the	more	general	Array	type,	Julia	prints	an	integer	showing	the	number	of
dimensions:	here	it’s	a	three-dimensional	array	➊.

It	also	indicates	the	types	of	the	collection’s	elements	inside	curly
brackets.	We	can	extract	this	information	separately	using	the	eltype()
function:

   julia> eltype([1 2])
   Int64

   julia> eltype([1.0 2])
   Float64

   julia> eltype([1.0 "2"])
➊ Any

   julia> [1.0 "2"]
   1×2 Matrix{Any}:
    1.0  "2"

In	the	first	example,	the	result,	Int64,	is	the	type	of	both	elements	of	the
array.	The	second	example	shows	how	Julia	promotes	numerical	types	when
possible	to	create	homogeneous	arrays,	which	are	more	efficient	to	calculate
with.	However,	when	confronted	with	types	where	no	promotion	is	possible
➊,	the	element	type	becomes	Any:	a	type	that	literally	means	any	type.

These	results	follow	the	behavior	of	the	promote()	function:

julia> promote(1.0, 2)
(1.0, 2.0)

julia> promote(1.0, "2")
ERROR: promotion of types Float64 and String failed to change any arguments

If	elements	can	be	promoted	to	a	common	type,	that	type	is	used	for	the
eltype	of	the	collection;	otherwise,	the	Any	type	is	used.

The	collection	types	Vector,	Matrix,	and	Array	have	some	behaviors	in
common:	for	example,	they	can	all	be	indexed.	This	is	not	true	of	all
collections,	however.	The	Set	type	has	no	ordering,	hence	no	ability	to	be
indexed.	These	three	collection	types	share	certain	behaviors	because	they’re
special	cases	of	a	more	general	type,	a	concept	that	we’ll	explore	in	the	next
section.



The	Type	Hierarchy
All	types	in	Julia	are	subtypes	of	types	that	are	their	supertypes.	The	one	type
that	has	no	strict	supertype	is	the	Any	type,	which	is	its	own	supertype.	The
concepts	of	supertypes	and	subtypes	are	connected	with	the	inheritance	of
behaviors,	and	the	configuration	of	the	type	hierarchy	is	usually	intuitive
when	applied	to	particular	cases.	For	example,	we	expect	that	any	kind	of
number	will	support	some	notion	of	addition.	Exactly	what	addition	means
may	vary	among	various	species	of	numbers—addition	of	complex	numbers
is	a	generalization	of	addition	of	real	numbers,	for	example—but	when	we
encounter	a	type	that	is	a	subtype	of	the	Number	type,	we	can	be	confident	that,
at	least,	the	+	operator	is	defined	for	it.

As	shown	in	Listing	8-1,	the	supertype()	function,	when	supplied	a	type,
returns	its	supertype.

julia> typeof(17)
Int64

julia> supertype(Int64)
Signed

julia> supertype(Signed)
Integer

julia> supertype(Integer)
Real

julia> supertype(Real)
Number

julia> supertype(Number)
Any

julia> supertype(Any)
Any

Listing	8-1:	Walking	up	the	type	hierarchy

The	typeof()	function	returns	the	type	of	a	literal	value	or	variable.	The
types	that	we	actually	compute	with,	such	as	Float64	and	Int64,	are	called
concrete	types.	Concrete	types	are	leaves	at	the	tips	of	the	tree	of	types;	they
can	not	subtype	each	other.

Listing	8-1	shows	a	series	of	calls	to	supertype()	to	find	where	the	default
integer	type,	Int64,	lies	in	the	type	hierarchy.	All	of	the	types	that	concrete
types	such	as	Int64	inherit	from	are	abstract	types.	The	purpose	of	abstract



types,	such	as	Number,	is	simply	to	create	nodes	in	the	tree	of	types	to	enable
the	definition	of	methods.	The	function	of	these	abstract	types,	and	the	type
hierarchy	that	they	constitute,	is	not	to	make	things	more	complicated,	but
to	make	the	life	of	the	Julia	programmer	easier.	Because	of	the	tree	of	types,
we	can	define	functions	and	methods	that	operate	at	the	ideal	level	of
abstraction,	as	we’ll	see	in	“Functions	and	Methods:	Multiple	Dispatch”	on
page	229.

The	final	two	lines	in	Listing	8-1	show	that	Number	is	at	the	top	of	the
hierarchy	of	numerical	types,	and	its	supertype,	Any,	is	the	root	of	the	entire
hierarchy,	and,	as	the	last	line	shows,	is	its	own	supertype.

By	making	more	calls	to	supertype(),	we	can	explore	more	of	the	type	tree.
Listing	8-2	shows	a	modification	of	the	program	in	Listing	7-3	to	visualize	a
section	of	it.

using Plots
using Graphs
using GraphRecipes

sometypes = [Any, Complex, Float64, Int64, Number, Signed,
             Irrational, AbstractFloat, Real,
             AbstractIrrational, Integer, String, Char,
             AbstractString, AbstractChar, Rational,
             Int32, Vector, DenseVector, AbstractVector,
             Array, DenseArray, AbstractArray]

type_tree = SimpleDiGraph(length(sometypes))

for t in sometypes[2:end]
 ➊ add_edge!(type_tree, indexin([supertype(t)], sometypes)[1],
              indexin([t], sometypes)[1])
end

graphplot(type_tree; names=[string(t) for t in sometypes], nodeshape=:rect,
          fontsize=4, nodesize=0.17, nodecolor=:white, method=:buchheim)

Listing	8-2:	Visualizing	part	of	the	type	hierarchy

We’ve	collected	a	handful	of	mostly	numeric	types	in	the	sometypes	vector.
These	are	a	subset	of	the	total	number	of	types	that	come	with	Julia	and	its
standard	library,	and	many	more	are	defined	in	various	packages.

Listing	8-2	uses	the	supertype()	function	to	create	the	edges	➊	of	the	tree
graph,	connecting	each	type	to	its	supertype.	Figure	8-2	shows	the	result.



Figure	8-2:	The	relationships	among	a	few	types

Figure	8-2	makes	it	clear	that	Any	is	the	root	of	the	tree	and	reminds	us
that,	for	example,	characters	and	strings	are	distinct	types.	But	it	also
obscures	certain	relationships,	such	as	that	some	types	are	aliases	of	others.
This	is	a	topic	we’ll	explore	later	in	this	chapter	(see	“Type	Aliases”	on	page
247).

Two	additional	functions	that	are	handy	for	exploring	the	type	hierarchy
are	subtypes(),	which	returns	a	vector	of	all	the	immediate	subtypes	of	the	type
supplied	as	an	argument,	and	supertypes():

julia> supertypes(Irrational)
(Irrational, AbstractIrrational, Real, Number, Any)



This	example	shows	that	supertypes()	returns	a	tuple	containing	the	type
supplied	and	all	of	its	supertypes.

Type	Assertions	and	Declarations
Now	we	know	how	to	discover	the	type	of	any	variable	and	the	supertype	of
any	type.	On	occasion,	we	also	need	to	tell	Julia	that	a	variable	is	of	a
particular	type	(a	type	declaration),	or	that	the	value	of	an	expression	should
have	a	specified	type	(a	type	assertion).	The	::	operator	performs	either
operation,	depending	on	where	it	occurs.

Type	Assertions
Sometimes	in	our	programs	we	reach	a	point	where	it	is	important	to	ensure
that	the	value	of	a	particular	expression	has	a	certain	type.	If	it	does	not,	we
want	to	generate	an	error,	which	we	can	either	handle	or	allow	to	halt	the
program.

The	simplest	expression	in	Julia	is	a	literal	value.	Let’s	use	17	as	our	first
example:

julia> 17::Number
17

julia> 17::Integer
17

julia> 17::Int64
17

julia> 17::String
ERROR: TypeError: in typeassert, expected String, got a value of type Int64

The	first	line	is	an	assertion	that	17	has	the	Number	type,	which	of	course	it
does.	An	expression	with	a	type	assertion	attached	returns	the	value	of	the
expression	if	the	assertion	is	true,	so	here	Julia	simply	returns	17.	The
following	two	lines	are	also	true	assertions.	A	type	assertion	is	true	if	it
specifies	any	supertype	of	the	type	of	the	expression.

The	final	type	assertion	returns	an	error	because	17	is	neither	a	String	nor
a	subtype	of	the	String	type.

Here’s	an	example	of	how	we	might	use	a	type	assertion	in	a	program:



function greetings()
    println("Who are you?")
    yourname = readline();
    greeting = ("Hello, " * yourname * ".")
 ➊ return greeting::String
end

The	program	asks	the	user	a	question,	receives	the	reply	using	readline(),	and
joins	it	with	two	other	strings	to	construct	a	greeting,	which	it	returns.	We
used	a	type	assertion	➊	to	ensure	that	the	type	returned	by	the	function	is
what	is	expected.

Type	Declarations
We	also	use	the	::	operator	for	type	declarations.	Its	meaning	is	determined
from	its	position	within	a	statement.

We	can	declare	that	a	variable	has	a	particular	type	in	two	ways.	One	way
is	to	supplement	the	usual	assignment	statement	with	a	declaration,	as	in	this
example:

julia> a::Int16 = 17
17

julia> typeof(a)
Int16

Here	the	assignment	and	the	type	declaration	happen	simultaneously.

NOTE

Julia	v1.8	was	the	first	version	that	allowed	type	declarations	of	global	variables;
this	makes	working	in	the	REPL	more	convenient.	In	earlier	versions,	all	type
declarations	must	occur	in	a	local	scope.

Once	we	declare	the	type	of	a	variable,	we	are	committed:

julia> a = "Paris"
ERROR: MethodError: Cannot `convert` an object
  of type String to an object of type Int16

julia> a::Int32 = 17
ERROR: cannot set type for global a. It already
  has a value or is already set to a different type.



As	this	example	shows,	an	attempt	to	assign	a	value	of	the	wrong	type	to	a
declared	variable,	or	to	explicitly	change	its	type,	results	in	an	error.

Any	value	assigned	to	a	must	be	convertible	to	a’s	type,	Int16:

julia> a = 32767
32767

julia> a = 32768
ERROR: InexactError: trunc(Int16, 32768)

The	second	assignment	failed	because	32,768	is	larger	than	the	largest	value
that	an	Int16	can	hold,	which	is	215−1	=	32,767,	returned	by	typemax(Int16).

Listing	8-3	shows	the	other	way	to	declare	a	type:	as	part	of	a	local	or
global	definition.

julia> global gf::Float64

julia> gf = 17
17

julia> gf
17.0 ➊

julia> typeof(gf)
Float64

julia> gf = "London"
ERROR: MethodError: Cannot `convert` an object
  of type String to an object of type Float64 ➋

julia> function weather_report(raining)
           if !(raining isa Bool) ➌
               println("Please tell us if it's raining with \"true\" or \"false\".")
               return
           else
               if raining
                   n = ""
               else
                   n = "not "
               end
               local gf::String ➍
               gf = "London"
               return("It is $(n)raining in $gf today.")
           end
        end
weather_report (generic function with 1 method)

Listing	8-3:	Type	declarations



We	define	gf	to	be	global	and	to	have	the	Float64	type.	Julia	seems	happy	to
let	us	assign	a	literal	integer	to	it,	but	it	has	converted	the	value	to	a	Float64	as
part	of	the	assignment	➊.	Because	there	is	no	way	to	convert	a	literal	string
to	a	Float64,	our	attempt	to	assign	a	string	to	the	variable	failed	➋.

We	can	use	a	variable	of	the	same	name,	declared	to	be	local,	inside	a
function	➍	;	this	local	variable	has	no	relationship	with	the	global	gf.	The
function	weather_report()	expects	a	Bool	from	the	user	(true	or	false),	and	uses	it
to	construct	a	sentence	about	the	weather.	It	uses	the	isa	operator	to	check
that	it’s	received	the	correct	type	➌.

The	following	short	program	illustrates	an	important	behavior	of	type
declarations:

function type_dec_demo()
    a = 17
    println("a = $a and has the type $(typeof(a)).")
    local a::Int16
end

Running	this	function	produces	the	output:

a = 17 and has the type Int16.

The	line	that	prints	the	type	of	a	comes	before	the	type	declaration;	so	why
is	a	already	an	Int16?	After	all,	this	is	what	happens	in	the	REPL:

julia> a = 17
17

julia> typeof(a)
Int64

This	output	is	what	we	expect,	as	the	concrete	type	Int64	is	the	native	integer
on	a	64-bit	machine,	which	is	the	most	common	architecture.	The
explanation	is	that	a	type	declaration	within	a	scope	block,	in	this	case	a
function	definition,	enforces	an	unchangeable	type	for	the	entire	block.	The
declaration	can	occur	anywhere	within	the	block.

In	the	absence	of	a	declaration,	a	variable	can	change	type	within	a	block
as	a	consequence	of	arithmetic	operations:

function changing_type_demo()
    a = 17
    println("a = $a and has the type $(typeof(a)).")



    a = a + 1.0
    println("a = $a and has the type $(typeof(a)).")
end

This	function	produces	the	output:

a = 17 and has the type Int64.
a = 18.0 and has the type Float64.

Allowing	this	to	happen	can	interfere	with	performance,	a	topic	we	return
to	in	“Vanquish	Type	Instability”	on	page	242.

The	::	operator	can	also	declare	the	type	of	the	value	returned	by	a
function.	For	example,	we	can	change	the	first	line	of	the	definition	of
weather_report()	in	Listing	8-3	as	follows:

function weather_report(raining)::String

This	asserts	that	the	function	must	return	a	String	value.
The	purpose	of	such	declarations	is	the	same	as	type	declarations	for

variables:	they	are	never	required,	and	usually	not	needed,	but	in	some	cases
they	can	provide	extra	information	to	the	compiler	that	helps	with
performance.	We’ll	see	some	examples	of	this	in	“Performance	Tips”	on
page	242.	When	we	construct	expressions	using	functions,	it’s	helpful	to
know	the	types	returned	by	each	function	call;	using	type	declarations	in
function	definitions	assists	in	writing	correct	and	efficient	programs.

Functions	and	Methods:	Multiple	Dispatch
When	we	define	a	function	in	the	REPL,	if	there	are	no	errors,	we’ll	see	a
message	like	the	one	we	saw	after	the	definition	of	weather_report()	in	Listing
8-3:

weather_report (generic function with 1 method)

A	generic	function	is	defined	by	its	name,	in	this	case	weather_report().
Each	generic	function	can	have	any	number	of	methods	associated	with	it,
which	are	distinguished	by	their	method	signatures.	The	signature	is	the	part
that	goes	inside	the	parentheses	when	you	define	the	method.	Up	until	now,
these	signatures	have	included	the	names	of	positional	and	keyword



arguments	and	their	default	values,	if	any.	If	we	make	a	second	definition	of
weather_report()	with	a	different	set	of	arguments	in	its	signature,	we	will	have
created	a	second	method.

A	further	use	of	the	::	operator	is	within	method	signatures,	to	specify	the
types	that	the	arguments	therein	are	supposed	to	have.	Two	definitions,	both
with	the	same	arguments,	define	different	methods	if	any	of	these	type
specifications	are	different,	even	if	the	signatures	are	otherwise	the	same.

When	the	compiler	sees	a	function	call,	it	invokes	the	method	with	the
most	specific	definition	that	matches	the	arguments	supplied	in	the	call.
Here	is	where	we	see	the	real	purpose	of	the	abstract	types	that	we	learned
about	in	“The	Type	Hierarchy”	on	page	222.	With	all	else	being	equal,	a
method	defined	using	a	particular	type	for	one	of	its	arguments	is	more
specific	than	one	defined	for	a	supertype	for	the	same	argument.

To	determine	which	method	to	call,	the	compiler	examines	all	of	the
arguments.	This	procedure	for	method	selection,	or	dispatch,	is	called
multiple	dispatch	for	this	reason.	It	is	an	unusual,	but	not	unique,	feature	in
the	landscape	of	programming	languages,	and	it’s	a	major	reason	for	Julia’s
power	and	success.

In	contrast,	object-oriented	languages	dispatch	solely	on	the	first
argument	of	a	method,	often	supplied	implicitly	as	the	object	the	method	is
part	of	and	represented	within	the	procedure	with	variables	such	as	this	or
self.

Functional	languages	have	no	real	dispatch	mechanism	at	all.	All
specialization	must	take	the	form	of	alternative	code	paths	within	one	large
function.

Julia’s	multiple	dispatch	paradigm	means	that	it	is	neither	an	object-
oriented	nor	a	functional	language,	but	something	more	general	and	flexible
than	either	of	them.

Creating	Multiple	Methods
Our	definition	of	weather_report()	included	a	check	that	the	supplied	argument
was	the	correct	type	and	a	measure	to	take	in	case	it	wasn’t,	implemented	in
an	if	block.	We	can	eliminate	that	check	by	restarting	the	REPL	and
replacing	the	definition	of	weather_report()	with	two	other	methods	with
different	signatures:



julia> function weather_report(raining::Bool)
           if raining
               n = ""
           else
               n = "not "
           end
           gf = "London"
           println("It is $(n)raining in $gf today.")
        end

weather_report (generic function with 1 method)

julia> function weather_report(raining)
           println("Please tell us if it's raining with \"true\" or \"false\".")
           return
       end

weather_report (generic function with 2 methods)

After	the	first	definition,	the	REPL	replies	with	the	same	message	as
before,	but	after	the	second,	we	are	informed	that	weather_report()	now	has
two	methods.	The	only	difference	between	our	two	methods	is	that	the	first
has	a	type	specification	for	the	single	argument,	raining,	in	its	signature,
whereas	the	second	does	not.	The	absence	of	a	type	specification	means	that
the	compiler	will	accept	an	argument	with	any	type,	or,	said	another	way,
with	the	Any	type.	The	rule	is	that	the	compiler	will	always	select	the	most
specific	method	for	the	arguments	supplied.	If	we	supply	a	Bool	(true	or	false),
the	first	method	is	selected,	because	it’s	more	specific	than	the	second,	as	Bool
is	a	subtype	of	Any.	Any	other	type	dispatches	the	second	method,	and	the
request	to	supply	true	or	false.

Let’s	verify	that	the	two	methods	work	the	way	we	expect:

julia> weather_report(true)
It is raining in London today.

julia> weather_report(17)
"Please tell us if it's raining with "true" or "false"."

This	technique	of	creating	a	collection	of	methods	rather	than	cramming
a	bunch	of	type-checking	code	into	one	larger	function	is	more	idiomatic	to
Julia	and	leads	to	better-organized	projects	that	are	easier	to	maintain	and
extend.

Suppose	we	wanted	to	extend	the	function	by	giving	it	the	ability	to
comment	on	the	weather	in	a	city	supplied	by	the	user.	The	power	of



multiple	dispatch	allows	us	to	simply	add	another	method	without	changing
anything	we’ve	already	written:

julia> function weather_report(raining::Bool, city::String)
           if raining
               n = ""
           else
               n = "not "
           end
               println("It is $(n)raining in $city today.")
       end

weather_report (generic function with 3 methods)

julia> weather_report(true, "Tegucigalpa")
It is raining in Tegucigalpa today.

If	we	try	to	call	weather_report()	with	arguments	that	don’t	match	the
signature	of	any	existing	method,	we	get	an	error	message:

julia> weather_report(true, 17)
ERROR: MethodError: no method matching weather_report(::Bool, ::Int64)
Closest candidates are:
  weather_report(::Bool) at REPL[1]:1
  weather_report(::Bool, ::String) at REPL[7]:1
  weather_report(::Any) at REPL[4]:1

The	error	message	tells	us	that	none	of	the	methods	of	weather_report()
have	the	right	signature	and	lists	some	of	the	available	methods,	showing	the
types	we	can	use	for	their	arguments.	We’ll	get	a	similar	error	if	we,	for
instance,	try	to	add	two	things	that	can’t	be	added,	such	as	1 + "1",	but	the
three	or	so	possible	methods	mentioned	in	the	error	message	will	be	a	small
fraction	of	the	over	200	methods	defined	for	the	+	operator.	To	see	a	list	of
all	the	methods	defined	for	any	function,	call	methods():

julia> methods(weather_report)
# 3 methods for generic function "weather_report":
[1] weather_report(raining::Bool) in Main at REPL[1]:1
[2] weather_report(raining::Bool, city::String) in Main at REPL[7]:1
[3] weather_report(raining) in Main at REPL[4]:1

Here	we	see	the	list	of	methods	we’ve	defined	for	weather_report()	with	their
method	signatures.

Extending	Built-in	Functions	with	New	Methods
Suppose	we	had	a	program	that	reads	numbers	from	a	file,	or	from	user



input,	and	adds	them	to	an	existing	number.	The	read-in	values	would	be
strings,	and	the	program	would	have	to	convert	them	to	numbers	before
performing	the	addition.	Listing	8-4	shows	a	case	like	this,	where	we	might
decide	to	eliminate	the	explicit	conversion	step	from	the	program	by	adding
a	method	to	+	that	does	the	conversion	automatically.

import Base.+
function +(a::Number, b::String)
    if Meta.parse(b) isa Number
        return a + Meta.parse(b)
    else
        return a
    end
end

Listing	8-4:	Extending	addition	with	a	new	method

We’re	not	allowed	to	extend	certain	basic	functions,	such	as	+,	unless	we
first	explicitly	import	them,	which	is	accomplished	in	the	first	line.	After
defining	this	method,	it	will	be	dispatched	on	any	attempt	to	add	a	string	to
a	number,	something	that	normally	results	in	a	MethodError.	If	the	String
argument	can	be	parsed	as	a	Number,	that	number	is	added	to	the	first
argument	and	the	method	returns	the	result.	If	it	can’t,	the	method	simply
returns	the	first	argument.	This	method	definition	is	an	example	of	the	use
of	abstract	types	in	signatures.	It	will	work	for	any	type	of	number	in	the	first
argument,	without	the	need	to	write	definitions	for	each	subtype	of	Number.

Let’s	check	that	this	method	works	as	intended:

julia> 1 + "16"
17

julia> 1 + "16.0"
17.0

julia> 1 + "sixteen"
1

julia> 1//2 + "3"
7//2

julia> π + "1"
4.141592653589793

We’ve	added	to	the	language	by	extending	the	behavior	of	one	of	its	basic
operators.	Multiple	dispatch	gives	us	the	power	to	do	this	without	altering



any	existing	methods.

DON’T	BE	A	PIRATE

We	would	never	place	methods	such	as	the	one	defined	in	Listing	8-4
in	a	public	package.	That’s	because	we	are	responsible	neither	for	the
“+”	function	nor	the	data	types	in	our	new	method	definition.
Someone	importing	our	package	may	suffer	conflicts	or	unexpected
behavior.	With	the	great	power	to	extend	the	language	comes	great
responsibility:	transgressing	this	expectation	is	called	type	piracy.	If	we
want	to	make	our	method	public,	we	have	three	choices:	name	it
something	besides	“+”;	have	it	operate	on	our	own	string-like	data
type;	or	make	a	pull	request	on	GitHub	for	inclusion	in	Base.	The	last
option	will	endow	“+”	with	a	new	method	in	addition	to	its	current
paltry	207,	and	all	Julia	users	will	automatically	have	the	benefit	of	our
creation.

Specialized	methods	are	not	only	useful	for	creating	new	behaviors,
they’re	sometimes	created	for	efficiency.	For	example,	operations	such	as
matrix	multiplication	or	matrix	inverse	produce	mathematically	well-defined
results	(when	they	exist);	however,	for	matrices	with	certain	properties,
specialized	algorithms	for	computing	that	result	may	be	more	efficient	than
a	general	algorithm.	The	SparseArrays	package	(see	“The	Adjacency	Matrix”
on	page	196)	provides	methods	for	these	matrix	operations	that	are	more
efficient	when	one	or	both	of	the	arguments	is	a	sparse	array.	Multiple
dispatch	will	automatically	select	the	ideal	method	when	a	matrix	operator	is
passed	a	sparse	array,	without	any	intervention	needed	on	the	part	of	the
user.

Although	we	can	create	new	methods	to	do	anything	we	want,	it	makes
sense	that	their	behavior	be	conceptually	related	to	the	purpose	or	meaning
of	the	generic	function	that	they	are	a	part	of.	Each	of	the	over	200	methods
for	+	has	something	to	do	with	the	idea	of	addition,	as	does	the	new	method
that	we’ve	defined	here.	Multiple	dispatch	should	be	seen	as	a	paradigm	for
code	organization	rather	than	a	license	for	chaos.	The	language	does



nothing	to	enforce	this	principle,	which	depends	on	the	discipline	of	the
programmer.

Understanding	Union	Types	and	the	<:	Operator
Sometimes,	when	constructing	a	method,	a	single	abstract	type	is	not	general
enough	for	our	purposes.	In	such	cases,	we	can	declare	an	argument	to	have
any	one	of	several	types	using	Union{}.	This	is	an	operator	that	accepts	a	list	of
types	and	constructs	a	new	type	that	includes	all	of	them.	A	value	that	has
the	type	of	anything	in	the	list	belongs	to	the	new	union	type.	Also,	a	type
that	is	a	subtype	of	any	of	the	types	in	the	list	is	a	subtype	of	the	union.

The	<:	infix	operator	is	a	test	that	acts	on	types	and	returns	true	if	the	type
on	its	left	is	a	subtype	of	the	type	on	its	right.	This	example	illustrates	the
creation	of	a	union	type	and	the	use	of	the	<:	operator:

julia> 17 isa Union{Number, String}
true

julia> Real <: Union{Number, String}
true

Because	17	is	a	Number,	the	first	expression	returns	true.
Suppose	we	want	to	write	a	function	that	acts	on	real	numbers	other	than

integers:	numbers	with	a	decimal	point.	We	might	consider	using	a	type
declaration	in	the	function	signature	such	as	n::AbstractFloat,	which	would
include	all	the	concrete	floating	types,	such	as	Float64	and	Float32.	However,
examining	Figure	8-2	reminds	us	that	this	declaration	would	exclude	any
number	supplied	as	an	Irrational.	If	the	user	stuck	in	a	literal	π	as	an
argument,	a	MethodError	would	be	the	result.	We	can	use	a	union	type	to
handle	this	scenario:	n::Union{AbstractFloat, Irrational}.	We	might	also
consider	adding	Rational	to	the	union,	depending	on	the	purpose	of	the
function.

User-Defined	Types
Just	as	we	can	create	our	own	verbs	(functions	and	methods)	for	our	own
purposes,	we	can	create	our	own	nouns	(data	types)	as	well.	The	purpose	of



user-defined	types	in	Julia	is	the	same	as	the	main	purpose	of	types	in
general:	to	organize	projects	around	methods	that	can	be	dispatched	based
on	the	types	of	their	arguments.

Creating	Abstract	Types
Sometimes,	rather	than	simply	adding	a	leaf	to	the	tree	of	types	we	will	want
to	add	a	branch	and	then	create	types	as	leaves	attached	to	that	branch.	As
we	mentioned	earlier,	these	branches	are	abstract	types,	and	we	can	make	our
own	with	the	abstract type	declaration.	As	an	example	of	its	use,	here	is	how
to	create	a	new	abstract	type	descended	from	the	Number	type:

julia> abstract type MyNumber <: Number end

After	executing	this	statement,	the	new	type	MyNumber	will	be	a	subtype	of	the
existing	abstract	type	Number	(recall	that	concrete	types	cannot	be	subtyped).

If	the	new	type	is	something	really	new	that	won’t	share	methods	with
existing	types,	there’s	no	need	for	it	to	inherit	from	any	existing	type.
However,	if	it	is	a	new	type	of	number,	string,	or	other	existing	type,	it
makes	sense	to	place	it	appropriately	in	the	type	hierarchy.	This	way,
existing	methods	that	act	on	the	Number	type,	for	example,	will	be	able	to
handle	the	new	subtype	of	number.

Creating	Composite	Types
The	purpose	of	creating	a	new	abstract	type	is	to	be	able	to	define	new	types
as	its	subtypes,	types	that	actually	hold	values	and	that	we	manipulate	in
calculations.	These	new	types	can	either	descend	directly	from	Any	or
descend	from	an	abstract	type	that	we	create.

In	almost	all	cases,	these	new	types	will	be	composite	types,	defined	in	a
struct	block:

struct EarthLocation
    latitude::Float64
    longitude::Float64
    timezone::String
end

Composite	types	typically	have	several	fields	(but	may	have	only	one).
The	new	EarthLocation	type	is	intended	to	represent	a	location	on	Earth	by	its
latitude	and	longitude	and	includes	a	field	for	the	location’s	time	zone.	The



type	declarations	on	the	fields	are	optional;	a	field	without	a	declaration	will
be	of	the	Any	type.

The	following	creates	a	variable	with	this	type:

julia> NYC = EarthLocation(40.7128, -74.006, "ET")

julia> typeof(NYC)
EarthLocation

This	function,	created	by	Julia	using	the	same	name	as	the	type,	is	called	a
constructor.	As	the	second	interaction	shows,	it	creates	values	with	the
EarthLocation	type.

We	can	access	a	composite	type’s	field	values	using	property	notation:

julia> NYC.latitude
40.7128

julia> NYC.timezone
"ET"

The	fields	are	assigned	in	the	order	in	which	they	appear	in	the	type’s
definition.

Since	a	constructor	is	a	function,	we	can	define	multiple	methods	for	it.
Here	is	one	that	handles	the	case	where	the	caller	supplies	coordinates	but
no	time	zone:

julia> EarthLocation(a, b) = EarthLocation(a, b, "Unknown")
EarthLocation

julia> someplace = EarthLocation(59.45607, -135.316681)
EarthLocation(59.45607, -135.316681, "Unknown")

julia> someplace.timezone
"Unknown"

The	method	dispatched	when	the	caller	uses	only	two	arguments	calls	the
original	method	with	"Unknown"	as	the	time	zone.	This	method	could	have
done	anything,	but	naming	it	the	same	as	the	constructor	for	EarthLocation
types	and	having	it	return	something	other	than	an	instance	of	that	type
would	be	confusing.	As	mentioned	in	“Parametric	Types”	on	page	248,	we
should	exploit	the	type	system	and	multiple	dispatch	to	make	our	code	easier
to	understand,	rather	than	the	opposite.

Suppose	we	decide	to	use	a	different	convention	for	recording	time	zones,



and	try	to	make	some	changes	to	existing	variables:

julia> NYC.timezone = "America/New_York"
ERROR: setfield!: immutable struct of type EarthLocation cannot be changed

Julia	objects	to	what	seems	like	a	reasonable	attempt	to	assign	a	new	value	to
one	of	the	fields	of	NYC.	By	default,	composite	types	are	immutable,	which
permits	the	compiler	to	generate	more	efficient	code	in	some	circumstances.
If	a	program	requires	types	whose	field	values	can	be	changed,	we	need	to
explicitly	define	our	type	using	the	mutable	keyword:

mutable struct MutableEarthLocation
    latitude::Float64
    longitude::Float64
    timezone::String
end

With	this	definition,	we	can	alter	variables	with	the	MutableEarthLocation	type:

julia> NYC = MutableEarthLocation(40.7128, -74.006, "ET")
MutableEarthLocation(40.7128, -74.006, "ET")

julia> NYC.timezone = "US/Eastern"
"US/Eastern"

julia> NYC
MutableEarthLocation(40.7128, -74.006, "US/Eastern")

We	can	change	the	values	of	fields	of	mutable	composite	types	at	will.
However,	when	this	isn’t	necessary,	such	as	when	the	type	represents	a
permanent	object	that	should	not	be	mutated,	it’s	generally	better	to	define
it	without	the	mutable	keyword.

Using	Composite	Types
Let’s	explore	a	simple	example	that	shows	the	usefulness	of	creating	our	own
types,	along	with	methods	designed	to	operate	on	them.	The	idea	is	to
define	a	couple	of	types	representing	circles.	They’ll	be	somewhat	different
from	each	other,	but	since	they	both	represent	circles,	they	will	have	some
commonality.	We	plan	to	write	some	methods	that	are	specialized	to	our
two	circle	types,	and	at	least	one	that	should	be	applicable	to	both	(or	more,
if	we	extend	the	project	in	the	future).	This	situation	calls	for	the	creation	of
an	abstract	type	to	represent	circles	in	general,	from	which	we’ll	derive	each
composite	circle	type:



abstract type Circle end

If	we’re	not	concerned	where	a	circle	is,	we	can	define	it	completely	by	its
radius.	With	this	in	mind,	let’s	define	our	first	composite	circle	type	to	have
only	one	field:

struct FloatingCircle <: Circle
    r::Real
end

Here	r	represents	the	circle’s	radius,	which	can	be	any	Real	number.	The	type
FloatingCircle	is	a	subtype	of	our	abstract	Circle	type:

julia> supertypes(FloatingCircle)
(FloatingCircle, Circle, Any)

Our	next	circle	type	also	contains	information	about	the	shape’s	position
in	space:

struct PositionedCircle <: Circle
    x::Real
    y::Real
    r::Real
end

Of	course,	PositionedCircle	is	also	defined	as	a	subtype	of	Circle.	The	real
numbers	x	and	y	are	intended	to	hold	the	coordinates	of	its	center.	The
abstract	Circle	type	now	has	two	subtypes:

julia> subtypes(Circle)
2-element Vector{Any}:
 FloatingCircle
 PositionedCircle

What	we	have	so	far	might	be	the	beginnings	of	a	package	to	perform	some
geometrical	calculations.

Suppose	the	next	step	is	to	write	a	function	that	calculates	the	area	of	a
circle.	This	area	doesn’t	depend	on	where	the	circle	happens	to	be,	only	on
its	radius.	Therefore,	it	should	accept	either	subtype	of	the	abstract	Circle
type	and	any	future	subtype	that	we	might	come	up	with:

function circle_area(c::Circle)
    return π * c.r^2
end



The	circle_area()	function’s	signature	demands	that	the	type	of	its
argument	is	a	subtype	of	Circle.	If	it	is,	it	will	have	a	radius,	which,	by
convention,	we	call	r	in	all	of	our	circular	composite	types:

   julia> c1 = FloatingCircle(1)
   FloatingCircle(1)

   julia> c1.r
   1

➊ julia> circle_area(c1)
   3.141592653589793

   julia> c2 = PositionedCircle(2, 2, 1)
   PositionedCircle(2, 2, 1)

   julia> c2.x, c2.y
   (2, 2)

   julia> c2.r
   1

➋ julia> circle_area(c2)
   3.141592653589793

   julia> circle_area(17)
   ERROR: MethodError: no method matching circle_area(::Int64)

After	confirming	that	the	new	function	calculates	areas	correctly	for	both
FloatingCircles	➊	and	PositionedCircles	➋,	we	forget	that	circle_area()	deals	only
with	subtypes	of	Circle	and	try	to	hand	it	a	number,	which	results	in	a
MethodError.

Let’s	add	one	more	function	to	this	geometry	project:	a	routine	that	takes
two	circles	and	tells	us	if	the	second	circle	is	entirely	within	the	first.

function is_inside(c1::PositionedCircle, c2::PositionedCircle)
    d = sqrt((c2.x - c1.x)^2 + (c2.y - c1.y)^2)
    return d + c2.r < c1.r # true if c2 is inside c1
end

The	function	calculates	the	distance	between	the	centers	of	the	two
circles	using	their	x-	and	y-coordinates,	and	then	checks	whether	one	lies
inside	the	other	by	referring	to	their	radii.	Of	course,	the	concept	of	a	circle
being	“inside”	another	makes	sense	only	if	we	can	say	where	the	circles	are,
so	the	new	function	accepts	only	PositionedCircles	and	will	have	only	one
method.



Let’s	try	it:

julia> a = PositionedCircle(2, 2, 2)
PositionedCircle(2, 2, 2)

julia> b = PositionedCircle(1, 1, 0.5)
PositionedCircle(1, 1, 0.5)

julia> is_inside(a, b)
true

julia> c = PositionedCircle(3, 3, 1)
PositionedCircle(3, 3, 1)

julia> is_inside(a, c)
false

It	seems	to	be	working,	but	to	be	sure,	it	will	help	to	make	a	diagram.	We
can	draw	our	three	circles	using	Luxor	in	a	program	similar	to	the	one	in
Listing	7-1:

using Luxor
@pdf begin
    origin(Point(30, 30))
 ➊ scale(100, 100)
    fontsize(0.32)
    fontface("Liberation Sans")
    setdash("solid")
    setcolor("black")
    circle(Point(2, 2), 2, :stroke)
    text("a", Point(1, 3))
    setcolor("blue")
    circle(Point(1, 1), 0.5, :stroke)
    text("b", Point(1, 1))
    setcolor("green")
    circle(Point(3, 3), 1, :stroke)
    text("c", Point(3, 3))
end 500 500 "circles.pdf"

The	Luxor	package	uses	points	as	its	unit	of	length,	so	we	expand	our
dimensions	➊	to	make	a	reasonably	sized	illustration.	The	labels	on	the
circles	are	the	same	as	the	names	we	gave	them	before.	Figure	8-3	shows	the
diagram	that	this	program	creates,	where	we	can	see	that	the	is_inside()
function	calculates	the	“inside”	relationship	correctly.



Figure	8-3:	Circle	b	is	inside	a,	but	c	is	not.

We	know	how	to	enforce	types	used	in	constructors	for	user-defined
types.	But	what	if	we	want	to	constrain	the	allowed	values	passed	to	the
constructors?	Here’s	how	to	make	a	type	like	our	FloatingCircle	that	demands
a	positive	radius:

struct ReasonableCircle <: Circle
    r::Real
 ➊ ReasonableCircle(r) =
        if r >= 0
            new(r)
        else
            @error("It's not reasonable to make a circle with a negative radius.")
        end
end

julia> ReasonableCircle(-12)
 Error: It's not reasonable to make a circle with a negative radius.
 @ Main REPL[4]:7

julia> ReasonableCircle(12).r
12



As	with	functions,	constraints	on	the	values	passed	as	arguments	must	be
enforced	in	the	body.	The	method	inside	the	body	➊	is	called	an	inner
constructor;	the	other	constructors	we’ve	been	using	up	to	now	are	outer
constructors.	The	function	new()	creates	the	instance.	It’s	used	only	inside
inner	constructors.

Those	who	have	experience	with	a	class-based	object-oriented	language,
such	as	Python,	are	sometimes	at	a	temporary	disadvantage	when	trying	to
absorb	the	concept	of	a	user-defined	composite	type	in	Julia.	We	all	have	a
tendency,	when	confronting	a	new	concept,	to	relate	it	to	concepts	that	are
familiar	to	us.	Composite	types	in	Julia	are	not	classes;	Julia	has	no	classes
and,	obviously,	no	class	inheritance.	In	an	object-oriented	language,	the	next
step	would	be	to	define	methods	as	part	of	the	class:	the	nouns	and	verbs	are
bound	together.	The	more	flexible	multiple	dispatch	paradigm	decouples
nouns	and	verbs.	Julia	programmers	are	free	to	write	methods	that	act	upon
any	combination	of	types	and	to	create	new	types	at	will,	without	friction.

Defining	structs	with	Base.@kwdef
The	default	method	for	defining	composite	types	leaves	a	bit	to	be	desired.
Its	main	deficiency	is	that	the	constructor	it	creates	requires	the	programmer
to	remember	the	order	in	which	a	type’s	fields	appear	in	its	definition.	The
Base.@kwdef	macro	improves	on	this	limitation	by	creating	constructors	that	we
can	use	with	field	names.	For	repeated	use,	it’s	convenient	to	import	this
macro	and	rename	it:	import Base.@kwdef as @kwdef.

Let’s	expand	our	geometry	package	with	a	new	type	representing	ellipses
as	shown	in	Listing	8-5.	This	time	we’ll	use	@kwdef.

@kwdef struct Ellipse
    axis1::Real = 1
    axis2::Real = 1
end

Listing	8-5:	Defining	an	Ellipse	type	with	@kwdef

This	definition	shows	the	second	convenient	feature	of	@kwdef:	we	can	supply
default	values	for	fields.	We	also	have	the	option	to	define	a	mutable	struct
with	@kwdef mutable struct.

Let’s	make	an	ellipse	and	assign	it	to	a	variable:

julia> oval = Ellipse(axis2=2.6)



Ellipse(1, 2.6)

julia> oval.axis1, oval.axis2
(1, 2.6)

This	example	shows	how	we	can	supply	a	subset	of	the	type’s	keyword
arguments,	and	the	ones	we	omit	will	get	their	default	arguments.	As	with
functions,	any	keyword	argument	without	a	default	in	the	type	definition
must	be	supplied	when	using	the	constructor.	Also,	similarly	to	functions,	we
may	not	mix	positional	and	keyword	forms:

julia> Ellipse(2, 3)
Ellipse(2, 3)

julia> Ellipse(2, axis2=3)
ERROR: MethodError: no method matching Ellipse(::Int64; axis2=3)

As	there	is	no	drawback	to	using	@kwdef	when	defining	composite	types,
it’s	convenient	to	use	it	routinely.

Because	of	the	way	Julia’s	JIT	compiler	works	with	the	type	system,
computing	with	user-defined	types	is	as	fast	as	using	native	types.	We	can
work	at	a	higher	level	of	abstraction,	creating	a	set	of	types	that	naturally
conform	to	the	objects	in	our	problem,	without	any	compromise	in
performance.

Performance	Tips
Speed	and	efficiency	are	often	of	great	concern	in	scientific	programming.
While	Julia	generally	produces	performant	code	without	requiring	extreme
expertise	or	knowledge	of	internals,	good	performance	does	sometimes
depend	on	an	awareness	of	the	compilation	process.

I’ve	included	topics	related	to	performance	in	various	places	throughout
this	book.	Here	we’ll	learn	about	several	such	issues	specifically	related	to
types.

Vanquish	Type	Instability
Type	stability	is	perhaps	the	single	most	important	performance-related
concept	in	Julia.	Its	central	principle	is	that	the	return	values	of	functions
should	have	types	we	can	predict	based	on	the	types	of	the	arguments



supplied	to	the	function.	The	returned	type	should	not	depend	on	the	values
of	the	arguments.	A	secondary	issue	is	that	the	local	variables	used	within	a
function	should	not	change	type.

Suppose	we	want	to	have	a	function	for	dividing	two	numbers	that	would
return	0	when	the	denominator	is	0,	rather	than	Inf.	Listing	8-6	shows	one
way	to	write	such	a	function.

function safe_divide(a, b)
    if b == 0
        return 0
    else
        return a/b
    end
end

Listing	8-6:	This	function	needs	improving.

It	certainly	seems	to	work	as	intended:

julia> safe_divide(1, 2)
0.5

julia> safe_divide(1, 0)
0

However,	the	sharp-eyed	programmer	may	notice	that	in	the	first	case,
the	function	returns	a	Float64,	whereas	in	the	second	case	it	returns	an	Int64:

julia> typeof(safe_divide(1, 2))
Float64

julia> typeof(safe_divide(1, 0))
Int64

The	types	of	the	arguments	in	both	cases	are	integers,	but	the	types	of	the
results	depend	on	their	values.	This	type	instability	may	not	matter.
However,	an	insidious	problem	is	lurking,	as	one	day	we	may	pull	out	our
safe_divide()	function	to	use	within	some	other	program	where	its	varying
return	type	affects	performance.

In	more	complicated	functions,	the	type	instability	may	not	be	so
obvious.	In	situations	where	performance	or	memory	consumption	makes	us
wonder	whether	one	of	our	functions	may	have	such	an	issue,	Julia	provides
a	convenient	tool	for	ferreting	out	type	instability:	the	@code_warntype	macro.
Let’s	use	it	on	our	safe_divide()	function:



julia> @code_warntype safe_divide(1, 2)
MethodInstance for safe_divide(::Int64, ::Int64)
  from safe_divide(a, b) in Main at REPL[7]:1
Arguments
  #self#::Core.Const(safe_divide)
  a::Int64
  b::Int64
Body::Union{Float64, Int64}
1 - %1 = (b == 0)::Bool
--      goto #3 if not %1
2 -      return 0
3 - %4 = (a / b)::Float64
--      return %4

This	is	one	of	several	macros	and	functions	available	for	use	in	the	REPL
that	display	a	translated	version	of	a	Julia	function.	The	@code_warntype	macro
prints	a	lowered	form	of	the	code:	a	representation	of	the	computation	in
terms	of	a	smaller	set	of	operations.	It	is	one	of	four	stages	of	code
transformation	beginning	with	our	Julia	source	and	ending	with	machine
code	specific	to	the	processor	we’re	running	on.	This	lowered	form	is	similar
to	the	version	that	is	sent	to	the	compiler,	but	it	contains	the	type
information	that	we	can	examine	when	debugging	performance	issues.	Other
than	that,	it’s	not	particularly	useful	and	not	intended	for	routine	human
consumption.

When	printed	in	the	REPL,	type	information	that	indicates	a	possible
type	stability	issue	is	displayed	in	red	type,	which	I’ve	converted	to	bold	for
printing	in	the	book.	The	bold	fragment	indicates	that	the	return	type	can
be	either	a	Float64	or	an	Int64:	in	other	words,	it’s	not	determined	from	the
types	of	the	input	arguments.	This	is	the	signature	of	a	type-unstable
function.

Fortunately,	this	case	has	a	simple	fix:

function safe_divide2(a, b)
    if b == 0
     ➊ return 0.0
    else
        return a/b
    end
end

Since	a/b	is	always	a	float,	even	if	a	and	b	are	integers,	we	can	ensure	that
the	function	always	returns	a	float	by	replacing	the	integer	0	with	0.0	➊.

To	confirm	whether	we’ve	fixed	the	type	instability	problem,	let’s	turn	to



@code_warntype	again:

   julia> @code_warntype safe_divide2(1, 2)
   MethodInstance for safe_divide2(::Int64, ::Int64)
     from safe_divide2(a, b) in Main at REPL[5]:1
   Arguments
     #self#::Core.Const(safe_divide2)
     a::Int64
     b::Int64
➊ Body::Float64
   1 - %1 = (b == 0)::Bool
   --      goto #3 if not %1
   2 -      return 0.0
   3 - %4 = (a / b)::Float64
   --      return %4

This	time,	there	are	no	red	(bold)	warnings,	and	the	macro	confirms	➊
that	the	return	type	is	always	a	Float64.

NOTE

The	output	from	@code_warntype	often	also	includes	yellow	warnings	involving
unions	with	the	Nothing	type,	which	is	used	when	a	function	does	not	return	a
result.	These	are	not	usually	considered	type	instabilities.

We	can	also	correct	this	type	stability	problem	by	defining	the	function
using	a	type	declaration:

function safe_divide_typed(a, b)::Float64
    if b == 0
        return 0
    else
        return a/b
    end
end

This	version,	when	called	with	b = 0,	will	convert	its	return	value	to	0.0.	It
will	always	return	a	Float64;	@code_warntype	will	verify	its	type	stability.

Although	the	form	of	the	code	returned	by	@code_warntype	can	be	difficult
to	parse,	it’s	fairly	simple	to	use	it	to	scan	for	type	stability	problems.

Avoid	Changing	the	Types	of	Variables
Let’s	write	a	function	to	approximate	π	using	the	Leibniz	sum:



This	is	not	a	good	way	to	get	the	digits	of	π,	as	it	converges	quite	slowly,
but	it’ll	be	useful	for	our	demonstration.	One	version	of	the	function	might
be:

function leibπ(N)
    s = 0
    for n in 1:N
        s += (-1)^(n+1) * 1/(2n-1)
    end
    return 4.0s
end

This	works	as	intended;	Figure	8-4	shows	its	output	gradually	converging
to	the	correct	value	for	π.



Figure	8-4:	The	Leibniz	sum	approximation	to	π

This	function	is	clearly	not	type-unstable	in	the	sense	used	earlier:	the
output	is	always	a	Float64,	regardless	of	the	number	supplied	as	an	argument.

Nevertheless,	taking	a	look	at	the	output	of	@code_warntype	indicates	a
problem:

julia> @code_warntype leibπ(100)
MethodInstance for leibπ(::Int64)
  from leibπ(N) in Main at REPL[33]:1
Arguments
  #self#::Core.Const(leibπ)
  N::Int64
Locals
  @_3::Union{Nothing, Tuple{Int64, Int64}}
  s::Union{Float64, Int64}



  n::Int64
Body::Float64
1 -       (s = 0)
|   %2  = (1:N)::Core.PartialStruct(UnitRange{Int64}, Any[Core.Const(1), Int64])
|         (@_3 = Base.iterate(%2))
|   %4  = (@_3 === nothing)::Bool
|   %5  = Base.not_int(%4)::Bool
--       goto #4 if not %5
2   %7  = @_3::Tuple{Int64, Int64}
|         (n = Core.getfield(%7, 1))
|   %9  = Core.getfield(%7, 2)::Int64
|   %10 = s::Union{Float64, Int64}
|   %11 = (n + 1)::Int64
|   %12 = ((-1) ^ %11)::Int64
|   %13 = (%12 * 1)::Int64
|   %14 = (2 * n)::Int64
|   %15 = (%14 - 1)::Int64
|   %16 = (%13 / %15)::Float64
|         (s = %10 + %16)
|         (@_3 = Base.iterate(%2, %9))
|   %19 = (@_3 === nothing)::Bool
|   %20 = Base.not_int(%19)::Bool
--       goto #4 if not %20
3 -       goto #2
4   %23 = (4.0 * s)::Float64
--       return %23

Once	again,	the	warnings	are	rendered	in	bold.	They	inform	us	that	the
local	variable	s	is	a	union	of	the	types	Float64	and	Int64,	rather	than	a	single
numerical	type.	This	happens	because	we	initialize	it	as	a	literal	integer,	0,
but	then	use	it	in	a	loop	that	causes	Julia	to	promote	it	to	a	float.

Changing	the	type	of	a	local	variable	may	prevent	the	compiler	from
optimizing	our	code	as	well	as	it	could	otherwise.	This	is	a	common	mistake,
as	the	pattern	of	initializing	variables	and	then	using	them	in	a	for	loop	is
routine.	When	doing	so,	we	should	take	care	to	initialize	them	with	types
appropriate	to	the	arithmetic	in	the	loop.

This	case	is	also	easy	to	fix:

function leibπ2(N)
 ➊ s = 0.0
    for n in 1:N
        s += (-1)^(n+1) * 1/(2n-1)
    end
    return 4.0s
end

As	before,	we	simply	have	to	replace	0	with	0.0	➊.	I	won’t	reproduce	the
(mostly	redundant)	output	here,	but	checking	with	@code_warntype	shows	that



the	warnings	are	gone.

Type	Aliases
Several	types	have	alternative	names,	called	type	aliases.	The	use	of	aliases	is
for	convenience;	they	are	typically	shorter	names	or	dispense	with	the
indication	of	the	machine’s	pointer	size.	For	example,	on	a	64-bit	computer,
Int	is	another	name,	or	alias,	for	Int64,	but	on	a	32-bit	machine,	Int	means
Int32:

julia> typeof(17)
Int64

julia> 17 isa Int
true

julia> Int === Int64
true

This	shows	that,	at	least	on	my	computer,	Int	is	another	name	for	Int64.
We	can	create	our	own	type	aliases:

julia> const F64 = Float64
Float64

julia> typeof(3.14)
Float64

julia> 3.14 isa F64
true

Here	we’ve	created	an	alternative	name	for	the	default	floating-point	type.
After	this	definition,	we	can	use	F64	and	Float64	interchangeably.

Defining	type	aliases	as	const	is	not	required,	but	it	makes	sense,	as	they
are	additional	names	for	something	that	will	not	change.

Parametric	Types
A	parametric	type	is	a	type	made	from	pieces	that	themselves	can	be	of
several	possible	types.	The	parameters	are	variables	that	vary	with	the	types
of	the	pieces.



Listing	8-7	shows	an	example	of	a	parametric	type	that	we’ve	already
encountered,	the	type	used	for	complex	numbers.

   julia> typeof(2 + 2im)
   Complex{Int64}

   julia> typeof(2.0 + 2.0im)
   ComplexF64 (alias for Complex{Float64})

   julia> typeof(2.0 + 2im)
➊ ComplexF64 (alias for Complex{Float64})

   julia> typeof(1//2 + 1//2im)
   Complex{Rational{Int64}}

Listing	8-7:	The	types	of	some	complex	numbers

The	curly	brackets	({})	in	the	type	names	indicate	that	we’re	dealing	with
parametric	types.	In	the	first	line,	we’ve	asked	for	the	type	of	a	complex
number	that’s	written	using	integer	literals	for	each	coefficient.	The
response	indicates	that	the	number	is	Complex	with	an	Int64	parameter;	this
parameter	is	the	type	of	the	coefficients.

The	second	line	tells	us	something	similar,	but	this	time	the	complex
number	has	floating-point	coefficients.	In	addition,	we	learn	about	an	alias
for	the	type.

The	fact	that	there	is	only	one	parameter	within	the	curly	brackets
suggests	that	both	coefficients	must	have	the	same	type.	This	is	indeed	true;
mixing	literal	floats	and	integers	causes	an	automatic	conversion	of	the
integer	coefficient	to	a	Float64	coefficient	➊.

In	the	final	example,	we’ve	created	a	complex	number	with	Rational
coefficients.	This	time	the	parameter	is	itself	a	parametric	type.	Rational
numbers	can	be	composed	of	any	integers.	The	Rational{Int64}	notation
means	that	the	numerator	and	denominator	are	Int64s	rather	than,	for
example,	Int32s.

Collection	types,	such	as	Array,	are	defined	as	parametric	types	because
they	can	hold	elements	of	various	types:

   julia> typeof([1,2])
   Vector{Int64} (alias for Array{Int64, 1})

   julia> supertype(Vector)
➊ DenseVector (alias for DenseArray{T, 1} where T)



   julia> supertype(DenseVector)
   AbstractVector (alias for AbstractArray{T, 1} where T)

The	use	of	aliases	is	common	for	collection	types,	as	in	these	examples.
We	see	here	that	Array	is	a	parametric	type	with	two	parameters:	the	first	is
the	type	of	the	array’s	elements,	and	the	second	is	the	number	of	dimensions.

The	where	keyword	creates	a	UnionAll	type,	a	union	of	many	types,	each
defined	by	assigning	a	particular	type	to	the	type	variable	T.	One	example	of
this	is	the	notation	AbstractArray{T, 1},	where	T	denotes	an	abstract	type	that	is
the	union	of	AbstractArray{Int64, 1},	AbstractArray{Float64, 1},	and	so	on.

We	can	create	our	own	parametric	types	for	the	same	reason	we	create
any	type:	to	organize	our	methods	with	the	help	of	the	type	system	and
multiple	dispatch.

Let’s	revisit	our	Ellipse	type	from	Listing	8-5	and	make	a	parametric
version	of	it:

@kwdef struct CEllipse{T}
    axis1::T
    axis2::T
end

Now	the	fields	can	be	any	type,	as	long	as	they	are	both	the	same	type:

julia> e1 = CEllipse(12.0, 17.0)
CEllipse{Float64}(12.0, 17.0)

julia> e2 = CEllipse(12.0, "Snails")
ERROR: MethodError: no method matching CEllipse(::Float64, ::String)
Closest candidates are:
  CEllipse(::T, ::T) where T at REPL[67]:2

julia> e2 = CEllipse("Clams", "Snails")
CEllipse{String}("Clams", "Snails")

After	defining	a	new	CEllipse,	the	REPL	tells	us	the	type,	with	Float64
substituted	in	place	of	the	parameter	T.	Our	attempt	to	give	the	fields	two
different	types	failed	because	they	are	both	T	in	the	type	definition.	T	can	be
anything,	but	the	definition	requires	that	both	axes	have	the	same	type,	so
the	final	example	is	accepted.	But	what	does	it	mean	to	have	an	ellipse	with
arbitrary	strings	for	the	axes?	It’s	up	to	us.	We	are	creating	types	for	our	own
purposes,	to	organize	our	projects.	If	we	prefer	to	limit	the	CEllipse	type	to
have	numerical	values	for	the	axes,	we	can	use	the	subtyping	operator:



@kwdef struct CEllipse{T<:Number}
    axis1::T
    axis2::T
end

Before	defining	this	struct,	if	we’re	working	in	the	REPL,	we’re	obligated	to
begin	a	new	session	if	the	previous	definition	of	CEllipse	is	still	active.
Another	option	would	be	to	name	it	differently.

Now	a	CEllipse	can	have	two	axes	of	the	same	type,	and	that	type	can	be
anything,	as	long	as	it’s	a	subtype	of	Number:

julia> e2 = CEllipse("Clams", "Snails")
ERROR: MethodError: no method matching CEllipse(::String, ::String)

julia> e2 = CEllipse(1//3, 1//5)
CEllipse{Rational{Int64}}(1//3, 1//5)

Since	we	make	T	a	subtype	of	Number,	rather	than	a	subtype	of	the	more
specific	Real,	we	are	allowing	the	possibility	of	ellipses	with	complex-valued
axes.	In	some	cases,	our	functions	for	calculating	properties	of	ellipses	will
need	methods	specialized	for	this	case.	For	an	example,	let’s	write	a	function
that	returns	the	eccentricity	of	an	ellipse.	This	is	a	measure	of	how	elongated
the	ellipse	is,	where	an	eccentricity	of	0	is	a	circle.	If	a	is	the	longer	of	the
two	axes	and	b	is	the	shorter,	the	eccentricity	is	given	by:

Here’s	a	direct	translation	of	this	formula	into	a	Julia	function:

function eccentricity(e::CEllipse{<:Real})
    a = max(e.axis1, e.axis2)
    b = min(e.axis1, e.axis2)
    return sqrt(a^2 - b^2)/a
end

This	definition	works	for	real-valued	axes,	so	to	ensure	that	the	function
accepts	only	such	ellipses,	its	type	parameter	specifies	subtypes	of	Real.

We	can	visualize	an	ellipse	with	complex-valued	axes	as	lying	in	the
complex	plane.	We	can	define	ellipses	this	way	as	long	as	we	ensure	that
their	axes	are	perpendicular.

Let’s	make	a	method	of	our	eccentricity	function	that	handles	these



ellipses:

function eccentricity(e::CEllipse{<:Complex})
    a = max(abs(e.axis1), abs(e.axis2))
    b = min(abs(e.axis1), abs(e.axis2))
    return sqrt(abs(a)^2 - abs(b)^2)/abs(a)
end

The	abs()	function,	when	handed	a	complex	number,	returns	its	length.	We
use	the	<:	operator	in	the	type	parameter	slot	to	include	every	possible	kind
of	complex	number.

We	know	a	bit	more	about	ellipses	with	complex	axes:	not	merely	their
eccentricities,	but	their	orientations.	Figure	8-5	shows	an	ellipse	in	the
complex	plane.

Figure	8-5:	An	ellipse	in	the	complex	plane



Its	axes,	represented	by	dotted	lines,	are	2	+	2i	and	−1	+	i.	We’ll	define	the
orientation	as	the	angle	that	its	major	(longer)	axis	makes	with	the	real	axis,
shown	in	the	figure	by	α.

Here’s	the	program	that	created	the	illustration	in	Figure	8-5:

using Luxor
@pdf begin
    scale(100, 100)
    fontsize(0.22)
    fontface("Liberation Sans")
    setdash("dash") # Coordinate axes
    line(Point(-2, 0), Point(2, 0), :stroke)
    line(Point(0, -2), Point(0, 2), :stroke)
    text("Re", Point(1.6, -0.1))
    text("Im", Point(0.1, -1.8))
    setdash("dot") # Ellipse axes
    line(Point(0, 0), Point(sqrt(2), -sqrt(2)), :stroke)
    line(Point(0, 0), Point(-1/sqrt(2), -1/sqrt(2)), :stroke)
    text("α", Point(0.25, -0.08))
    setdash("solid") # The ellipse
    rotate(-π/4)
    ellipse(0, 0, 4, 2, :stroke)
end 500 500 "ellipse.pdf"

Remember,	in	Luxor	the	vertical	coordinate	goes	from	the	top	down,
opposite	to	the	conventional	direction	in	mathematical	diagrams.

This	function	calculates	the	orientation	of	an	ellipse	with	complex	axes:

function orientation(e::CEllipse{<:Complex})
    if abs(e.axis1) > abs(e.axis2)
        a = e.axis1
    else
        a = e.axis2
    end
    return angle(a)
end

Since	no	orientation	can	be	defined	for	an	ellipse	with	axes	given	only	by
real-number	lengths,	orientation()	will	have	just	this	one	method.	The	angle()
function	returns	a	complex	number’s	phase	angle;	it’s	equivalent	to
atan(imag(a)/real(a)).

Let’s	define	an	ellipse	with	complex	axes	and	calculate	its	eccentricity	and
orientation:

julia> e45 = CEllipse(2 + 2im, -1 + im)
CEllipse{Complex{Int64}}(2 + 2im, -1 + 1im)



julia> eccentricity(e45)
0.8660254037844387

julia> orientation(e45)
0.7853981633974483

julia> orientation(e45) |> rad2deg
45.0

This	ellipse	corresponds	to	Figure	8-5.	The	orientation()	function	returns	its
result	in	radians,	so	for	good	measure,	we’ve	converted	that	to	degrees	in	the
final	expression.

Parametric	types	make	Julia’s	rich	type	system	even	more	flexible	and
expressive.	Like	the	other	parts	of	the	type	system,	we’re	not	required	to	use
any	of	it	in	our	own	programs,	but	a	little	bit	can	go	a	long	way	in	helping
with	code	organization,	reuse,	and	efficiency.	Finally,	a	basic	knowledge	of
parametric	types	is	essential	in	understanding	the	messages	and	information
that	Julia	sends	to	us,	and	in	reading	language	and	package	documentation.

Plot	Recipes
As	authors	of	programs,	modules,	and	perhaps	packages,	we	should	expect	to
create	our	own	data	types	routinely.	There	is	no	performance	penalty	for
using	custom	data	types	in	Julia,	and	they	are	essential	for	writing	concise,
well-organized	code	and	for	taking	the	best	advantage	of	multiple	dispatch.

In	Part	II	of	this	book	we’ll	explore	various	packages	from	the	Julia
scientific	ecosystem.	Many	of	these	packages	define	one	or	a	variety	of	data
types	that	describe	the	objects	they	manipulate.	These	objects	include	audio
signals,	solutions	to	differential	equations,	images,	measurements	with
uncertainties,	entire	environments	housing	interacting	creatures,	the
creatures	themselves,	and	much	more.	We’ll	discover	that	we	can	use	the
plotting	commands	from	Chapter	4	to	visualize	these	data	structures
directly,	with	no	preprocessing	needed	on	our	part.	How	is	it	possible	that
Plots	knows	what	to	do	with	all	these	different	data	types?

Visualization	is	an	essential	part	of	scientific	computation.	The	plot	recipe
system	is	how	we	hook	our	data	types	into	Julia’s	plotting	system,	that	is,
how	we	teach	it	to	handle	and	display	our	custom	objects.	The	authors	of	the
scientific	packages	that	we	use	in	Part	II	did	not	have	to	touch	the	code	in
the	Plots	package,	which	in	turn	doesn’t	need	to	know	anything	about	the



new	data	types.	Plot	recipes	insert	data	transformations	into	the	plotting
pipeline,	so	existing	plotting	functions	can	handle	our	data	types	as	if	they
were	the	familiar	arrays	of	numbers.

The	result	is	that	users	of	our	programs	need	simply	call	plot(),	scatter(),
or	another	plotting	function	on	the	new	data	type	to	get	a	reasonable	visual
representation.	We	can	also	define	entirely	new	plotting	functions	for	more
elaborate	visualizations.

We	need	a	specific	application	in	mind	to	make	the	operation	of	plot
recipes	clear.	Let’s	imagine	that	we’re	creating	a	program	that	has	something
to	do	with	the	weather,	and	create	some	simple	data	types	for	representing
daily	temperature	and	rainfall	data:

import Base.@kwdef as @kwdef
using Dates

@kwdef struct TempExtremes
    tempunit::String = "°C"
 ➊ temps::Vector{Tuple{Float64, Float64}}
end

@kwdef struct WeatherData
    temps::TempExtremes
    rainfall::Vector{Float64}
end

@kwdef struct WeatherReport
    notes::String
    location::Tuple{Float64, Float64}
    data::WeatherData
    start::Dates.Date
end

Our	temperature	data,	we’ll	suppose,	comes	to	us	as	two	measurements
per	day,	representing	that	day’s	minimum	and	maximum	temperatures.
We’ll	store	these	measurements	in	a	vector	of	tuples	➊,	one	tuple	per	day,
containing	the	temperature	extrema.	That	vector	of	tuples,	along	with	a
string	holding	the	temperature	unit,	are	packaged	together	in	the	TempExtremes
data	type.

That	data	type	is	put	next	to	a	vector	of	rainfall	measurements	in	another
data	type	called	WeatherData.

A	third	data	type,	WeatherReport,	contains	the	WeatherData	along	with	some
notes,	a	pair	of	numbers	(latitude	and	longitude)	for	the	location	of	the
measurements,	and	the	date	recording	when	the	series	of	measurements



begin.
Next	we	make	instances	of	these	three	data	types	to	have	something	to

plot:

tmin = randn(60) .+ 15.0
tmax = tmin .+ abs.(randn(60) .+ 3.0)
td = TempExtremes(temps=collect(zip(tmin, tmax)))
wd = WeatherData(rainfall=abs.(randn(60) .* 5.0 .+ 4), temps=td)
wr = WeatherReport(notes="Rainfall and temperature extremes",
                   location=(-72.03, 45.47),
                   data=wd, start=Date(1856, 12, 31))

The	randn()	function	produces	normally	distributed	(see	“The	Normal
Distribution”	on	page	323)	fake	random	temperature	and	rain	data.	Earlier
we	imported	the	Date	module	so	we	can	use	one	of	its	data	types	to	define	a
starting	date.

The	Plotting	Pipeline
The	recipe	system	consists	of	a	series	of	four	recipe	varieties	that	get
processed	in	order	in	the	plotting	pipeline,	as	shown	in	Listing	8-8.

user recipes:
    user types => user types, numerical arrays

type recipes:
    user types => numerical arrays

plot recipes:
    numerical arrays => series
        and
    series => series

series recipes:
    numerical arrays => series
        and
    series => series

Listing	8-8:	The	plotting	pipeline

Each	recipe	type	transforms	its	input	and	passes	it	to	the	next	stage	in	the
pipeline;	these	transformations	are	indicated	after	the	recipe	names.	The
built-in	plotting	functions	generally	know	how	to	plot	arrays	of	numbers,	so
the	plotting	recipes	have	to	transform	our	custom	types	into	ordinary	arrays.
The	first	two	recipe	types,	user	recipes	and	type	recipes,	can	do	this.	The
final	two	recipe	types	take	numerical	arrays	and	produce	series,	which	are	the



components	of	plots	that	represent	individual	vectors,	which	may	be
extracted	from	matrix	columns	(in	one	dimension).

The	user	and	plot	recipes	can	also	create	layouts	and	set	overall	plot
properties.	We	don’t	need	to	define	every	one	of	these	recipes,	and	generally
won’t	require	all	of	them	for	any	particular	plotting	task.	Any	that	we	have
defined	we	can	use	separately,	or	as	part	of	the	pipeline,	for	different
purposes.	In	this	discussion,	we’ll	start	at	the	end	of	the	pipeline	and	work
our	way	toward	the	beginning,	defining	recipes	as	we	go.	In	this	way,	each
example	recipe	will	do	something	when	we	call	it	directly,	passing
information	along	to	the	previously	defined	recipes	to	produce	a	plot.

The	Series	Recipe
We	define	recipes	with	the	@recipe	macro,	exported	by	the	RecipesBase	package.
The	macro	decorates	a	function	definition	where	the	name	of	the	function	is
arbitrary.	The	function’s	signature	determines	the	type	of	recipe	created.	In
the	following	listing,	we	create	two	series	recipes.	The	signature,	a	type
followed	by	three	additional	positional	arguments	x,	y,	and	z,	tells	the
pipeline	that	these	are	series	recipes.	As	always,	the	keyword	arguments	are
not	part	of	the	function	signature	for	dispatch.	Referring	to	Listing	8-8,	we
see	that	these	recipes	will	accept	numerical	arrays	and	create	series:

using RecipesBase

@recipe function f(::Type{Val{:ebxbox}}, x, y, z; cycle=7)
    if cycle <= 2; cycle = 7; end
    ymin = similar(y)
    ymax = similar(y)
    yave = similar(y)
 ➊ seriestype := :line
    for m = 1:cycle:length(y)
        nxt = min(m+cycle-1, length(y))
        ymin[m] = ymax[m] = yave[m] = NaN
        ymin[m+1:nxt] .= minimum(y[m:nxt])
        ymax[m+1:nxt] .= maximum(y[m:nxt])
        yave[m+1:nxt] .= sum(y[m:nxt]) / (nxt - m + 1)
    end
 ➋ @series begin
        y := ymax
     ➌ linecolor --> "#ff000049"
        linewidth --> 6
    end
    @series begin
        y := ymin
        linecolor --> "#0000ff49"



        linewidth --> 6
    end

    @series begin
        y := yave
        linecolor --> "#66666649"
        linewidth --> 6
    end
end

@recipe function f(::Type{Val{:temprange}}, x, y, z)
    seriestype := :line
    legend := false
    if plotattributes[:series_plotindex] == 1
     ➍ merge!(plotattributes[:extra_kwargs], Dict(:nextfr => y[:]))
        linecolor := :blue
        linewidth := 3
    elseif plotattributes[:series_plotindex] == 2
        fillrange := plotattributes[:extra_kwargs][:nextfr]
        linecolor := :red
        linewidth := 3
        fillcolor := "#45f19655"
    else
        x := []
        y := []
    end
    ()
end

To	define	recipes,	we	need	only	import	RecipesBase.	This	is	important
because	it	means	that	packages	can	define	plotting	behaviors	without	a
dependence	on	the	large	Plots	package.	RecipesBase	is	tiny,	containing	only
about	400	lines	of	Julia.

Plot	recipes	defined	using	the	@recipe	macro	use	several	special-purpose
syntax	conveniences.	The	:=	operator	➊	makes	a	setting	in	the	plotattributes
dictionary,	which	holds	attributes	such	as	line	color—all	the	options	for	the
plot.	Here	we	set	the	seriestype	in	the	attribute	dictionary	to	:line.	This	is	the
default	series	type,	which	creates	a	continuous	line	through	the	plotted
points.	Another	option	is	:scatter,	for	plotting	individual	marks.	In	fact,	the
familiar	scatter()	function	is	a	shorthand	for	plot(; seriestype=:scatter).

The	-->	operator	➌	also	makes	settings	in	the	plotattributes	dictionary,
but,	in	this	case,	defers	to	settings	made	in	keyword	arguments	previously	in
the	pipeline.	In	a	sense,	these	are	optional,	whereas	settings	we	make	with	:=
are	important	for	the	series	under	construction.

Next	we	have	a	for	loop	that	divides	the	input	y	vector	into	segments	of



cycle	elements	and	calculates	extrema	and	an	average	for	each	segment.	It
inserts	NaNs	after	each	segment	to	separate	them	in	the	plot.

Next	come	three	blocks	preceded	by	the	@series	macro	➋.	Each	@series
block	creates	a	new	series	for	the	plot.	In	this	case,	each	will	be	a	:line	series,
since	we	make	that	setting	outside	the	blocks,	but	in	general,	they	can	be	of
different	types.	They	can	also	create	a	series	type	unknown	to	Plots,	in	which
case	the	pipeline	will	pass	the	data	on	to	the	recipe	where	the	new	series	is
defined.	There	can	be	a	chain	of	series	recipes	of	any	length.	The	data	will
pass	through	each	in	turn	until	a	recipe	creates	a	series	type	known	to	the
backend	in	use.

The	next	recipe	is	designed	to	accept	an	N×2	matrix.	It	will	plot	each	of
the	two	columns	as	lines,	the	first	in	blue	and	the	second	in	red.	It	will	fill
the	space	between	the	two	lines	using	the	fillrange	attribute.	This	presents	a
small	problem,	as	we	need	to	refer	to	the	first	column	to	define	the	fillrange
when	plotting	the	second,	but	the	pipeline	starts	afresh	for	each	column	in
the	input	data.	However,	we	know	which	column	we’re	on	by	referring	to
the	:series_plotindex	key	in	the	attribute	dictionary.	One	way	to	pass
information	between	different	columns	is	to	stuff	it	into	the	:extra_kwargs
entry	in	the	attribute	dictionary	➍.	We	call	our	new	attribute	:nextfr.

Although	we	have	in	mind	the	weather	data	types	defined	previously,
these	recipes	don’t	know	anything	about	that.	Like	all	series	recipes,	they	can
plot	any	arrays	of	numbers.	For	actual	plotting,	we	need	to	import	Plots:

using Plots

@shorthands temprange
@shorthands ebxbox

tl = [t[1] for t in wd.temps.temps]
th = [t[2] for t in wd.temps.temps]

temprange([tl th])

ebxbox(wd.rainfall)
plot!(wd.rainfall)

The	@shorthands	macro,	provided	by	RecipesBase,	takes	the	names	in	the
function	signatures	of	recipes	and	makes	function	names	that	we	can	call
directly	to	make	plots.	For	each	one,	it	makes	two	functions,	one	for	creating
a	new	plot	and	one	for	adding	to	an	existing	plot,	just	like	plot()	and	plot!().

After	transforming	the	temperature	data	in	wd	to	a	matrix,	we	can	use	the



shorthand	on	it	directly,	creating	Figure	8-6.

Figure	8-6:	A	fillrange	plot	created	by	a	series	recipe

For	Figure	8-7,	we	call	ebxbox()	on	the	rainfall	vector.	It	only	plots	the
extrema	and	mean	bars,	so	we	add	a	normal	plot	of	the	vector	using	plot!().



Figure	8-7:	A	plot	using	the	ebxbox	series	recipe

We	can	use	these	series	recipes	in	other	programs	and	as	components
within	other	pipelines.

The	Plot	Recipe
The	type	of	recipe	called	a	plot	recipe	(not	to	be	confused	with	the	general
concept)	also	transforms	series	into	other	series	or	numerical	data	into	series,
as	do	series	recipes,	but	can	create	complete	visualizations	containing
subplots	and	other	elements	as	well.	Like	all	recipes,	it’s	identified	by	its
particular	function	signature:

@recipe function f(::Type{Val{:weatherplot}}, plt::AbstractPlot; cycle=7)



    frames = get(plotattributes, :frames, 1)
    if frames > 1 layout := (2, 1) end
 ➊ cycle := cycle
    legend := false
    @series begin
     ➋ if frames > 1
            subplot := 1
            xguide := ""
            ylabel := "Temperature (°C)"
        end
     ➌ seriestype := :temprange
    end
    if plotattributes[:series_plotindex] == 3
        @series begin
            if frames > 1 subplot := 2 end
            seriestype := :ebxbox
        end
        @series begin
            if frames > 1
                subplot := 2
                title := ""
                ylabel := "Rainfall (mm)"
            else
                ylabel := "Rainfall (mm) / Temperature (°C)"
            end
            seriestype := :line
            linecolor := :aqua
            linewidth := 3
            linestyle := :dot
        end
    end
end

The	recipe	takes	input	data	in	the	form	of	an	N×3	matrix.	It	uses	a	frames
attribute,	which	we	invented	for	the	purpose,	to	decide	whether	to	place	all
the	series	in	one	plot	or	to	use	two	subplots	➋,	one	with	temperature	and
the	other	with	rainfall.	(As	in	the	case	of	the	series	recipes,	this	recipe	knows
nothing	of	our	weather-related	data	types,	so	we	can	repurpose	it	to	plot
other	types	of	data	as	well.)

The	cycle	variable	sets	the	length	of	the	segments	used	for	calculating
extrema	and	averages	in	the	third	column	of	the	input	data,	which	we	intend
to	use	for	the	rainfall	data.	We	use	7	as	a	default	value	for	this	keyword
argument,	for	weekly	summaries.	If,	however,	we	supply	the	parameter	when
calling	the	recipe	directly	or	upstream	in	the	pipeline,	we	override	the
default	by	reading	its	value	from	the	plotattributes	dictionary	➊.

The	three	@series	blocks	handle	the	first	two	columns,	containing
temperature	minimums	and	maximums,	and	the	rainfall	in	the	third	column.



The	temperature	@series	block	sets	the	series	type	to	temprange	➌,	which	won’t
work	unless	we’ve	already	defined	a	series	recipe	for	it,	as	we	did	previously.

The	purpose	of	this	recipe,	then,	is	to	use	the	visualizations	defined	in	our
series	recipes	to	create	a	graph	with	either	one	or	two	subplots,	with	labels
appropriate	for	either	case.	We	can	also	call	it	directly,	as	shown	in	Listing
8-9.

@shorthands weatherplot

weatherplot([tl th wd.rainfall])

Listing	8-9:	Calling	the	plot	recipe	with	array	data

But	we’ll	defer	this	for	now.

Type	Recipes
Referring	back	to	Listing	8-8,	we	can	see	that	type	recipes	are	the	first	recipes
in	the	pipeline	that	can	accept	user-defined	types.	They’re	the	simplest	class
of	recipe.	They	have	one	job:	to	transform	user	types	into	numerical	arrays
that	the	functions	from	Plots	can	plot	directly,	or	that	can	be	fed	into	the
following	steps	in	the	pipeline.

The	following	listing	defines	two	type	recipes;	they’re	recognized	as	such
by	their	particular	function	signatures:

@recipe function f(::Type{TempExtremes}, v::TempExtremes)
    tmin = [t[1] for t in v.temps]
    tmax = [t[2] for t in v.temps]
    [tmin tmax]
end

@recipe function f(::Type{WeatherData}, wdt::WeatherData)
    tmin = [t[1] for t in wdt.temps.temps]
    tmax = [t[2] for t in wdt.temps.temps]
    [tmin tmax wdt.rainfall]
end

The	first	recipe	takes	instances	of	the	TempExtremes	type	defined	previously
and	returns	a	matrix	with	two	columns;	the	second	transforms	WeatherData	into
a	three-column	matrix.

After	defining	these	recipes,	we	can	now	plot	either	of	these	types	directly
by	calling	plot(td)	or	plot(wd).	If	we	do	so,	we’ll	get	simple	line	plots	of	the
columns:	two	from	the	first	call	and	three	from	the	second,	as	in	Figure	8-8.



Figure	8-8:	Plotting	directly	from	a	type	recipe

We	call	plot(wd)	to	produce	Figure	8-8.	The	top	two	lines	are	the
temperature	extrema	and	the	bottom	line	is	the	rainfall.

If,	instead,	we	call	weatherplot(wd),	we	get	the	exact	same	plot	that	would
result	from	the	call	in	Listing	8-9	because	the	type	recipe	transforms	wd	into
a	three-column	matrix.	Figure	8-9	shows	the	result.



Figure	8-9:	A	plot	recipe	called	on	user	data	transformed	by	a	type	recipe

Here	the	plot	recipe	assembles	the	two	types	of	visualizations,	defined	in
series	recipes,	onto	a	single	plot,	and	adds	a	label	on	the	vertical	axis.	Since
we	don’t	define	frames,	we	get	the	default	single	frame.

User	Recipes
Now	we’ve	ascended	to	the	top	of	the	pipeline.	The	user	recipes	accept	not
only	single	user	types,	but	any	combination	of	types,	with	each	different
signature	creating	a	new	method	for	dispatch.	They	can	emit	array	data	or
other	types,	but	if	they	emit	types	other	than	array	data	we	must	have
defined	a	type	recipe	to	transform	them.

Such	is	the	case	with	the	following	user	recipe:

@recipe function f(wr::WeatherReport; frames=1)
    title := wr.notes



    frames := frames
    xlabel --> "Days from $(wr.start)"
    @series begin
        seriestype := :weatherplot
        wr.data
    end
end

The	pipeline	will	see	this	as	a	user	recipe	because	of	its	signature.	It	takes
an	instance	of	the	WeatherReport	data	type,	creates	a	title	from	its	notes	field,
and	constructs	a	useful	label	for	the	x-axis	by	referring	to	the	start	field.	It
has	a	single	@series	block,	to	which	it	passes	the	data	field.	The	series	invoked
is	the	plot	recipe	weatherplot,	but	the	data	field	is	not	an	array,	it’s	WeatherData.
The	next	step	in	the	pipeline,	the	type	recipes,	handles	any	type	conversions.
Here	the	WeatherData	instance	is	transformed	into	a	three-column	matrix	that
is	handed	off	to	the	weatherplot	recipe,	which	optionally	sets	up	the	subplots
and	passes	the	matrix	columns	to	the	series	recipes.	Calling	plot(wr; frames=2)
invokes	this	recipe	and	creates	Figure	8-10.



Figure	8-10:	The	result	of	calling	the	user	recipe

Defining	the	user	recipe	teaches	the	plot()	function	how	to	handle	a	new
data	type.	As	we’ve	seen	throughout	this	section,	we	can	enter	the	plotting
pipeline	at	any	point	for	a	different	result,	or	reuse	any	of	these	recipes	as
part	of	different	pipelines	for	handling	different	types	of	data.

The	@userplot	Macro
The	RecipesBase	package	also	exports	the	@userplot	macro,	which	is	convenient
for	defining	a	visualization	without	having	to	define	a	new	data	type:

using SpecialFunctions



@userplot Risep

@recipe function f(carray::Risep)
    seriestype := :line
 ➊ x, y = carray.args
    @series begin
        label := "Real part"
        linestyle := :solid
        x, real.(y)
    end
    @series begin
        label := "Imaginary part"
        linestyle := :dot
        x, imag.(y)
    end
end

xc = 0.01:0.001:0.1
risep(xc, expint.(1im, xc); lw=2)

The	first	line	after	the	import	creates	a	new	type	and	a	shorthand	using
its	lowercase	name.	The	user	recipe	that	we	define	using	the	name	of	the
type	is	invoked	using	the	shorthand	name.	Inside	the	recipe,	we	can	access
plot	data	using	the	args	property	➊.	The	@userplot	is	useful	when	we	want	a
shorthand	name	for	a	particular	visualization	for	an	existing	type.	In	this
case,	we	want	to	plot	complex	numbers	by	separating	their	real	and
imaginary	parts,	which	may	be	more	useful	than	the	default	treatment	given
them	by	plot().	After	defining	the	recipe,	we	can	invoke	it	directly	using	its
name	as	in	the	last	line.	The	expint()	function	is	an	exponential	integral	from
the	SpecialFunctions	package,	parameterized	by	its	first	argument.	With	the
parameter	here,	it	maps	real	numbers	to	complex	numbers.	The	result
appears	in	Figure	8-11.



Figure	8-11:	Using	@userplot	to	render	a	vector	of	complex	numbers

We	can	also	use	the	@userplot	macro	to	create	alternative	visualizations	for
user-defined	types	by	using	type	aliases	or	subtyping.

Conclusion
With	this	survey	of	the	most	important	practical	aspects	of	the	type	system,
our	introduction	to	the	Julia	language	is	complete.	The	ideas	in	this	chapter
and	the	preceding	ones	will	find	concrete	application	in	the	chapters	of	Part
II,	where	we’ll	put	Julia	to	work	to	solve	real	problems	in	a	variety	of	fields.

This	book’s	division	into	language	learning	and	application	sections	isn’t



a	strict	one,	however.	We’ve	seen	several	useful	applications	in	the	preceding
chapters,	and	the	chapters	in	Part	II	will	introduce	various	programming
techniques	and	Julia	features	in	places	where	they	can	be	immediately
applied	and	more	readily	appreciated	in	the	context	of	solving	problems.

FURTHER	READING

Details	on	performance	implications	of	one	form	of	type
instability	are	available	at
https://docs.julialang.org/en/v1/manual/performance-tips/#Avoid-
changing-the-type-of-a-variable.
Dr.	Chris	Rackauckas	gives	an	example	of	when	dynamic	dispatch
is	a	net	win	here:	https://discourse.julialang.org/t/why-type-
instability/4013/8.	This	is	a	case	where	type	instability	is	beneficial.
Interesting	information	about	π	in	Julia	is	available	at
https://julialang.org/blog/2017/03/piday/.
My	attempt	to	explain	multiple	dispatch	using	an	extended	recipe
analogy	is	available	at	https://arstechnica.com/science/2020/10/the-
unreasonable-effectiveness-of-the-julia-programming-language/.
For	a	detailed	tutorial	about	optimization	and	the	type	system,
visit	https://huijzer.xyz/posts/inference/.
Here	is	a	package	for	nice	visualization	of	type	hierarchies:
https://github.com/claytonpbarrows/D3TypeTrees.jl.
Another	approach	to	finding	and	fixing	type	instabilities	is	offered
by	the	Cthulhu	package:
https://docs.juliahub.com/Cthulhu/Dqimq/2.7.5/.

https://docs.julialang.org/en/v1/manual/performance-tips/#Avoid-changing-the-type-of-a-variable
https://discourse.julialang.org/t/why-type-instability/4013/8
https://julialang.org/blog/2017/03/piday/
https://arstechnica.com/science/2020/10/the-unreasonable-effectiveness-of-the-julia-programming-language/
https://huijzer.xyz/posts/inference/
https://github.com/claytonpbarrows/D3TypeTrees.jl
https://docs.juliahub.com/Cthulhu/Dqimq/2.7.5/
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APPLICATIONS



9
PHYSICS

Physics	is	not	a	religion.	If	it	were,	we’d	have	a	much	easier	time	raising
money.

—Leon	M.	Lederman

Julia	is	a	superb	platform	for	physics	calculations	of	all	kinds.	Various
features	of	its	syntax,	such	as	the	ability	to	use	mathematical	symbols	and	its
concise	array	operations,	make	it	a	natural	fit	for	programming	algorithms
that	we	use	in	physics.	Julia’s	speed	of	execution	makes	it	one	of	only	a	few
languages	used	for	the	most	demanding	large-scale	simulations	(and	the
others	in	this	club	are	all	lower-level,	statically	compiled	languages).	Julia’s
physics	ecosystem	includes	some	state-of-the-art	packages.	Finally,	Julia’s
unique	ability	to	mix	and	match	functions	and	data	types	from	disparate
packages	to	create	new	capabilities	is	especially	powerful	in	physics
calculations,	as	we’ll	see	in	detail	in	this	chapter.

We	begin	with	an	introduction	to	two	packages	of	general	utility	for
dealing	with	units	and	errors.	Both	of	these	are	potentially	helpful	in	any
physics	project.	We’ll	spend	some	time	in	the	first	section	looking	into
various	options	for	producing	publication-quality	plots	including	typeset
units	in	axis	labels.	Then	we’ll	turn	to	specific	calculations,	first	using	a
package	for	fluid	dynamics	and	then	using	a	general-purpose	differential



equation	solver.	See	“Further	Reading”	on	page	304	for	each	major
package’s	URL.

Bringing	Physical	Units	into	the	Computer	with	Unitful
The	traditional	way	to	perform	physics	calculations	on	a	computer	is	to
represent	physical	quantities	as	floating-point	numbers,	subject	those
numbers	to	a	long	series	of	arithmetic	operations,	and	then	interpret	the
results	again	as	physical	quantities.	Since	physical	quantities	are	usually	not
simply	numbers,	but	have	dimensions,	we	need	to	manually	keep	track	of	the
units	that	are	associated	with	these	quantities,	often	with	code	comments	to
remind	us	what	the	various	units	are.

NOTE

A	dimension	is	a	fundamental	physical	idea	encompassing	something	that	can
be	measured,	such	as	mass	or	time.	A	unit	is	a	specific	way	of	measuring	a
dimension.	The	dimensions	are	universal,	but	there	are	various	systems	of	units.
For	example,	for	the	dimension	of	length,	some	common	units	are	centimeter
(cm),	meter	(m),	or,	if	we	live	in	the	United	States,	inches	or	football	fields.

In	other	words,	the	physical	meanings	of	the	numbers	appearing	in	a
program	are	not	part	of	the	quantities	themselves,	but	are	implicit.	It	may
not	be	surprising	that	this	can	lead	to	confusion	and	errors.	In	1999,	NASA
lost	a	spacecraft	because	two	different	contractors	were	contributing	to	the
design,	and	their	engineering	programs	used	different	systems	of	units.

In	traditional	languages	for	physics,	such	as	Fortran,	not	much	can	be
done	about	this	issue	directly.	In	Julia,	because	of	its	sophisticated	type
system,	we	are	not	limited	to	collections	of	dimensionless	numbers;	we	can
calculate	with	richer	objects	including	units.

After	importing	the	Unitful	package,	we	can	refer	to	many	common
physics	units	using	a	nonstandard	string	literal	(see	“Nonstandard	String
Literals”	on	page	128)	with	the	prefix	u:

julia> using Unitful

julia> u"1m" + u"1cm"
101//100 m



julia> u"1.0m" + u"1cm"
1.01 m

julia> u"1.0m/1s"
1.0 m s^-1

Here	we	add	a	meter	and	a	centimeter,	and	receive	the	result	as	a	rational
number	of	meters.	The	package	returns	results	as	rational	numbers,	when
possible,	to	preserve	the	ability	to	carry	out	exact	conversions.	But,	as	the
second	example	shows,	we	can	coerce	a	floating-point	result	by	supplying	a
floating-point	coefficient.	The	third	example	shows	how	we	can	construct
expressions	within	the	string	literal.

You	can	find	the	complete	list	of	units	only	in	the	source	code,	in	its
GitHub	repository	at	src/pkgdefaults.jl,	but	most	of	them	follow	the	usual
physics	conventions.	Using	the	string	literal	syntax	each	time	we	want	to
refer	to	a	unit	can	be	cumbersome,	so	we	can	assign	units	to	our	own
variables	to	ease	our	typing	and	make	the	code	easier	to	read:

julia> m = u"m";

julia> 1m + u"1km"
1001 m

We	add	a	meter	to	a	kilometer,	showing	how	we	can	use	custom	variables
in	combination	with	the	string	literals.	The	result	is	1,001	meters.

We	can	parse	a	string	as	a	Unitful	expression	with	another	function
provided	by	the	package	(undocumented	at	the	time	of	writing):

julia> earth_accel = "9.8m/s^2";

julia> kg_weight_earth = uparse("kg * " * earth_accel)
9.8 kg m s^-2

Here	we	use	uparse()	to	convert	a	string,	created	by	concatenating	a	string
representing	a	mass	with	another	representing	the	gravitational	acceleration
near	the	surface	of	Earth,	into	a	unit	expression	representing	the	mass’s
weight.	The	forms	in	which	unit	expressions	appear	in	the	REPL	are	not
themselves	legal	strings	for	converting	with	uconvert().	For	example,	we	need
to	include	the	multiplication	operator	in	the	string	in	the	second	line.

Using	Unitful	Types



We	can	gain	access	to	a	large	supply	of	standard	SI	units	by	importing	the
DefaultSymbols	submodule	rather	than	defining	them	one	by	one.	This	practice
adds	a	profusion	of	names	to	our	namespace,	however,	so	it	may	not	be	a
good	idea	if	we’re	using	only	a	few	units:

julia> using Unitful.DefaultSymbols

julia> minute = u"minute"

julia> 2s + 1minute
62 s

Here	we	add	2	seconds	to	1	minute,	resulting	in	62	seconds.	The
DefaultSymbols	submodule	supplies	the	s	unit,	but	we	need	to	define	minute,	as
that’s	not	an	SI	unit.	We’re	using	Julia’s	syntax	for	multiplication	through
juxtaposition;	this	expression	is	the	same	as	2 * s + 1minute.	However,	these
variables	must	be	attached	to	numerical	coefficients	in	arithmetic
expressions;	2 * s + minute	is	a	MethodError.

We	can	find	the	reason	for	this	error	in	the	types	of	the	two	expressions:

julia> typeof(1minute)
Quantity{Int64, T, Unitful.FreeUnits{(minute,), T, nothing}}

julia> typeof(minute)
Unitful.FreeUnits{(minute,), T, nothing}

The	type	of	1minute,	which	is	the	same	as	the	type	of	1 * minute,	is	a	Quantity,
while	the	type	of	minute	is	a	FreeUnits.	Both	of	these	types	are	defined	in	the
package.	The	Unitful	package	defines	methods	for	addition	and	other
arithmetic	operations	that	accept	arguments	of	type	Quantity,	but	not	of	type
FreeUnits.

These	types	contain	parameters	appearing	as	boldface	Unicode
characters.	The	Unitful	package	uses	these	characters	to	represent
dimensions,	so	these	type	specifications	tell	us	that	the	minute	unit	has
dimensions	of	time,	represented	by	T.

The	type	of	minute	and	other	units	is	an	abstract	type	(see	“The	Type
Hierarchy”	on	page	222),	while	the	types	of	quantified	units	such	as	1minute
are	concrete.	For	good	performance,	we	should	calculate	with	concrete	types
and	define	our	own	types	with	fields	that	have	concrete	types	only.

Stripping	and	Converting	Units



Sometimes	we	need	to	remove	the	units	from	the	result	of	a	calculation—for
example,	when	passing	a	result	to	a	function	that	doesn’t	understand	units.
We	can	do	this	with	the	convert()	function:

julia> convert(Float64, u"1m/100cm")
1.0

The	type	of	the	result	is	Float64.	The	results	returned	by	Unitful
calculations	may	not	always	be	what	we	expect,	so	we	should	use	convert()
when	we	require	a	simple	number:

julia> u"1m / 100cm"
0.01 m cm^-1

julia> typeof(u"1m/100cm")
Quantity{Float64, NoDims, Unitful.FreeUnits{(cm^-1, m), NoDims, nothing}}

Here	we	divide	a	length	by	another	length,	so	the	result	should	be	the	simple
number	1.0	(because	the	lengths	are	equal)	with	no	dimensions.	The	actual
result	is	equivalent	to	that,	but	it’s	expressed	in	an	obscure	form.	Checking
the	type	of	the	result,	we	find	that	it’s	the	concrete	Unitful	type	Quantity,	with
type	parameters	indicating	that	it	has	no	dimensions.

If	we	use	the	same	literal	unit	in	the	numerator	and	denominator,	we	get
a	result	that	may	be	closer	to	what	we	expect:

julia> u"1m / 2m"
0.5

julia> typeof(u"1m / 2m")
Float64

A	further	example	shows	that	Unitful	is	consistent	in	retaining	the	units	we
use	in	expressions	instead	of	making	conversions	that	might	seem	obvious	to
a	physicist:

julia> u"1m * 1m"
1 m^2

julia> u"1m * 100cm"
100 cm m

The	two	input	expressions	mean	the	same	thing,	but	lead	to	equivalent
results	that	are	expressed	differently.

The	function	upreferred()	from	Unitful	converts	expressions	so	they	use	a



standard	set	of	units.	The	user	can	establish	preferred	systems	of	units,	but
the	default	behavior	uses	conventional	SI	units:

julia> u"1m * 100cm" |> upreferred
1//1 m^2

In	addition	to	converting	to	a	number	with	convert(),	we	can	use	uconvert(),
which	is	part	of	Unitful,	to	convert	between	units:

julia> uconvert(u"J", u"1erg")
1//10000000 J

julia> uconvert(u"kg", u"2slug")
29.187805874412728 kg

The	function	takes	the	unit	to	convert	to	in	its	first	argument	and	the
expression	to	convert	in	its	second	argument.	In	the	first	example	we	convert
from	ergs	to	joules.	As	both	are	metric	units	related	by	an	exact	ratio,
uconvert()	supplies	the	answer	using	a	rational	coefficient.	The	second
example	is	a	conversion	from	the	US	unit	of	mass,	slugs,	to	kilograms,	the
standard	SI	unit	used	in	physics.	The	conversion	factor	is	a	floating-point
number.

Listing	9-1	shows	another	way	to	extract	the	purely	numerical	part	of	a
Unitful	expression	with	ustrip().

julia> vi = 17u"m/s"
17 m s^-1

julia> vf = 17.0u"m/s"
17.0 m s^-1

julia> ustrip(v), ustrip(vf)
(17, 17.0)

Listing	9-1:	Stripping	units	with	ustrip()

The	ustrip()	function	preserves	the	numerical	type	in	the	expression.
To	extract	just	the	unit	from	a	Unitful	expression,	the	package	provides

the	unit()	function,	as	shown	in	Listing	9-2.

julia> unit(vi)
m s^-1

Listing	9-2:	Extracting	units	with	unit()



We’ll	find	applications	for	ustrip()	and	unit()	in	“Plotting	with	Units”	on
page	276.

Typesetting	Units
Using	the	UnitfulLatexify	package,	we	can	turn	our	Unitful	expressions	into
LaTeX-typeset	mathematics:	either	as	LaTeX	source	ready	to	be	dropped
into	a	research	paper	or	as	a	rendered	image.	Here	is	a	simple	example:

julia> using Unitful, Latexify, UnitfulLatexify

julia> 9.8u"m/s^2" |> latexify
L"$9.8\;\mathrm{m}\,\mathrm{s}^{-2}$"

The	latexify()	function	transforms	the	Unitful	expression	for	Earth’s
gravitational	acceleration	into	a	LaTeX	string.	We	encountered	La
TeXstrings	in	Listing	4-1,	when	we	used	one	to	generate	a	title	for	a	graph.
The	UnitfulLatexify	package	combines	the	LaTeX	abilities	in	Latexify	with
Unitful,	which	is	why	we	need	to	import	all	three	packages,	as	we	did	at	the
start	of	this	example.

When	used	in	the	REPL	or	another	nongraphical	context,	latexify()
produces	LaTeX	markup	ready	to	be	copied	and	pasted	into	a	document.
We	can,	instead,	create	a	PDF	image	of	the	result	by	passing	it	to	the	render()
function.	To	do	that,	you	need	to	have	the	external	program	LuaLaTeX,	which
is	part	of	standard	LaTeX	installations,	installed.	If	that	program	is	available,
render()	will	use	it	to	typeset	the	LaTeX	string	and	immediately	display	it
with	the	default	PDF	viewer.	The	render()	process	litters	your	temporary
directory	with	files	for	every	rendered	expression,	which	is	something	to
keep	an	eye	on.

When	using	UnitfulLatexify	in	a	graphical	environment,	such	as	a	Pluto
notebook,	the	output	is	rendered	as	LaTeX	rather	than	LaTeX	source.	In
most	environments,	typesetting	uses	a	built-in	engine	rather	than	an	external
program,	so	no	additional	installations	are	required.	For	example,	Pluto	uses
MathJax,	a	JavaScript	library	for	LaTeX	mathematical	typesetting.
Figure	9-1	shows	a	Pluto	session	with	Newton’s	Second	Law	of	Motion.



Figure	9-1:	Using	UnitfulLatexify	in	Pluto

In	the	final	cell	in	Figure	9-1,	we	convert	the	acceleration	to	a	more
conventional	combination	of	units	and	pass	the	result	to	latexify().	The
typeset	version	appears	as	the	result.	MathJax	provides	a	contextual	menu
when	right-clicking	on	the	result	that	gives	us	access	to	the	LaTeX	source.

If	the	use	of	negative	exponents	in	unit	expressions	is	not	to	our	taste,	we
can	pass	the	permode	keyword	to	tell	latexify()	to	use	other	styles.	Here’s	an
example	that	demonstrates	the	default	and	the	two	options	for	permode:

julia> a = 0.0571u"m/s^2"

julia> """



       a = $(latexify(a))

       or

       $(latexify(a; permode=:frac))

       or

       $(latexify(a; permode=:slash))

       """ |> println
a = $0.0571\;\mathrm{m}\,\mathrm{s}^{-2}$

or

$0.0571\;\frac{\mathrm{m}}{\mathrm{s}^{2}}$

or

$0.0571\;\mathrm{m}\,/\,\mathrm{s}^{2}$

The	example	uses	the	existing	definition	for	a.	The	:frac	option	uses
LaTeX	fractions	instead	of	negative	exponents,	and	the	:slash	option	uses	a
slash,	which	is	usually	better	for	inline	math.

Pasting	the	output	in	the	previous	listing	into	the	LaTeX	source	of	this
book	shows	the	rendered	result:

a	=	0.0571	m	s−2

or

0.0571	

or

0.0571	m/s2

We	can	change	the	default	mode	for	rendering	units	with	the
set_default(permode=:slash)	command.

Plotting	with	Units
Listing	9-3	shows	how	Plots	knows	how	to	handle	Unitful	quantities.

julia> using Plots, Unitful
julia> mass = 6.3u"kg";
julia> velocity = (0:0.05:1)u"m/s";
julia> KE = mass .* velocity.^2 ./ 2;
julia> plot(velocity, KE; xlabel="Velocity", ylabel="KE",



       lw=3, legend=:topleft, label="Kinetic Energy")

Listing	9-3:	Plotting	Unitful	arrays

Here	we	import	Plots,	which	we	need	for	plotting,	and	Unitful,	to	handle
units.	After	defining	a	mass	in	kilograms	and	a	range	of	velocities	in	meters
per	second,	we	create	an	array	of	kinetic	energies,	KE,	from	the	fact	that
kinetic	energy	=	1/2	mass	×	velocity2.	The	new	package	gives	the	plotting
functions	in	Plots	the	ability	to	handle	quantities	with	units	and	automatically
appends	the	units	to	the	axis	labels.	Figure	9-2	shows	the	result	of	the	plot()
statement.

Figure	9-2:	The	plot	that	Listing	9-3	generates



I’ve	left	the	energy	units	alone	for	this	example,	but	more	conventional
physics	usage	would	involve	a	conversion	to	joules	using	uconvert(),	which	we
could	have	done	before	the	plotting	call	or	inline	within	plot().

We	were	able	to	create	this	graph	with	the	same	plot()	call	that	we	might
have	used	to	plot	the	same	quantities	stored	in	numerical	arrays	without
units.	All	the	plotting	functions	in	Plots,	such	as	scatter()	and	surface(),	work
with	Unitful	arrays	to	produce	similar	axis	labels.

Making	Plots	for	Publication
When	attempting	to	make	high-quality	plots	for	publication,	however,	we
encounter	some	shortcomings.	While	Plots	aspires	to	create	a	unified
interface	to	a	variety	of	backends,	each	plotting	engine	works	somewhat
differently,	with	each	having	unique	capabilities	and	limitations.

These	differences	among	backends	become	more	salient	when	we	are
making	the	final	adjustments	that	accompany	the	preparation	of	graphs	for
publication.	It	is	at	this	stage	that,	for	example,	the	typographic	details	in
labels	and	annotations	become	important.	Figure	9-2	was	created	using	the
GR	backend,	which,	as	mentioned	in	“Useful	Backends”	on	page	115,	is	the
default	at	the	time	of	writing,	and	is	fast	and	capable.

Figure	9-2	may	be	acceptable	as	is,	but	for	publication	we	may	want	to
improve	the	appearance	of	its	graph	labels,	especially	to	make	the	unit
notations	look	like	conventional	mathematical	notation.	As	we	saw	in
“LaTeX	Titles	and	Label	Positioning	by	Data”	on	page	103,	we	can	use
LaTeX	notation	in	graph	annotations	with	mathematical	content.	This	also
works	for	the	automatic	labeling	using	units	with	the	packages	we’ve	already
imported:

julia> using Plots, Unitful, Latexify, UnitfulLatexify

julia> plot(velocity, KE; xlabel="\\textrm{Velocity}",
       ylabel="\\textrm{KE}", unitformat=latexroundunitlabel)

The	example	repeats	the	plot	command	from	Listing	9-3,	but	with	some
alterations	to	create	LaTeX	strings	for	the	plot	labels.	The	unitformat
keyword	processes	the	unit	annotations	through	latexify(),	with	the	value
latexroundunitlabel	retaining	the	parentheses	around	the	units.	Since	this
triggers	placing	the	entire	label	into	a	LaTeX	string,	we	also	need	to	wrap
the	non-math	parts	of	the	labels	in	LaTeX	commands	to	set	them	as	normal



text	instead	of	math.

The	GR	Backend
The	results	of	this	approach	depend	critically	on	what	backend	we’re	using.
Obviously,	it	makes	sense	to	use	LaTeX	strings	only	with	backends	that	can
do	something	with	them.	Although	the	default	GR	backend	can	interpret
LaTeX,	the	results	are	not	always	adequate.	This	engine	includes	its	own
version	of	LaTeX	processing,	which	often	creates	poor-quality	typesetting
with	faulty	kerning.	The	LaTeX	engine	in	GR	is	the	focus	of	some
development	activity,	however,	so	its	performance	may	improve.

Good-quality	typesetting	of	labels	in	most	cases	requires	processing	by	an
external	TeX	engine,	which	involves	a	TeX	installation	such	as	TeXLive.	As
many	physicists	and	other	scientists	have	already	made	such	an	installation,
we’ll	move	on	to	considering	options	that	take	advantage	of	it.

The	Gaston	Backend
Gnuplot	can	optionally	be	compiled	with	support	for	the	tikz	terminal,
which	saves	plots	as	text	files	containing	TikZ	commands.	(TikZ	is	a
graphics	language	that	comes	with	most	full-featured	TeX	installations.)
Such	files	are	processed	with	LaTeX	and	can	contain	TeX	or	LaTeX
markup	for	the	annotations	on	the	plot.	The	result	is	of	the	highest	quality,
with	fonts	and	styles	that	match	the	document	in	which	the	plot	is	included.
Unfortunately,	at	the	time	of	writing,	the	Gaston	backend,	which	uses
gnuplot,	does	not	properly	support	the	tikz	terminal,	so	this	option	is	off	the
table.	It’s	being	worked	on,	however,	and	once	we	can	use	Gaston	with	tikz,	it
will	be	the	best	option	for	complex	plots	for	publication	or	when	the	best
typographic	quality	is	desired.

The	PGFPlotsX	Backend
Another	backend	that	can	make	use	of	LaTeX	strings	is	PGFPlotsX,	which	is
invoked	with	the	pgfplotsx()	function.	This	backend	creates	plots	by	calling
out	to	the	LuaLaTeX	TeX	engine,	which	comes	with	most	TeX
installations,	including	TeXLive.	Since	LuaLaTeX	does	all	the	typesetting,
the	labels	come	out	with	TeX-level	quality.	This	backend	is,	therefore,	an



excellent	choice	for	publication-quality	graphs.	Gaston	may	still	be	the	best
future	choice	for	complex	plots	because	processing	through	LuaLaTeX	can
be	far	slower	than	through	gnuplot	if	the	plot	contains	a	large	number	of
elements,	such	as	in	a	large	scatterplot.

Handling	Units	Manually
Unfortunately,	PGFPlotsX	does	not	work	properly	with	Unitful,	not	taking	TeX
processing	into	account.	This	limitation	provides	the	opportunity	to
demonstrate	a	different	way	of	plotting	Unitful	quantities	and	labeling	axes
with	units—one	that	affords	us	complete	control	over	the	details.

The	following	listing	contains	the	definition	of	a	function	that	accepts
two	Unitful	arrays	for	plotting,	along	with	keyword	arguments	for	labels:

using Plots, LaTeXStrings, Latexify, UnitfulLatexify

function plot_with_units(ux, uy; xl="", yl="", label="",
                         legend=:topleft, plotfile="plotfile")

    set_default(permode=:slash)
    x = ustrip(ux); y = ustrip(uy)
 ➊ xlabel = L"$\textrm{%$xl}$ (%$(latexify(unit(eltype(ux)))))"
    ylabel = L"$\textrm{%$yl}$ (%$(latexify(unit(eltype(uy)))))"

    plot(x, y; xlabel, ylabel, lw=2, label, legend)
 ➋ savefig(plotfile * ".tex")
    savefig(plotfile * ".pdf")

end

Using	the	ustrip()	and	unit()	functions	(see	Listings	9-1	and	9-2),	this	code
separates	the	arrays	from	their	associated	units,	plotting	the	numerical	parts
and	using	the	unit	parts	to	construct	labels	with	the	LaTeXStrings	package.

In	order	to	interpolate	values	into	a	LaTeXStrings	string,	we	need	to	use	the
two	characters	%$	rather	than	a	simple	$	➊.	When	extracting	the	units	from
the	arrays,	we	require	the	units	of	the	elements	of	the	array,	which	is	why
eltype()	appears	in	the	label	assignment.	The	function	saves	both	the	stand-
alone	PDF	version	of	the	graph	and	its	TeX	version	➋	for	including	in	a
LaTeX	document.

After	selecting	the	desired	backend,	we	call	the	function	to	create	the	.pdf
and	.tex	files	with	the	default	names:



pgfplotsx()
plot_with_units(velocity, KE; xl="Velocity", yl="K. E.")

Figure	9-3	shows	the	result.

Figure	9-3:	A	PGFPlotsX	plot	with	typeset	unit	labels

Typesetting	by	LuaTeX	provides	the	excellent	quality	of	the	labels	in
Figure	9-3.

Error	Propagation	with	Measurements
In	the	previous	section	we	explored	a	package	that	extended	the	concept	of



numbers	to	include	physical	units.	Here	we’ll	meet	Measurements,	another
package	that	defines	a	number-like	object	useful	for	calculations	in	physics
or	nearly	any	empirical	science.

The	Measurements	package	allows	us	to	attach	uncertainties	to	numbers.
The	number	in	question	must	be	convertible	to	a	float,	so	we	can	attach
uncertainties	directly	to	Float64	numbers,	integers,	and	Irrational	quantities.
(We	can	also	create	complex	numbers	with	uncertainties,	if	we	really	want
to,	by	attaching	errors	to	their	real	and	imaginary	parts.)	The	Measurements
package	defines	a	new	data	type,	called	Measurement{T},	where	T	can	be	any	size
float.	We	can	perform	any	arithmetic	operations	on	Measurement	types	that	are
allowed	on	floats,	and	the	errors,	or	uncertainties,	will	be	propagated	to	the
result	using	standard	linear	error	propagation	theory.

Here	are	some	examples	of	creating	instances	of	Measurement	types:

   julia> using Measurements

   julia> 92 ± 3
   92.0 ± 3.0

   julia> typeof(ans)
   Measurement{Float64}

➊ julia> 92.0f0 ± 3
   92.0 ± 3.0

   julia> typeof(ans)
   Measurement{Float64}

   julia> 92.0f0 ± 3f0
   92.0 ± 3.0

   julia> typeof(ans)
   Measurement{Float32}

   julia> big(1227.0) ± 2
   1227.0 ± 2.0

   julia> typeof(ans)
   Measurement{BigFloat}

We	create	Measurement	objects	using	a	notation	that	will	be	familiar	to
scientists.	We	can	type	the	±	operator	by	entering	\pm	in	the	REPL	and
pressing	TAB	or	by	using	the	operating	system’s	entry	method	for	special
characters.

In	the	REPL,	the	ans	variable	holds	the	most	recently	returned	result.



Since	Measurement	objects	have	only	one	type	parameter,	the	base	number	and
the	error	must	be	of	the	same	type.	As	the	typeof()	calls	show,	Measurements
promotes	the	smaller	type	as	needed;	the	f0	suffix	is	a	way	to	enter	32-bit
float	literals	➊.

The	package	treats	significant	digits	intelligently:

julia> π ± 0.001
3.1416 ± 0.001

julia> π ± 0.01
3.142 ± 0.01

The	digits	made	insignificant	by	the	error	are	not	printed.
When	printing	results	in	the	REPL,	the	package	displays	only	two

significant	digits	in	the	error,	to	keep	things	neat:

julia> m1 = 2.20394232 ± 0.00343
2.2039 ± 0.0034

julia> Measurements.value(m1)
2.20394232

julia> Measurements.uncertainty(m1)
0.00343

However,	it	retains	the	full	values	internally	for	computations.	We	can
access	these	components	with	the	value()	and	uncertainty()	functions	shown
here,	which,	as	they	are	not	exported,	we	need	to	qualify	with	the	package
namespace.

Scientists	often	use	an	alternative,	convenient	notation	to	express
uncertainty	by	appending	the	error	in	the	final	significant	digits	within
parentheses.	The	Measurements	package	understands	this	notation	as	well:

julia> emass = measurement("9.1093837015(28)e-31")
9.1093837015e-31 ± 2.8e-40

In	order	to	use	the	notation,	we	need	to	employ	the	measurement()	function
and	supply	the	argument	as	a	string.	We	can	also	use	measurement()	as	an
alternative	to	the	±	operator:

julia> m1 = measurement(20394232, 0.00343)
2.0394232e7 ± 0.0034



Arithmetic	operations	propagate	errors	correctly:

julia> emass
9.1093837015e-31 ± 2.8e-40

julia> 2emass
1.8218767403e-30 ± 5.6e-40

julia> emass + emass
1.8218767403e-30 ± 5.6e-40

julia> emass/2
4.5546918508e-31 ± 1.4e-40

julia> emass/2emass
0.5 ± 0.0

All	these	examples	perform	arithmetic	as	might	be	expected	on	the
quantities	and	their	errors.	More	interesting	is	the	last	example,	where
Measurements	has	recognized	a	ratio	that	has	no	error.	The	package	maintains
the	notion	of	correlated	and	independent	measurements,	which	is	explained
in	its	documentation.	See	“Further	Reading”	on	page	304	for	the	URL.

Referring	back	to	the	example	in	Listing	9-3,	we	can	add	an	uncertainty
to	the	Unitful	value	for	mass	in	two	ways:

julia> using Measurements, Unitful

julia> mass = 6.3u"kg" ± 0.5u"kg"
6.3 ± 0.5 kg

julia> mass = 6.3u"kg"; mass = (1 ± 0.5/6.3) * mass
6.3 ± 0.5 kg

This	example	shows	that	the	packages	Measurements	and	Unitful	can	work
together	to	create	quantities	with	both	units	and	uncertainties.

Let’s	continue	with	the	example	from	Listing	9-3	using	this	new	value	for
mass:

julia> using Plots

julia> velocity = (0:0.05:1)u"m/s";

julia> KE = mass .* velocity.^2 ./ 2;

julia> plot(velocity, uconvert.(u"J", KE); xlabel="Velocity", ylabel="K.E.",
       lw=2, legend=:topleft, label="Kinetic energy")



Although,	as	before,	velocity	has	no	uncertainty	attached	to	it,	mass	does;
therefore,	KE	should	also	contain	uncertainties.

Figure	9-4	shows	the	result.

Figure	9-4:	Plotting	with	units	and	errors

Figure	9-4	shows	the	Unitful	arrays	plotted	as	before	with	the	axes	labeled
with	their	units.	It	also	has	error	bars,	showing	how	the	error	increases	as	the
kinetic	energy	increases.	We	didn’t	have	to	change	anything	in	the	call	to
plot().	Somehow	the	type	of	the	quantities	to	be	plotted	triggered	the
plotting	function	to	use	both	unit	labels	and	error	bars.	We	would	observe
the	same	behavior	with	the	other	plotting	functions	in	Plots,	such	as	scatter()
or	surface().



Fluid	Dynamics	with	Oceananigans
The	Oceananigans	package	for	fluid	dynamics	simulations	is	especially	well
suited,	as	the	name	suggests,	to	the	physics	of	the	ocean.	It	provides	a
simulation	construction	kit	that	can	include	the	effects	of	temperature	and
salinity	variations,	Earth’s	rotation,	wind,	and	more.	Its	defaults	usually
perform	well,	but	it’s	flexible	enough	that	the	user	can	specify	one	of	several
available	solution	methods.	It	has	various	physics	models	built	in,	including	a
linear	equation	of	state,	but	makes	it	easy	to	substitute	others	of	the	user’s
devising.

The	Physical	System
We	are	setting	out	to	simulate	a	two-dimensional	layer	of	fluid	in	Earth’s
gravitational	field.	The	bottom	of	the	layer	is	maintained	at	a	higher
temperature	than	the	top.	This	heating	from	below	creates	a	convective
motion,	as	can	be	seen	in	clouds	or	in	a	pan	on	the	stove.

NOTE

Oceananigans	depends	on	some	compiled	binaries	in	the	standard	library.	If	the
precompilation	of	Oceananigans	fails	and	you’re	using	a	recent	or	beta	version	of
Julia,	try	it	with	an	earlier	Julia	release	(the	previous	major	version	number).

The	bottom	and	top	simulation	boundaries	are	impenetrable	and	freeslip,
which	means	the	fluid	can	slide	across	them.	Horizontally,	we	impose	a
periodic	boundary	condition,	requiring	the	solution	to	wrap	around	and	be
the	same	on	the	left	and	right	boundaries.	The	horizontal	direction	is	x	and
the	vertical	direction	is	z.	We	start	the	fluid	at	rest	and	are	interested	in	the
pattern	of	motion	that	the	temperature	difference	creates.

Figure	9-5	shows	the	setup	of	the	simulated	system.	The	gray	area
represents	the	fluid,	and	the	thick	black	horizontal	lines	indicate	the
constant-temperature	boundaries.



Figure	9-5:	The	simulation	box

The	Luxor	program	(see	“Diagramming	with	Luxor”	on	page	190)	that
created	this	diagram	is	available	in	the	Physics	section	of	the	online
supplement	at	https://julia.lee-phillips.org.

A	fluid	dynamics	simulation	contains	many	pieces	that	we’ll	need	to
construct	separately	before	we	can	begin	the	calculation.	In	the	following
subsections,	we’ll	define	the	computational	grid,	the	boundary	conditions,
the	diffusivity	models,	and	the	equation	of	state,	and	establish	the	boundary
conditions	and	the	hydrodynamic	model,	in	that	order.	After	all	the	pieces
are	in	place,	we’ll	run	the	Oceananigans	simulation	and	visualize	the	results.

The	Grid
To	put	together	an	Oceananigans	simulation,	we’ll	define	its	various
components	using	functions	exported	by	the	package,	and	then	define	a
model	using	the	model()	function,	passing	in	the	components	as	arguments.
For	this	example	we’ll	use	a	grid,	a	buoyancy	model	that	specifies	the	fluid’s
equation	of	state,	a	set	of	boundary	conditions,	the	coefficients	of	viscosity
and	thermal	diffusivity	(material	properties	of	the	fluid),	and	initial
conditions	on	the	temperature	within	the	fluid.	We	won’t	include	the	effects
of	Earth’s	rotation,	salinity,	or	wind,	but	these	ingredients	are	available	for
use	in	other	Oceananigans	models.

The	grid	is	defined	by	its	computational	size	(how	many	grid	points	exist
in	each	direction),	its	extent	(the	physical	lengths	represented	by	these
directions),	and	its	topology,	which	is	the	term	Oceananigans	uses	for	what
boundary	conditions	hold	in	each	direction.	For	our	problem	we	define	the
grid	this	way:

julia> using Oceananigans

https://julia.lee-phillips.org


julia> grid = RectilinearGrid(size=(256, 32);
              topology=(Periodic, Flat, Bounded),
              extent=(256, 32))
 256×1×32 RectilinearGrid{Float64, Periodic, Flat, Bounded} on CPU with 3×0×3 halo
|-- Periodic x ∈ [0.0, 256.0)     regularly spaced with Δx=1.0
|-- Flat y
-- Bounded  z ∈ [-32.0, 0.0]      regularly spaced with Δz=1.0

The	RectilinearGrid()	function	that	Oceananigans	provides	constructs	grids	as
one	of	many	data	types	defined	in	the	package.	We	assign	the	grid	to	our
own	variable,	grid,	for	use	later	when	creating	the	model.	We	could	have
chosen	any	name	for	this	variable,	but	grid	is	the	name	of	the	relevant
keyword	argument	accepted	by	the	model	construction	function;	using	the
same	names	for	our	own	variables	will	keep	everything	neat.

In	the	topology	keyword	argument,	we	list	the	boundary	conditions	in	the
x,	y,	and	z	directions,	with	z	pointing	upward.	The	boundary	condition	Flat
means	that	we’re	not	using	(in	this	case)	the	y	direction.	This	call	defines	a
two-dimensional,	x–z	grid,	with	periodic	boundaries	in	x	and	impenetrable
boundaries	in	z.	Oceananigans	uses	a	kilogram-meter-second	unit	system.
Because	we	set	the	extent	to	be	equal	to	the	size,	the	grid	spacing	is	one	unit
in	length	along	each	dimension,	giving	us	a	fluid	layer	256	meters	wide	and
32	meters	tall.

As	the	example	shows,	Oceananigans	has	useful	forms	for	representing	its
data	types	in	the	REPL,	summarizing	the	salient	information	for	our
inspection.	Here	the	output	provides	us	with	a	summary	of	the	grid
parameters	and	boundary	conditions.

The	Boundary	Conditions
We	define	any	boundary	conditions	on	physical	variables	as	a	separate
component,	which	is	also	eventually	passed	into	model().	We	want	to	impose
constant	values	of	temperature	on	the	top	and	bottom	boundaries;
Oceananigans	sets	this	type	of	boundary	condition	with	the
FieldBoundaryConditions()	function,	as	it	sets	boundary	conditions	on,	in	this
case,	the	temperature	field.	We	can	use	Oceananigans’s	convenient	definitions
of	top	and	bottom,	which	have	their	intuitive	meaning	(there	are	also	north,
south,	east,	and	west,	which	we	don’t	need	in	this	problem):

julia> bc = FieldBoundaryConditions(
               top=ValueBoundaryCondition(1.0),
               bottom=ValueBoundaryCondition(20.0))



Oceananigans.FieldBoundaryConditions, with boundary conditions
|-- west: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
|-- east: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
|-- south: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
|-- north: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)
|-- bottom: ValueBoundaryCondition: 20.0
|-- top: ValueBoundaryCondition: 1.0
-- immersed: DefaultBoundaryCondition (FluxBoundaryCondition: Nothing)

The	immersed	boundary	refers	to	one	that	exists	inside	the	fluid	volume,	but
we’re	not	using	that	one,	nor	any	of	the	other	myriad	options,	such	as
defined	gradients	or	fluxes.	The	ValueBoundaryCondition	that	we	use	sets	a
constant	value	for	a	variable	on	the	specified	boundary.

The	Diffusivities
We	need	to	assign	values	to	two	constants	that	describe	some	of	the	fluid’s
material	properties;	this	is	part	of	the	problem	definition.	The	viscosity
coefficient	(ν)	determines	how	“thick”	the	fluid	is,	and	the	thermal	diffusivity
(κ)	determines	how	readily	it	conducts	heat.	These	values	are	passed	to	the
model	in	the	closure	keyword	and	can	be	set	through	the	ScalarDiffusivity()
function:

julia> closure = ScalarDiffusivity(ν=0.05, κ=0.01)

The	symbol	for	viscosity	is	the	Greek	letter	nu	and	that	for	thermal
diffusivity	is	kappa.	Like	all	Greek	letters,	we	can	precede	their	names	with	a
backslash	and	then	press	TAB	to	enter	them	in	the	REPL.

The	Equation	of	State
The	equation	of	state	is	a	function	that	describes	how	the	density	of	the	fluid
at	any	point	depends	on	the	temperature	and	salinity	there	(the	assumption
of	incompressibility	usually	used	in	Oceananigans	models	means	that	density	has
no	dependence	on	pressure).	Our	model	is	salt	free,	but	our	fluid	will	be
lighter	when	it’s	hotter.	This	is	what	will	cause	the	fluid	to	move,	as	the
lighter	parts	will	rise	and	the	heavier	parts	will	sink,	driven	by	gravity.

The	model()	function	expects	the	keyword	buoyancy,	so	we’ll	use	that	too:

julia> buoyancy = SeawaterBuoyancy(equation_of_state=
                  LinearEquationOfState(thermal_expansion=0.01,
                  haline_contraction=0))
SeawaterBuoyancy{Float64}:



|-- gravitational_acceleration: 9.80665
-- equation of state: LinearEquationOfState(thermal_expansion=0.01, haline_contraction=0.0)

Oceananigans	offers	many	other	options,	including	the	ability	to	define	our
own	equation	of	state,	but	we’ll	keep	the	model	simple.	The	SeawaterBuoyancy
component	deals	with	buoyancy	by	combining	gravity	(with	the	default
Earth	value	given	here)	with	density	variations.	As	we’re	not	interested	in
salinity	effects	for	this	calculation,	we	set	haline_contraction	to	0	(“haline”	is
essentially	a	synonym	for	saline	used	by	oceanographers).

The	Model	and	Initial	Conditions
Now	that	we	have	all	the	pieces	set	up,	we	can	put	them	together	into	a
model,	the	Oceananigans	term	for	the	definition	of	the	computational	problem,
including	all	the	physics	along	with	the	grid	and	the	boundary	conditions:

julia> model = NonhydrostaticModel(;
                  grid, buoyancy, closure,
                  boundary_conditions=(T=bc,), tracers=(:T, :S))
NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)
|-- grid: 256×1×32 RectilinearGrid{Float64, Periodic, Flat, Bounded}
 ➊ on CPU with 3×0×3 halo
|-- timestepper: QuasiAdamsBashforth2TimeStepper
|-- tracers: (T, S)
|-- closure: ScalarDiffusivity{ExplicitTimeDiscretization}
    (ν=0.05, κ=(T=0.01, S=0.01))
|-- buoyancy: SeawaterBuoyancy with g=9.80665 and
    LinearEquationOfState(thermal_expansion=0.01, haline_contraction=0.0)
    with -ĝ = ZDirection
-- coriolis: Nothing

The	package	prints	a	nice	summary	of	the	result,	including	a	reminder	of
some	(but	not	all)	of	the	features	we’re	not	using,	such	as	the	coriolis	force
from	Earth’s	rotation.

The	NonhydrostaticModel()	function	creates	a	model	using	the	approximation
appropriate	to	our	problem.	Oceananigans	offers	several	other	choices,
including	a	hydrostatic	model	to	simulate	surface	waves.

We	use	the	abbreviated	form	of	passing	keyword	arguments	explained	in
“Concise	Syntax	for	Keyword	Arguments”	on	page	154.

Our	boundary	condition	bc	doesn’t	refer	to	any	particular	physical
variable;	it	simply	defines	a	constant	field	value	on	the	boundaries.	The
named	tuple	assigned	to	boundary_conditions	enforces	them	on	T,	the	variable
used	in	Oceananigans	for	the	temperature.



The	printed	result	refers	to	the	CPU	➊,	which	means	that	this	model	is
intended	for	“normal”	machine	architectures.	The	other	option	is	to
calculate	on	GPUs	(graphics	processing	units).	The	halo	refers	to	the	several
points	outside	the	physical	grid	that	the	numerical	algorithm	uses	to	enforce
the	boundary	conditions	or	other	constraints.

The	final	keyword	argument,	tracers,	tells	the	model	to	keep	track	of	the
temperature	and	salinity	as	those	scalar	fields	are	advected	around	the	fluid.
We’re	required	to	include	:S	even	though	our	equation	of	state	means	it	will
have	no	effect.

The	fluid	layer	heated	from	below	defined	by	our	model	is	physically
unstable,	which	means	that	a	small	perturbation	to	its	initial,	motionless	state
will	be	magnified	and	develop	into	a	state	with	some	form	of	persistent
motion,	driven	by	the	temperature	difference	and	the	gravitational	field.	It	is
the	development	of	the	instability	that	we	want	to	study.	We	need	to	add	the
small	perturbation,	or	else,	even	though	the	system	is	unstable,	it	will	never
move.

The	set!()	function	lets	us	create	any	desired	initial	condition	on	any	of
the	fields.	We’ll	use	it	to	add	a	small,	random	perturbation	to	the
temperature	field	throughout	the	fluid	volume:

julia> tper(x, y, z) = 0.1 * rand()
tper (generic function with 1 method)

julia> set!(model; T = tper)

The	function	is	spelled	with	an	exclamation	point	to	remind	us	that	it
mutates	its	arguments:	it	alters	the	T	field	in	place,	and	the	model	as	well.

The	Simulation
Next	we	need	to	create	a	simulation,	using	the	Simulation()	function.	This
object	will	receive	the	model	as	its	positional	argument,	along	with	keyword
arguments	for	the	timestep	and	when	to	stop	the	calculation.	It	will	keep
track	of	how	much	simulation	time	and	wall-clock	time	has	elapsed	and	the
state	of	all	the	physical	fields.	This	allows	us	to	continue	the	simulation	after
the	requested	start	time	if	we	want,	save	the	progress	of	the	simulation	in
files,	and	retrieve	the	fields	for	examination	and	plotting.

julia> simulation = Simulation(model; Δt=0.01, stop_time=1800)
Simulation of NonhydrostaticModel{CPU, RectilinearGrid}(time = 0 seconds, iteration = 0)



|-- Next time step: 10 ms
|-- Elapsed wall time: 0 seconds
|-- Wall time per iteration: NaN years
|-- Stop time: 30 minutes
|-- Stop iteration : Inf
|-- Wall time limit: Inf
|-- Callbacks: OrderedDict with 4 entries:
|   |-- stop_time_exceeded => Callback of stop_time_exceeded on IterationInterval(1)
|   |-- stop_iteration_exceeded => Callback of stop_iteration_exceeded on IterationInterval(1)
|   |-- wall_time_limit_exceeded => Callback of wall_time_limit_exceeded on IterationInterval(1)
|    -- nan_checker => Callback of NaNChecker for u on IterationInterval(100)
|-- Output writers: OrderedDict with no entries
-- Diagnostics: OrderedDict with no entries

This	is	a	simple	call,	as	model	already	contains	all	the	details	of	the
problem.	We	get	a	summary	of	various	options	for	the	simulation,	most	of
which	we	didn’t	use.	If	you	want	to	use	the	delta	for	the	time	interval	in	the
REPL,	enter	\Delta	and	press	TAB.

Before	running	the	simulation,	let’s	arrange	for	the	velocity	and
temperature	fields	to	be	stored	on	disk	at	regular	intervals	so	we	can	see	its
development	over	time	(if	we	don’t	do	this,	we’ll	see	only	the	final	state	of
the	simulation),	as	shown	in	Listing	9-4.

julia> simulation.output_writers[:velocities] =
              JLD2OutputWriter(model, model.velocities,
              filename="conv4.jld2", schedule=TimeInterval(1))
 JLD2OutputWriter scheduled on TimeInterval(1 second):
|-- filepath: ./conv4.jld2
|-- 3 outputs: (u, v, w)
|-- array type: Array{Float32}
|-- including: [:grid, :coriolis, :buoyancy, :closure]
-- max filesize: Inf YiB

julia> simulation.output_writers[:tracers] =
              JLD2OutputWriter(model, model.tracers,
              filename="conv4T.jld2", schedule=TimeInterval(1))
 JLD2OutputWriter scheduled on TimeInterval(1 second):
|-- filepath: ./conv4T.jld2
|-- 2 outputs: (T, S)
|-- array type: Array{Float32}
|-- including: [:grid, :coriolis, :buoyancy, :closure]
-- max filesize: Inf YiB

Listing	9-4:	Setting	up	output	writers

Adding	elements	to	the	output_writers	property	of	the	simulation	causes	it	to
store	the	results	periodically.	The	JLD2OutputWriter	uses	the	JLD2	file	format,
which	is	a	compact	way	to	store	multiple	Julia	data	structures	in	a	single	file.
It’s	a	version	of	the	HDF5	format	widely	used	in	computational	science.	The



schedule	causes	a	data	dump	every	1	second,	which,	using	our	timestep,	will	be
every	100	steps.	The	information	in	the	result	shows	which	quantities	will	be
saved:	T	and	S	are	the	temperature	and	salinity.

With	this,	we’re	ready	to	run	the	calculation:

julia> run!(simulation)
[ Info: Initializing simulation...
[ Info:     ... simulation initialization complete (6.850 ms)
[ Info: Executing initial time step...
[ Info:     ... initial time step complete (80.507 ms).

The	REPL	will	not	have	anything	more	to	say	until	it	reaches	the	final
timestep,	which	in	this	case	will	take	several	hours	on	a	typical	personal
computer.	Then	it	will	indicate	that	the	calculation	is	complete	and	return	to
the	interactive	prompt.	Chapter	15	explores	ways	to	speed	up	such
calculations	by	using	parallel	processing.

The	Results
When	an	Oceananigans	simulation	ends,	the	final	state	of	the	fields	(the	velocity
components	and	the	temperature,	in	this	case)	is	available	as	properties	of
the	model.	Listing	9-5	shows	how	to	retrieve	them.

julia> using Plots

julia> uF = model.velocities.u;

julia> TF = model.tracers.T;

julia> heatmap(interior(TF, 1:grid.Nx, 1, 1:grid.Nz)';
               aspect_ratio=1, yrange=(0, 1.5grid.Nz))

Listing	9-5:	Examining	the	results	of	a	simulation

The	velocity	and	temperature	fields	are	properties	of	the	model.	The
heatmap()	call	will	plot	the	two-dimensional	temperature	field,	but	first	we
need	to	turn	it	into	an	array	with	the	interior()	function.	This	function
converts	the	Oceananigans	field	into	a	numerical	array	and	trims	away	the	halo
points.	Its	arguments,	following	the	field	to	convert,	are	the	extents	of	the
grid	in	each	of	the	three	directions;	we	enter	a	1	to	indicate	an	unused
coordinate.	In	setting	the	yrange,	we’ve	accessed	another	property	of	the	field,
its	grid	shape.	The	prime	after	the	array	to	plot	transposes	it	so	that	it
appears	in	its	natural	orientation,	with	a	vertical	gravity.



We	would	normally	run	a	simulation	for	just	a	few	timesteps	and	examine
the	fields	in	this	way	before	running	a	long	calculation,	to	make	sure	we’ve
set	it	up	correctly.	If	we	want	to	take	another	look	after	a	few	more
timesteps,	we	can	do	this:

julia> simulation.stop_time+=10;

julia> run!(simulation);

These	commands	advance	the	simulation	an	additional	10	timesteps,	after
which	we	can	repeat	the	steps	in	Listing	9-5	to	see	how	things	are	going.

Returning	now	to	the	quantities	stored	in	files,	as	set	up	in	Listing	9-4,
Listing	9-6	shows	how	to	retrieve	the	entire	history	of	a	field.

julia> uF = FieldTimeSeries("conv4.jld2", "u")
256×1×32×1030 FieldTimeSeries{InMemory} located at
    (Face, Center, Center) on CPU
|-- grid: 256×1×32 RectilinearGrid{Float64, Periodic, Flat, Bounded}
    on CPU with 3×0×3 halo
|-- indices: (1:256, 1:1, 1:32)
-- data: 256×1×32×1030 OffsetArray(::Array{Float64, 4},
    1:256, 1:1, 1:32, 1:1030) with eltype Float64 with
 indices 1:256×1:1×1:32×1:1030
    -- max=7.66057, min=-7.88889, mean=2.79295e-11

Listing	9-6:	Retrieving	a	field	from	the	JLD2	file

The	summary	of	the	result	shows	that	the	FieldTimeSeries	has	dimensions
of	256×1×32×1,030,	which	means	that	it’s	defined	on	a	2D,	256×32	grid	and
evolves	over	1,030	timesteps.

After	this	call	the	entire	history	of	the	x-velocity	field	and	its	various
properties	are	conveniently	available.	The	data	structure	uF	itself	takes	up
almost	no	space:

julia> sizeof(uF)
544

The	sizeof()	function	returns	the	amount	of	storage,	in	bytes,	occupied	by	its
argument.	The	actual	data	occupies	256	×	32	×	1,030	×	8	=	67,502,080	bytes.

We	can	plot	the	horizontal	velocity	field	at	any	timestep:

julia> using Printf

julia> i = 50;



julia> h50 = heatmap(interior(uF[i], 1:grid.Nx, 1, 1:grid.Nz)';
               aspect_ratio=1, yrange=(0, 1.5grid.Nz),
               colorbar=:false, ylabel="z",
               annotations=[
                  (0, uF.grid.Nz+15,
                    text("Horizontal velocity at timestep $i", 12, :left)),
                  (0, uF.grid.Nz+5,
                    text((@sprintf "Max = %.3g" maximum(uF[i])), 8, :left)),
                  (100, uF.grid.Nz+5,
                    text((@sprintf "Min = %.3g" minimum(uF[i])), 8, :left))],
                  grid=false, axis=false)

We’ve	added	some	labeling	to	the	version	in	Listing	9-5,	annotating	the
plot	using	properties	read	out	from	the	field.	Creating	similar	plots	for
timesteps	100	and	500,	adding	an	xlabel	to	the	last	one,	and	putting	them
together	with	plot(h50, h100, h500; layout=(3, 1))	creates	the	plot	in	Figure	9-6.



Figure	9-6:	Results	of	an	Oceananigans	simulation

The	system	evinces	the	regime	called	turbulent	convection;	it’s	interesting
to	observe	the	emergence	of	large-scale	order	from	randomness	and	its
persistent	coexistence	with	the	turbulent	flow.

In	order	to	make	an	animation	of	the	simulation,	we	need	to	generate
plots	at	equally	spaced	time	intervals	and	stitch	them	together	into	a	video
file.	Our	simulation	used	a	constant	timestep,	so	in	this	case,	equal	time
intervals	translates	into	equal	numbers	of	timesteps.	However,	that	won’t
always	be	the	case.	Oceananigans	has	options	for	automatically	adjusted
timesteps,	and	we	may	perform	a	simulation	in	stages	with	differently	sized
Δt.	It’s	convenient,	therefore,	to	have	a	function	that	creates	a	plot	given	a



time.	Since	a	given	time	may	not	correspond	to	any	particular	stored	field,
but	may	fall	between	two	consecutive	data	dumps,	we’ll	need	a	function	that
determines	which	stored	field	is	closest	to	the	time	requested.	The	Julia
program	shown	in	Listing	9-7	retrieves	the	simulation	output	and	produces	a
movie	of	a	specified	duration.

using Oceananigans, Reel, Plots

function heatmap_at_time(F, time, fmin, fmax, duration)
    ts = F.times
    time = time * ts[end]/duration
    i = indexin(minimum(abs.(ts .- time)), abs.(ts .- time))[1] ➊
    xr = yr = zr = 1
    if F.grid.Nx > 1
        xr = 1:F.grid.Nx
    end
    if F.grid.Ny > 1
        yr = 1:F.grid.Ny
    end
    if F.grid.Nz > 1
        zr = 1:F.grid.Nz
    end
    heatmap(interior(F[i], xr, yr, zr)'; aspect_ratio=1, yrange=(0, 1.5F.grid.Nz),
            clim=(fmin, fmax)) ➋
end

uF = FieldTimeSeries("conv4.jld2", "u")
const fmin = 0.5minimum(uF) ➌
const fmax = 0.5maximum(uF)
const duration = 30

function plotframe(t, dt)
    heatmap_at_time(uF, t, fmin, fmax, duration)
end

uMovie = roll(plotframe; fps=30, duration)

write("uMovie.mp4", uMovie)

Listing	9-7:	Creating	an	animation	of	an	Oceananigans	simulation

The	heatmap_at_time()	function	does	what’s	needed,	creating	a	heatmap	at
the	time	closest	to	the	time	in	its	argument.	In	this	function,	F	is	a	field
retrieved	with	a	call	to	FieldTimeSeries(),	as	in	Listing	9-6.	It	makes	use	of	the
times	property	of	these	objects,	which	is	an	array	holding	all	the	times	at
which	the	field	has	been	saved.	The	index	i	holds	the	dump	corresponding
to	the	time	closest	to	the	supplied	time	➊.	When	making	an	animation	of	a
heatmap,	we	want	to	use	the	same	mapping	from	values	to	colors	in	each



frame,	so	our	call	to	heatmap()	uses	the	clim	keyword	➋.
With	this	function	in	place	we	can	create	an	animation	using	the	Reel

package	introduced	in	“Animations	with	Reel”	on	page	206.	To	work	with
that	package,	we	need	to	define	a	function	of	time	t	and	(an	unused)	dt	that
returns	a	plot	corresponding	to	t:	the	plotframe()	function.	The	three
constants	➌	in	the	script	set	the	palette	limits	based	on	the	data	and	the
desired	total	duration	of	the	animation.	The	palette	limits	are	scaled	so	that
more	details	are	visible	near	the	beginning	of	the	run,	but	we	can	adjust	it
based	on	the	features	of	interest.

NOTE

See	the	online	supplement	at	https://julia.lee-phillips.org	for	the	resulting
animation,	along	with	full-color	versions	of	the	figures.

The	final	call	saves	the	animation	as	an	MP4	file.	Other	options	that	will
work	with	Reel	are	gif	and	webm.	To	create	these	file	types,	we	merely	need	to
use	the	appropriate	file	ending.

Solving	Differential	Equations	with	DifferentialEquations
Since	the	18th	century,	differential	equations	have	been	the	language	of
physical	science	and	engineering,	and	of	the	quantitative	aspects	of	other
sciences	as	well.	Julia’s	DifferentialEquations	package	is	a	massive,	state-of-the-
art	facility	for	solving	many	types	of	differential	equations	using	a	multitude
of	methods.	It	incorporates	recent	research	on	the	use	of	machine	learning
to	apply	the	best	line	of	attack	for	solving	a	given	equation.

This	section	introduces	the	use	of	DifferentialEquations	by	solving	an
example	problem.	Interested	readers	can	delve	into	its	detailed
documentation	for	more	information	(see	“Further	Reading”	on	page	304).

Defining	the	Physics	Problem	and	Its	Differential	Equation
As	an	example,	let’s	investigate	the	pendulum.	Figure	9-7	diagrams	the
problem	and	defines	the	string	length	(L)	and	the	angle	(θ).

https://julia.lee-phillips.org


Figure	9-7:	The	pendulum	system

We	measure	θ	counterclockwise	from	the	vertical	reference	line,	which	is
dotted	in	the	diagram,	and	the	gravitational	acceleration	points	down.

NOTE

The	Luxor	program	that	produced	the	diagram	is	available	in	the	code	section	of
the	Physics	chapter	on	the	online	supplement	at	https://julia.lee-phillips.org.

A	straightforward	analysis	of	the	forces	on	the	pendulum	bob	(the	black
circle	in	the	diagram)	and	Newton’s	Second	Law	leads	to	the	differential
equation

which	is	derived	in	any	introductory	general	physics	text.	Here	t	is	time	and
g	is	the	gravitational	acceleration.	The	usual	next	step	is	to	confine	the
problem	to	small	angles	(≲	5°),	where	sin(θ)	≈	θ,	and	solve	the	resulting
differential	equation	for	simple	harmonic	motion.	We’re	going	to	solve	the
“exact”	pendulum	equation	numerically,	using	the	DifferentialEquations
package.	We’ll	be	able	to	examine	the	solution	for	any	initial	θ,	up	to	π

https://julia.lee-phillips.org


radians.
The	package	works	with	systems	of	first-order	equations,	which	means

differential	equations	limited	to	first	derivatives	of	the	unknown	function.
To	handle	the	pendulum	equation,	therefore,	we	first	need	to	cast	it	into	the
form	of	two	coupled	first-order	equations.	This	first	step	is	also	part	of	many
analytic	solution	methods.	We	can	proceed	easily	by	defining	a	new	variable:

Now	we’re	solving	for	two	functions	of	time,	the	angle	θ(t)	and	the	angular
velocity	ω(t).

Setting	Up	the	Problem
The	first	step	in	translating	the	mathematical	problem	into	a	form	that
DifferentialEquations	can	digest	is	to	define	a	Julia	function	of	four	positional
arguments:

du		An	array	for	the	derivatives	of	the	solutions

u			An	array	for	the	solution	functions

p			An	array	of	parameters

t			The	time

Listing	9-8	is	the	version	for	the	pendulum	problem.

function pendulum!(du, u, p, t)
    L, g = p
    θ, ω = u
    du[1] = ω
    du[2] = -g/L * sin(θ)
end

Listing	9-8:	The	Julia	version	of	the	pendulum	equation

This	is	a	mutating	function,	as	indicated	by	the	exclamation	point,
because	as	the	calculation	progresses,	the	solution	engine	mutates	the	u	and
du	arrays	to	hold	the	results.	Here	L	and	g	are	set	through	destructuring	the



array	p,	and	θ	and	ω	are	read	from	the	array	u.	The	solver	from
DifferentialEquations	will	repeatedly	call	pendulum!()	as	it	builds	up	the	solution,
passing	in	p,	t,	and	the	developing	solution	arrays	themselves.

Solving	the	Equation	System
To	calculate	the	solution,	we	first	define	the	computational	problem	and
then	pass	that	problem	to	the	solve()	function.	The	components	of	the
computational	problem	are	the	parameter	array,	the	initial	conditions,	the
time	span	over	which	we	want	the	solution,	and	the	function	that	defines	the
differential	equations	to	be	solved,	in	this	example	pendulum!().	Other	options
include	such	things	as	the	numerical	method	to	be	employed,	but	in	this
simple	example	we’ll	leave	those	options	unspecified.	The	package	generally
does	an	excellent	job	of	choosing	the	solution	method	best	suited	to	the
nature	of	the	equations	we	present	to	it.	Listing	9-9	shows	the	problem	set
up	and	initiated.

using DifferentialEquations

p = [1.0, 9.8]
 #    L    g   <- Parameters

u0 = [deg2rad(5), 0]
 #    θ    ω   <- Initial conditions

tspan = (0, 20)

prob = ODEProblem(pendulum!, u0, tspan, p)
sol5d = solve(prob)

Listing	9-9:	Solving	differential	equations	using	DifferentialEquations

The	only	two	functions	in	this	section	from	the	DifferentialEquations
package	are	ODEProblem()	and	solve().	ODEProblem()	takes	four	positional
arguments:	the	function	defining	the	equation	system,	an	array	of	initial
conditions,	the	time	span,	and	the	parameter	array.	We	defined	the	function
in	Listing	9-8	and	we	define	the	other	three	arguments	here.	Allowing	the
solver	to	pass	the	parameters	as	arguments	makes	it	convenient	to	generate
families	of	solutions	with	a	range	of	parameters.

The	result	returned	by	ODEProblem()	contains	the	complete	solutions	of	all
functions	(in	this	example,	two)	bundled	into	a	data	type	defined	in	the
package.	This	data	type	is	designed	to	make	it	easy	to	examine	and	plot	the



solutions,	and	it	contains,	in	addition	to	the	computed	functions,
information	about	the	problem	and	the	calculation.

Examining	the	Solutions
For	small	angles,	the	analytic	solution	to	our	pendulum	problem	is

where	θ0	is	the	initial	angle.	The	initial	conditions	in	Listing	9-9	have	the
pendulum	at	rest	with	a	starting	angle	of	5°,	so	the	small	angle
approximation	should	be	valid.

Since	we	know	the	analytic	solution,	we	can	check	the	numerical	result
against	it.	Listing	9-10	shows	how	we	can	plot	one	against	the	other.

using Plots

plot(sol5d; idxs=1, lw=4, lc=:lightgrey, label="Numeric",
     legend=:outerright, title="Pendulum at θ0 = 5°")

L, g = p

plot!(t -> u0[1]*cos(sqrt(g/L)*t); xrange=(0, 20),
      ls=:dash, lc=:black, label="Analytic")

Listing	9-10:	Solving	for	the	small	angle	case

The	first	plot()	call	uses	only	one	data	argument,	the	solution	itself,
assigned	to	sol5d	in	Listing	9-9.	This	is	neither	an	array	nor	a	function,	yet
plot()	seems	to	know	how	to	display	it.	The	first	keyword	argument,	idxs,
requests	that	(in	this	case)	the	first	function,	θ,	is	plotted.	idxs	does	not
appear	in	the	documentation	for	the	Plots	package,	and	in	fact	is	not	defined
in	that	package.	Thus,	it	has	no	effect	unless	we	first	import
DifferentialEquations.

The	plot,	shown	in	Figure	9-8,	gives	us	confidence	that	we’ve	set	up	the
problem	correctly	and	that	the	numerical	solution	methods	are	working.



Figure	9-8:	Checking	the	small	angle	solution	of	the	pendulum	equation

Plotting	the	solution	as	we	did	here	does	not	simply	plot	the	solution
arrays.	It	also	interpolates	between	calculated	values	in	order	to	generate	a
smooth	plot.	In	this	case,	the	solution	contains	only	83	points,	which,	if
plotted	directly,	would	make	a	coarse	graph.

Although	the	solution	objects	are	not	arrays,	the	package	defines	methods
for	indexing	that	make	it	convenient	to	extract	the	data.	If	we	do	want	access
to	the	uninterpolated	solution	data,	we	can	get	it	by	indexing.	Here,	sol5d[1,
:]	returns	a	Vector	of	the	83	points	for	the	first	variable,	θ,	and	sol5d[2, :]	for
the	second,	ω.	To	get	the	times	at	which	these	values	are	defined,	we	use	a
property:	sol5d.t.

Using	the	solution	objects	as	functions	returns	the	result	interpolated	to
the	time	passed	as	an	argument.	(We’re	using	time	in	this	section,	but	in
other	problems	the	independent	variable	may	be	something	else.)	The
sol5d(1.3)	function	call	returns	a	Vector	of	two	elements,	one	for	each	variable,



interpolated	to	the	time	1.3.	These	functions	accept	ranges	and	arrays	as
well,	so	sol5d(0:0.1:1)	returns	the	interpolated	solution	data	at	11	times	from
0	to	1.	To	extract	just	the	angle	variable	at	these	times,	we	can	call
sol5d(0:0.1:1)[1, :].	Controlling	the	density	of	the	interpolation	by	using	the
functional	form	of	the	solution	objects	can	be	helpful	when	making,	for
example,	scatterplots,	where	we	need	to	control	the	density	of	plotted	points.

How	does	the	solution	depend	on	the	initial	angle?	Redefining	u0	to	try
two	larger	initial	angles,	and	proceeding	as	in	Listing	9-10	to	generate	two
new	solutions,	we	get	the	results	shown	in	Figure	9-9.

Figure	9-9:	The	pendulum	with	larger	initial	angles



The	90°	solution,	with	the	pendulum	string	initially	horizontal,	appears
approximately	sinusoidal,	but	with	the	frequency	around	25	percent	lower
than	the	small	angle	case.	When	the	initial	angle	is	175°,	the	period	is	nearly
three	times	the	small	angle	period,	and	the	solution	is	clearly	far	from
sinusoidal.	In	generating	Figure	9-9,	we	limit	the	range	of	the	independent
variable	by	passing	another	DifferentialEquations-defined	keyword	to	plot():
tspan=(0, 10).

Defining	Time-Dependent	Parameters
By	replacing	one	or	more	of	the	constant	parameters	in	the	p	array	with
functions	of	time,	we	can	study	the	system’s	response	to	time-dependent
parameters.	In	this	way	we	can	include	inhomogeneous	terms	in	the
differential	equations,	forcing	functions,	and	time-varying	parameters	in
general.

Let’s	find	out	what	happens	if	we	pull	up	on	the	string	steadily	as	the
pendulum	oscillates.	We’ll	start	at	45°	and	calculate	the	solution	over	10
seconds,	replacing	the	constant	L	by	a	linearly	decreasing	function	of	time:

tspan = (0, 10)
u0 = [π/4, 0]
Lt(t) = 1 - 0.999t/10

We	need	to	create	a	slightly	different	version	of	our	pendulum()	function,
shown	in	Listing	9-11,	that	can	use	the	time-dependent	string	length.

function pendulum2!(du, u, p, t)
    L, g = p
    θ, ω = u
    du[1] = ω
 ➊ du[2] = -g/L(t) * sin(θ)
end

Listing	9-11:	The	pendulum	function	with	a	time-dependent	L

The	only	change	we	made	to	the	previous	function	is	replacing	L	with	L(t)
➊.	We	proceed	just	as	before.	The	ODEProblem()	function	needs	a	new
parameter	array,	shown	in	Listing	9-12,	to	pass	in	to	pendulum2().

p = [Lt, 9.8]
prob = ODEProblem(pendulum2!, u0, tspan, p)
solLt = solve(prob)



Listing	9-12:	Getting	the	numerical	solution	with	a	time-varying	L

The	ease	of	generalizing	the	problem	to	include	a	time-varying	parameter
clarifies	the	advantages	of	the	parameter-passing	approach	in	Differential
Equations.	The	result,	in	Figure	9-10,	shows	a	steadily	decreasing	period	and
amplitude	with	an	increasing	angular	velocity	(ω).

Figure	9-10:	Pulling	up	the	string	on	the	pendulum

We	create	Figure	9-10	with	the	following	calls:

plot(solLt; idxs=1, label="θ", legend=:topleft, ylabel="θ",
  ➊ right_margin=13mm)
plot!(twinx(), solLt; idxs=2, label="ω", legend=:topright,
      ylabel="ω", ls=:dot)



In	the	call	to	plot!(),	the	first	argument,	twinx(),	creates	a	subplot	overlay
that	shares	the	horizontal	axis	with	the	first	plot	and	draws	a	new	vertical
axis;	we	use	it	so	the	two	curves	don’t	have	to	share	the	same	scale.	We	need
some	extra	room	on	the	right	➊	for	the	labels	on	the	second	vertical	axis.
This	margin	setting	requires	the	import	of	Plots.PlotMeasures,	as	explained	in
“Working	with	Plot	Settings”	on	page	101.

Parametric	Instability
A	child	“pumping”	a	swing	in	the	playground	to	get	it	moving	is	exploiting	a
parametric	instability.	The	driver	of	this	instability	is	the	periodic	change	in
the	effective	length	of	the	pendulum	string.	The	results	of	linear	theory	(the
small	angle	version	of	the	differential	equation	that	we’re	attacking	in	this
section)	tell	us	that	a	resonance	occurs	when	the	forcing	frequency	is	twice
the	natural	frequency	of	the	pendulum,	which,	using	our	L	=	1,	is	 .	If
the	string	length	is	perturbed	sinusoidally	at	this	frequency,	the	amplitude	of
small	oscillations	will	increase	exponentially.

Since	we	know	how	to	insert	any	time-dependent	function	L(t)	into	the
numerical	solution,	we	can	investigate	the	response	of	the	pendulum	to
parametric	excitation	beyond	the	small	angle	approximation.	We’ll	start	with
a	small	initial	angle,	follow	the	evolution	for	a	longer	span,	and	define	a	new
function	of	time	for	the	string	length:

const g = 9.8
tspan = (0, 400)
u0 = [π/32, 0]
Lt(t) =  1.0 + 0.1*cos(2*sqrt(g)*t)

Lt(t)	will	perturb	the	nominal	length	of	1	meter	by	10	percent	at	the
frequency	of	parametric	resonance.

Our	work	proceeds	exactly	as	before,	with	one	adjustment.	We	use
pendulum2(),	defined	in	Listing	9-11,	and	set	up	the	problem	as	in	Listing	9-
12.	The	adjustment	is	that	we	need	to	supply	a	keyword	argument	to	the
solving	function:

solLt = solve(prob; reltol=1e-5)

The	reltol	parameter	adjusts	the	adaptive	timestepping	as	needed	to	limit
the	local	error	to	the	value	that	we	supply.	Its	default	of	0.001	led	to	a



solution	that	seemed	suspicious,	as	it	was	not	quite	periodic.	I	generated
solutions	with	reltol	=	1e–4,	1e–5,	and	1e–6.	The	1e–4	solution	looked
reasonable,	but	the	1e–5	solution	was	slightly	different.	As	the	solution	with
reltol	=	1e–6	looked	identical	to	the	one	at	1e–5,	they’re	probably	accurate.
Figure	9-11	shows	the	resulting	graph	of	θ	versus	time.

Figure	9-11:	Parametric	instability	of	the	finite-angle	pendulum

Initially,	the	amplitude	increases	exponentially,	as	predicted	by	the	linear
theory.	But	we	know	from	our	previous	solutions	that	the	frequency	of	the
pendulum	decreases	with	amplitude;	therefore,	it	moves	continuously	out	of
resonance	with	the	forcing	function,	and	the	amplitude	decreases	back	to
close	to	its	initial	value.	At	that	point	it’s	closer	to	resonance,	and	the



amplitude	again	grows	exponentially.	As	the	solution	shows,	the	process
repeats.

Combining	DifferentialEquations	with	Measurements
Suppose	we	want	to	verify	the	predictions	of	our	pendulum	solutions	with	an
experiment.	There	will	be	some	error	inherent	in	the	setting	of	the	initial
angle.	If	we	estimate	that	uncertainty	to	be	one	degree,	we	might	think	to
state	the	initial	conditions	this	way	(see	“Error	Propagation	with
Measurements”	on	page	280):

using Measurements

u0 = [π/2 ± deg2rad(1), 0]

The	function	deg2rad()	converts	from	degrees	to	radians.
We	can	proceed	exactly	as	before,	repeating	the	procedure	shown	in

Listings	9-8	and	9-9.	A	plot	of	the	solution	for	θ(t)	now	looks	like	Figure	9-
12.



Figure	9-12:	Combining	DifferentialEquations	with	Measurements

Although	we	don’t	tell	the	plot()	function	anything	about	drawing	error
bars,	they	appear	in	the	plot.	The	plot	shows	how	the	error	in	the	angular
position	grows,	on	average,	over	time.	The	error	doesn’t	grow
monotonically,	however.	It	decreases	when	the	exact	solution	and	those	at
the	limits	of	the	error	bound	happen	to	be	in	phase.

We	generate	the	solution	and	plot	it	in	Figure	9-12	as	follows:

prob = ODEProblem(pendulum!, u0, tspan, p)

solM = solve(prob)

plot(solM(0:0.1:5)[1, :]; legend=false, lw=2, ylabel="θ", xlabel="t")



Since	DifferentialEquations	places	an	error	on	every	point	of	the	solution,
including	the	points	interpolated	when	creating	a	plot,	we	have	to	use	the
technique	described	in	“Examining	the	Solutions”	on	page	297	to	limit	the
number	of	points	plotted;	otherwise,	the	plot	becomes	too	crowded	with
error	bars	and	is	impossible	to	interpret.

Conclusion
Although	we	delved	into	several	physics	packages	at	some	length	in	this
chapter,	we	really	only	scratched	their	surfaces.	I	hope,	however,	that	the
introductions	here	are	sufficient	to	help	you	assess	whether	any	of	the
packages	explored	in	this	chapter	might	be	a	good	choice	for	your	projects
and	to	show	you	how	to	get	started.

Another	purpose	of	this	chapter	is	to	serve	as	an	introduction	to	a
superpower	of	Julia	and	the	Julia	ecosystem.	In	several	examples	we	were
able	to	combine	the	abilities	of	two	or	three	packages	without	making	any
particular	arrangements	to	do	so.	We	made	plots	and	typeset	expressions
that	contained	units,	and	saw	that	they	were	handled	sensibly.	We	handed
the	output	of	a	differential	equation	solver	to	a	plotting	function	from	a
different	package,	and	it	extracted	the	relevant	data	and	plotted	it.	We	solved
differential	equations	with	error	estimates	in	their	initial	conditions,	and	the
error	was	propagated	through	the	solution	correctly.	We	plotted	this	result,
and,	as	if	by	magic,	the	solution	displayed	error	bars.

We	wrote	scripts	and	programs	that	combined	the	abilities	of	five
packages	in	various	combinations,	giving	them	capabilities	neither
envisioned	nor	planned	by	their	authors.	Most	of	these	packages	were
written	without	any	knowledge	of	the	others	that	we	combined	them	with.
The	authors	of	these	packages	wrote	their	code	in	a	generic	way	that	allows
Julia’s	type	system	and	its	method	of	multiple	dispatch	to	enable	its	functions
to	work	with	data	types	defined	in	other	packages.

Julia	initially	attracted	attention	as	a	language	that	was	as	easy	to	pick	up
and	be	productive	in	as	a	high-level	interpreted	language,	but	one	that	was
fast	enough	for	the	most	demanding	scientific	work:	“as	easy	as	Python	and
as	fast	as	Fortran.”	The	second	reason	for	Julia’s	increasing	adoption	in	the
sciences	is	its	ability	to	combine	the	abilities	of	disparate	packages	with	no
additional	work	on	the	part	of	the	application	programmer.	Julia	creators



and	package	authors	refer	to	this	property	as	the	composability	of	packages,	in
analogy	with	the	composition	of	functions.

FURTHER	READING

The	GitHub	community	“Julia’s	Physics	Ecosystem”
(https://juliaphysics.github.io/latest/ecosystem/)	maintains	a	convenient
list	of	packages	related	to	all	areas	of	physics,	and	includes	related
packages	for	mathematics	and	plotting.
The	Unitful	package	is	available	at
https://github.com/PainterQubits/Unitful.jl.
See	https://www.simscale.com/blog/2017/12/nasa-mars-climate-
orbiter-metric/	for	details	on	how	a	mixup	in	units	destroyed	the
Mars	Climate	Orbiter.
The	documentation	for	UnitfulLatexify	is	at
https://gustaphe.github.io/UnitfulLatexify.jl/dev/.
The	Measurements	package	resides	at
https://github.com/JuliaPhysics/Measurements.jl.
To	get	started	with	Oceananigans,	see
https://clima.github.io/OceananigansDocumentation/stable/quick_start/.
The	DifferentialEquations.jl	documentation	is	available	at
https://diffeq.sciml.ai/stable/.
Animations,	color	images,	and	supplementary	code	for	this
chapter	are	available	at	https://julia.lee-phillips.org.
You	can	find	simple	examples	of	the	use	of	DifferentialEquations.jl
at	https://lwn.net/Articles/835930/	and
https://lwn.net/Articles/834571/.
The	parametric	instability	of	a	pendulum	is	demonstrated	in	the
video	at	https://www.youtube.com/watch?v=dGE_LQXy6c0.
The	theory	of	parametric	resonance	for	the	general	harmonic
oscillator	is	treated	at
https://www.lehman.edu/faculty/dgaranin/Mechanics/Parametric_reson
ance.pdf.

https://juliaphysics.github.io/latest/ecosystem/
https://github.com/PainterQubits/Unitful.jl
https://www.simscale.com/blog/2017/12/nasa-mars-climate-orbiter-metric/
https://gustaphe.github.io/UnitfulLatexify.jl/dev/
https://github.com/JuliaPhysics/Measurements.jl
https://clima.github.io/OceananigansDocumentation/stable/quick_start/
https://diffeq.sciml.ai/stable/
https://julia.lee-phillips.org
https://lwn.net/Articles/835930/
https://lwn.net/Articles/834571/
https://www.youtube.com/watch?v=dGE_LQXy6c0
https://www.lehman.edu/faculty/dgaranin/Mechanics/Parametric_resonance.pdf




10
STATISTICS

The	true	Logic	for	this	world	is	the	Calculus	of	Probabilities.
—James	Clerk	Maxwell

Many	readers	of	this	book	are	likely	to	skip	one	or	more	chapters	in	Part	II.
A	biologist	may	not	be	interested	in	physics	applications,	for	example.	But
this	particular	chapter	has	something	in	it	for	everyone,	because	sooner	or
later,	all	scientists	must	deal	with	the	subject	of	statistics.

Anyone	conducting	experiments	knows	that	the	treatment	and	analysis	of
experimental	data	is	a	direct	application	of	statistical	methods	and	concepts.
Every	scientific	calculator	features	buttons	for	calculating	means	and
standard	deviations	of	rows	of	numbers.	In	this	chapter,	you	will	learn	how
to	apply	Julia	and	its	statistical	libraries	to	manipulate,	plot,	and	analyze	all
kinds	of	data.	Julia	is	generally	faster,	more	flexible,	more	extensible,	and
more	powerful	than	R,	the	near-standard	language	in	this	field.	But	if	you
have	R	programs	that	you	are	already	working	with,	I’ll	explain	how	to	use
them	from	within	your	Julia	environment.

The	concepts	of	probabilities	and	distributions	are	ubiquitous	in	physics,
from	the	classical	theories	of	statistical	mechanics	to	quantum	theory,	in
which	probability	plays	a	fundamental	role.	But	statistics,	and	its	basis	in	the
language	of	probabilities,	has	its	fingerprints	all	over	science,	even	apart



from	experiments	and	observations.	One	of	the	detailed	examples	in	this
chapter	involves	probabilistic	modeling	in	biology:	an	application	of	these
ideas	outside	of	both	analysis	of	experiments	and	physics.

Probability
We	don’t	have	the	space	here	for	a	complete	course	in	probability	and
statistics,	but	fortunately,	we	can	do	everything	we	need	to	do	without	a
detailed	mathematical	development.	Almost	all	scientists	have	some
familiarity	with	the	basic	concepts	and	methods	of	the	discipline,	but	I	will
not	assume	any	special	knowledge.

To	understand	and	use	statistics,	we	first	need	a	clear	grasp	of	probability.
For	our	purposes,	we	can	understand	a	probability	as	a	number	between	0
and	1,	inclusive,	that	represents	the	likelihood	of	an	event.	A	probability	of	0
means	that	the	event	is	impossible,	and	a	probability	of	1	means	that	it	must
occur.	Any	other	probability	can	be	interpreted	as	the	frequency,	or
proportion	of	times,	with	which	the	event	will	occur	in	a	large	number	of
experiments.	For	example,	if	we	say	that	the	probability	of	heads	when	you
flip	a	coin	is	1/2,	this	means	if	you	flip	the	coin	a	large	number	of	times,	the
ratio	of	times	that	it	comes	up	heads	divided	by	the	total	number	of	flips	will
be	close	to	0.5.

How	many	times	is	a	large	number	of	times?	What	we	really	mean	is	that
there	is	a	limit

which	just	says	that	as	we	do	more	and	more	experiments,	the	number	of
times	that	we	observe	the	event	x,	nx,	divided	by	the	total	number	of
experiments,	N,	gets	closer	and	closer	to	a	certain	ratio.	We	call	this	ratio
the	probability.	In	probability	theory,	experiment	means	a	process,	such	as
flipping	a	coin	or	rolling	a	die.

The	preceding	paragraph	describes	a	particular	view	of	probability	called
the	frequency	interpretation.	There	are	other	ways	to	look	at	probability	and
its	meaning,	but	in	some	sense,	they	are	all	equivalent.	The	frequency
interpretation	is	practical,	serves	our	purposes	well,	and	is	what	most	people



think	of	when	they	need	to	pin	down	their	idea	of	what	probability	means	in
practice.	For	more	formal	approaches	to	the	subject,	see	“Further	Reading”
on	page	359.

We’ll	often	want	to	simulate	events	in	our	computer	programs	that	are
supposed	to	occur	with	certain	probabilities.	This	could	be	part	of	the
simulation	of	a	system,	such	as	the	molecules	of	a	gas	bouncing	around	in	a
box,	which	we	may	want	to	initialize	with	random	positions	and	velocities,	or
it	could	be	part	of	a	statistical	test.	But	this	presents	a	problem:	if	probability
represents	chance,	the	outcome	of	some	kind	of	random	process,	and	what
goes	on	inside	our	computers	is	(we	certainly	hope)	deterministic,	how	can
we	use	computers	to	generate	random	events?

For	the	purposes	of	the	examples	in	this	book,	we	actually	don’t	want	our
random	events	to	be	random,	because	we	may	want	to	repeat	simulations	or
check	to	see	whether	we	get	identical	results	after	changing	a	computational
technique.	We	need	to	be	able	to	repeat	particular	sequences	of	“random”
events.	Surely	this	is	a	contradiction.	If	we	know	what’s	going	to	happen,	it
can’t	be	random.

The	random	numbers	we	generate	in	our	programs	are	called
pseudorandom	numbers.	They	look	like	sequences	of	random	numbers,	satisfy
certain	tests	of	randomness,	and	adhere	to	given	distributions	(explained
next).	However,	naturally,	they	are	not	really	random.	Again,	we	don’t
actually	want	them	to	be.

Except	when	we	do.	In	some	cryptography	applications,	we	really	need
actual,	unpredictable	random	numbers.	Because	the	bad	guys	know	the
various	algorithms	for	generating	pseudorandom	numbers,	being	able	to
predict	such	sequences	can	lead	to	defeating	cryptographic	systems.	For	such
purposes,	computer	security	systems	exploit	sources	of	real	unpredictability
available	on	any	computer	(known	as	entropy	sources).	These	sources	can	be
stored	data	derived	from	the	timing	of	key	presses	on	the	keyboard,	for
example.	The	search	for	entropy	has	led	to	some	creative	solutions,	such	as
pointing	cameras	at	a	wall	of	lava	lamps.

Julia	actually	provides	a	way	to	tap	into	the	entropy	provided	by	your
operating	system.	However,	in	this	book,	we	are	not	interested	in
cryptography,	but	in	science,	so	we	want	our	random	numbers	to	be	not	so
random,	and	we’ll	be	using	Julia’s	pseudorandom	number	generators.	I’ll
follow	common	practice	for	the	rest	of	this	chapter	and	just	call	these



pseudorandom	numbers	“random	numbers.”

Random	Numbers	in	Julia
Julia	has	functions	for	generating	random	numbers	with	all	kinds	of
numerical	types,	even	complex	numbers.	The	basic	random	number
generators	are	part	of	Base,	so	you	can	use	them	without	any	import
statements.

NOTE

I	mentioned	earlier	that	one	reason	to	use	pseudorandom	numbers	is	so	we	can
repeat	a	sequence	of	random	numbers	when	developing	code.	This	sequence
repeatability	is	not	guaranteed	to	work	forever,	however.	The	random	sequence
returned	by	a	particular	function	can	change	when	upgrading	Julia,	so	you	can’t
depend	on	this	for	code	development	over	the	long	term.	See	“Further	Reading”
on	page	359	if	you	need	long-term	reproducible	number	sequences.

The	simplest	use	is	just	calling	rand(),	which	returns	a	random	Float64
uniformly	distributed	in	the	interval	[0,	1).	This	means	that	the	number	might
be	equal	to	0,	but	it	will	be	less	than	1,	and	all	numbers	in	this	interval	are
equally	likely.

We	can	check	that	the	rand()	function	is	doing	what	we	expect	by
generating	a	bunch	of	random	numbers	and	plotting	them	with	a	scatterplot.
We	could	do	this	by	calling	rand()	many	times,	storing	its	returned	values	in
an	array,	and	plotting	the	array.	But	rand()	makes	it	even	easier:	if	we	give	it
an	integer	argument,	it	will	oblige	us	by	returning	an	array	of	random	values
whose	length	will	be	determined	by	the	argument.	If	we	give	it	more	than
one,	we’ll	get	back	a	higher-dimensional	array.	The	little	program	shown	in
Listing	10-1	fills	a	length-105	array	with	random	floats	and	visualizes	their
distribution	with	a	scatterplot.

using Plots

ra = rand(100000)
scatter(ra, markersize=1, label=nothing)

Listing	10-1:	Testing	random	number	generation



In	the	resulting	plot,	shown	in	Figure	10-1,	each	of	the	105	numbers	is
represented	by	a	tiny	dot.	All	the	numbers	lie	within	the	correct	interval,	and
they	appear	to	be	randomly	and	uniformly	distributed,	as	they	are	supposed
to	be.	A	plot	like	this	is	a	useful	visual	check	to	ensure	that	a	pseudorandom
number	generator	is	behaving	correctly	and	not	introducing	any	unwanted
patterns	in	the	distribution	of	values.

Figure	10-1:	Uniformly	distributed	random	floats

To	get	random	integers,	or	some	type	other	than	floats,	simply	pass	the
type	as	an	argument.	The	call	rand(Int),	which	is	the	same	as	rand(Int64),
returns	a	random	integer	within	the	range	defined	by	the	lowest	and	highest
possible	integers	of	that	type.	This	is	rarely	what	you	want	in	applications,



however.	You’ll	probably	want	a	random	integer	within	some	specified	range
that	is	relevant	to	your	problem.	In	that	case,	simply	pass	the	range	as	an
argument:	rand(1:6)	represents	the	roll	of	a	die,	for	example.

In	fact,	that	argument	can	be	a	tuple	or	list	as	well,	from	which	rand()	will
pick	a	random	element,	all	with	equal	likelihood.	You	can	even	do
something	like	rand([1, 3, "abc"]),	and	get	either	1,	3,	or	the	string	"abc",	each
with	a	probability	of	1/3.	If	you	pass	in	a	single	string,	it	will	be	considered	a
collection	of	characters,	and	you	will	get	a	random	character	back.

The	simple	call	rand()	is	useful	in	simulations	where	you	want	events	to
occur	with	a	certain	probability.	If	the	probability	of	the	event	is	supposed	to
be	P,	in	your	code,	you’ll	have	something	like	the	following,	which	is	a	way
to	make	something	happen	with	a	specified	probability:

if P > rand()
    event()
end

The	call	to	rand()	works	because	it	generates	uniformly	distributed	random
numbers	in	the	interval	[0,	1).	Imagine	repeatedly	throwing	a	dart	at	a	square
dartboard	one	meter	on	a	side	(and	assume	it	lands	in	a	random	place	on	the
board).	In	the	long	run,	the	dart	will	land	within	the	rightmost	90
centimeters	90	percent	of	the	time.	The	rand()	function	is	the	dart.

Keeping	in	mind	that,	over	the	long	term,	you	can’t	count	on	being	able
to	repeat	a	particular	sequence	generated	by	one	of	Julia’s	random	number
functions,	you’ll	need	to	know	how	to	do	it	in	the	short	term	when
debugging	code	or	developing	an	algorithm.	You’ll	often	want	to	rerun	a
program	after	changing	something	that	you	believe	should	not	change	the
results.	If	the	program	uses	random	numbers,	and	the	sequence	is	truly
unpredictable,	such	tests	become	impossible.

By	passing	a	seed	to	a	random	number	generator,	you	can	generate	a
sequence	of	high-quality	pseudorandom	numbers	and	also	repeat	the	same
sequence	in	subsequent	runs	of	your	program.	To	do	this,	you	need	to
import	the	Random	package,	as	you’ll	need	to	use	at	least	one	function	that’s
not	in	Base.	But	Random	has	a	few	other	goodies,	as	you’ll	see	shortly.

The	following	listing	shows	the	three	lines	of	code	that	illustrate	the	basic
procedure:

using Random



rgen = MersenneTwister(7654);
rand(rgen)

After	importing	Random,	the	MersenneTwister()	function,	which	is	a	random
number–generating	algorithm,	will	be	available.	The	name	comes	from	the
mathematical	library	from	which	the	function	is	taken.	Its	argument,	in	this
case	7654,	is	called	a	seed.	The	purpose	of	the	seed	is	to	generate	a	particular
sequence	that	we	can	repeat	if	needed.	The	rand()	function,	and	all	the	other
random	number	functions	in	Julia,	accept	an	optional	first	argument	that
specifies	the	particular	instance	of	the	generator	to	use.	As	before,	every	time
we	call	rand(),	we	get	a	random	number	between	0	and	1.	But	now	we	can
restart	the	sequence	anytime	we	want	by	reinitializing	rgen	using	the	same
seed.	We	can	generate	a	different,	unpredictable	sequence	by	simply
changing	the	seed.	Except	for	the	most	casual	use,	you	should	always	specify
a	generator	and	supply	it	with	a	seed	rather	than	using	the	simpler	form	of
rand()	as	we	did	in	the	previous	example.

The	Monty	Hall	Problem
The	ability	to	generate	random	numbers	opens	up	a	whole	world	of
possibilities	for	interesting	simulations.	First,	let’s	consider	the	Monty	Hall
problem,	which	is	named	after	the	longtime	host	of	the	game	show	Let’s	Make
a	Deal.	This	problem	is	guaranteed	to	generate	lively	debate	in	statistics
classes	and	is	something	that	experienced	mathematicians,	even	statisticians,
often	get	wrong—or	they	used	to,	before	the	problem	became	famous.	For
us,	it	will	serve	as	an	example	of	how	a	probabilistic	computer	simulation	can
verify	a	result	that	we	believe	we	have	calculated	analytically.	Simulations
can	supply	some	additional	confidence	in	the	solutions	to	tricky	probability
problems,	where	it	is	so	easy	to	go	astray	analytically.

Imagine	three	doors.	Behind	one	is	a	prize,	say,	a	fancy	car,	and	behind
the	other	two	are	joke	prizes.	Monty	often	used	goats	for	these	“loser”
prizes.	You	want	the	car.	Monty	asks	you	to	choose	a	door.	He	knows	where
everything	is,	but	you	know	nothing.

Let’s	say,	to	be	definite,	that	you	choose	door	#1.	Before	revealing	what’s
behind	that	door,	Monty	opens	one	of	the	other	ones,	say,	door	#3,	to	reveal
a	goat.	He	offers	you	the	chance	to	switch	to	door	#2	if	you	like.



Here	is	the	question:	should	you	stick	with	your	original	choice	or	switch
to	door	#2?	Does	it	matter?

The	correct	answer	is	that	you	should	switch.	Nevertheless,	many	people
have	a	strong	initial	intuition	that	it	must	not	make	any	difference.	After	all,
now	two	doors	are	available:	door	#1	and	door	#2.	Surely	they	have	an	equal
chance	of	leading	to	the	prize,	so	it’s	the	same	as	flipping	a	coin:	heads	or
tails	are	equally	likely.

However,	this	thinking	is	wrong.	Initially,	the	probability	that	your
choice	was	a	winner	was	1/3.	Everyone	agrees	with	that.	That	means	that	the
probability	that	the	prize	was	in	one	of	the	other	doors	is	2/3.	Since	the	prize	is
guaranteed	to	be	somewhere,	the	total	probability	must	add	up	to	1.	These
initial	probabilities	still	hold.	The	probability	that	door	#1	is	the	winner	is
still	1/3.	The	probability	that	one	of	the	others	is,	instead,	is	still	2/3.	But
now	the	set	of	“one	of	the	others”	consists	of	just	door	#2,	since	Monty	has
eliminated	door	#3.	You	should	switch	to	increase	your	chances	of	winning
from	1/3	to	2/3.

This	analysis	is	just	one	of	many	ways	to	approach	the	problem,	but	they
all	(if	done	correctly)	lead	to	the	same	conclusion.	Nevertheless,	at	this	point
many	people	remain	unconvinced.	Sometimes	actually	doing	the	experiment
can	persuade	people	who	don’t	believe	in	math.

The	following	program	performs	just	such	an	experiment—a	simple
example	of	a	simulation	using	a	random	process:

   N = 3000

   stay = zeros(Int32, N)
   switch = zeros(Int32, N)

   for game in 1:N
       prize = rand(1:3)
       choice = rand(1:3)
       if choice == prize
           stay[game] = 1
       end
   end

   for game in 1:N
       prize = rand(1:3)
       choice = rand(1:3)
       if choice != prize
           switch[game] = 1
       end
   end



➊ stayra = [sum(stay[1:i]) / i for i in 1:N]
   switchra = [sum(switch[1:i]) / i  for i in 1:N]

   using Plots

   plot(1:N, [stayra, switchra, ones(N)*1/3, ones(N)*2/3],
        label=["Stay" "Switch" "" ""])
   annotate!(2700, 1/3 + 0.05, "1/3")
   annotate!(2700, 2/3 + 0.05, "2/3")

This	program	plays	the	game	N	times,	where	N	is	set	to	3,000.	It	stores	the
record	of	wins	or	losses	in	two	arrays,	one	for	the	set	of	3,000	plays	where
the	player	stays	with	the	initial	choice	of	door	and	one	for	the	round	where
the	player	decides	to	switch.	The	arrays	are	initialized	to	be	all	0s.	If	the
player	wins	game	number	game,	that	array	element	is	changed	to	1.

The	two	arrays	➊	hold	the	running	average	of	each	strategy,	defined
using	list	comprehensions.	These	are	the	arrays	we	want	to	look	at.

The	plot	in	Figure	10-2	shows	that	in	the	long	run	the	switching	strategy
wins	2/3	of	the	time,	while	the	player	who	stubbornly	sticks	with	the	initial
choice	wins	only	1/3	of	the	time.



Figure	10-2:	Two	Monty	Hall	strategies

These	ratios	agree	with	the	argument	if	we	remember	the	meaning	of	the
frequency	interpretation	of	probability:	over	the	long	run,	the	ratio	of	events
(wins,	in	this	case)	to	the	total	number	of	experiments	should	approach	the
probability.	Note	that	if	you	run	this	code	yourself,	the	graph	may	look
slightly	different,	because	you’ll	get	a	different	sequence	of	random
numbers,	but	the	long-term	behavior	should	be	the	same.

Counting
After	probability,	the	next	most	important	idea	in	statistics	is	counting,	also
called	combinatorics.	Counting	has	to	do	with	answering	questions	about	how
many	ways	an	event	can	happen.	If	you	roll	a	pair	of	dice,	in	how	many	ways
can	the	sum	of	the	two	numbers	that	come	up	equal	six?	If	there	are	30



people	on	the	squad,	how	many	nine-person	baseball	teams	are	possible?
When	simulating	systems	involving	probability	on	a	computer,	to

calculate	correctly	the	probabilities	of	various	events,	we	often	count	the
number	of	ways	a	given	event	can	happen	and	divide	by	the	total	number	of
all	possibilities.	If	all	of	the	ways	are	equally	likely,	this	gives	us	the
probability.

In	the	dice	example,	there	are	10	ways	to	get	a	sum	of	six,	so	the
probability	is	10/36.

Two	additional	counting	concepts	arise	frequently	when	dealing	with
probabilistic	situations,	and	often	in	other	places	as	well:	permutations,
calculated	using	factorials,	and	combinations,	which	involve	binomial
coefficients.

Factorials
The	first	counting	concept	is	the	idea	of	permutations:	the	number	of	distinct
ways	to	arrange	a	collection	of	objects.	If	you	have	eight	Scrabble	tiles,	all
bearing	different	letters,	how	many	different	eight-letter	strings	can	you
make	out	of	them?

The	answer	is	8	×	7	×	6	×	5	×	4	×	3	×	2	×	1	=	40,	320.
Here’s	a	quick	argument	to	show	why	this	is	true:	there	are	eight	ways	to

choose	the	first	tile;	once	that	is	chosen,	there	are	seven	ways	to	choose	the
next	tile;	and	so	on.	This	pattern	comes	up	so	often	that	we	have	a	special
name	and	mathematical	notation	for	it.	It	is	called	the	factorial,	and	it’s
written	as	8!	in	this	case.	Julia	also	has	a	built-in	function	for	it,	but	since	!	is
used	for	other	purposes,	we	need	to	spell	it	out:	factorial(8).

The	factorial	function	grows	insanely	quickly,	so	above	factorial(20),	you
need	to	supply	the	argument	as	a	BigInt,	and	you’ll	get	a	BigInt	back.	How
quickly	does	the	factorial	grow?	The	number	of	ways	to	arrange	a	standard
52-card	deck	is	far	larger	than	the	number	of	stars	in	the	universe.	It’s	so
large	that,	after	shuffling	a	deck,	there	is	almost	no	chance	that	the	particular
arrangement	of	cards	you	are	holding	in	your	hand	has	existed	before	in	the
history	of	the	world.

Binomial	Coefficients
The	second	combinatorial	concept	we’ll	be	using	is	the	binomial	coefficient.



This	comes	up	in	many	mathematical	contexts,	and	Julia	has	a	built-in
function	called	binomial()	that	deals	with	it.	In	the	context	of	counting,	the
binomial	coefficient	answers	the	baseball	teams	question	mentioned	earlier.
If	there	are	30	players	available,	the	number	of	ways	to	form	nine-member
teams	is	written	as:

The	baseball	problem	is	calculated	with	binomial(30, 9).	The	combinatorial
term	for	these	problems,	involving	binomial	coefficients,	is	combinations.

See	“Further	Reading”	on	page	359	to	learn	more	details	about	binomial
coefficients:	why	they	are	so	named,	how	to	calculate	them	using	factorials,
and	their	connections	to	other	areas	of	mathematics.

Modeling	a	Pandemic
We	now	have	enough	tools	to	perform	a	significant	calculation.	Listing	10-2
is	a	simulation	that	models	the	spread	of	an	infection	through	a	population.
It’s	similar	to	models	epidemiologists	use	to	perform	computational
experiments	with	different	scenarios	for	the	spread	of	COVID-19.	This
model	is	a	bit	simplified	relative	to	those,	as	my	purpose	is	to	illustrate	an
application	of	the	tools	and	ideas	from	the	chapter	so	far.	For	a	pointer	to
similar	models	being	used	now	in	research,	see	“Further	Reading.”

   using Plots
   using Printf
   using JLD
   worldgrad = cgrad([:blue, :red, :black, :green], [0.25, 0.50, 0.75],
               categorical=true)
   n = 16
➊ initial = Dict("infected"=>0.5, "isolated"=>0.15)
   transition = Dict("infected"=>0.05, "dead"=>0.1, "dud"=>7)
   include("plotworld.jl")
   """Simulate pandemic growth.
       n: length of side of world array;
       initial: starting proportions of infected and isolated subpopulations;
       transition: probabilities of infection and of death after dud days of
                   infection;
       days: number of days before stopping;
       seeding: selects spatially random or centered initial distribution of
                infected individuals;



       plotmode: display or save plots of simulation while running, or save
                 only the final state.
   """
   function pandemic(n::Int, initial, transition, days::Int; seeding=:normal,
                     plotmode=:display)
       noi = [] # Number of infected people
       nod = [] # Number of dead people
       function finish()
           if plotmode == :last
               plotfilename = @sprintf "%d.png" days
               savefig(plotworld(world, noi, nod, worldgrad), plotfilename);
           end
           @save "pandata.jld" world noi nod
       end
       function nif(I, J) # Number of infected neighbors of an uninfected cell
           return sum(world[I-1:I+1,J-1:J+1] .== infected)
       end
       tpi = zeros(8)
    ➋ for N in 1:8
          tp = 0
          for i in 1:N
              tp += (-1)^(i-1)*binomial(N, i)*transition["infected"]^i
          end
          tpi[N] = tp # The total probability of infection with N infected neighbors
      end
      ok::Int32 = 1
      infected::Int32 = 2
      dead::Int32 = 3
      isolated::Int32 = 4
      world = fill(ok, n, n)
      if seeding == :normal
          world[rand(n, n) .< initial["infected"]] .= infected
      end
      world[rand(n, n) .< initial["isolated"]] .= isolated
      if seeding == :center
          world[n ÷ 2, n ÷ 2] = infected
      end
   ➌ next = copy(world)
   ➍ aoi = fill(0, n, n) # Age of infection
      dud = transition["dud"]
      for day in 1:days
          for j in 2:n-1 for i in 2:n-1
              if world[i, j] == ok
                  if nif(i, j) > 0
                      if tpi[nif(i, j)] >= rand()
                          next[i, j] = infected
                          aoi[i, j] = day
                      end
                  end
              end
              if (world[i, j] == infected) && ((day - aoi[i, j]) == dud)
                  if rand() < transition["dead"]
                      next[i, j] = dead
                  end
              end



          end; end
          world = copy(next)
       ➎ push!(noi, sum(world[2:n-1, 2:n-1] .== infected))
          push!(nod, sum(world[2:n-1, 2:n-1] .== dead))
       ➏ if day > 4dud
              if noi[end] == noi[end - dud] && nod[end] == nod[end - dud]
                  return finish()
              end
          end
          if plotmode == :save
              plotfilename = @sprintf "%05d.png" day
              savefig(plotworld(world, noi, nod, worldgrad), plotfilename);
          elseif plotmode == :display
              display(plotworld(world, noi, nod, worldgrad))
          end
      end
      finish()
  end
  days = 2000
  pandemic(n, initial, transition, days; seeding=:normal, plotmode=:display)

Listing	10-2:	A	pandemic	simulation

The	strategy	is	to	represent	the	population	as	a	square	matrix.	Each	cell
represents	one	person	and	can	be	in	one	of	four	possible	states:	infected,	dead,
isolated,	or	ok.	An	isolated	person	can’t	become	infected.	An	ok	person	is	not
infected,	but	may	become	so.	An	infected	person	may	die	after	a	certain
number	of	“days,”	or	iterations,	a	number	assigned	to	dud;	if	the	person
survives	past	this	period,	immortality	is	achieved.	A	dead	person	is	no	longer
infectious.	Thus,	an	ok	person	can	never	be	infected	(is	“protected”)	if
surrounded	by	dead	or	isolated	people.	Death	and	lockdown	prevent	the
spread	of	the	disease.

The	simulation	is	initialized	with	probabilities,	to	establish	both	the
starting	state	and	its	evolution.	The	state	at	day = 1	is	set	up	using	the
probabilities	in	the	initial	dictionary	➊.	At	every	iteration,	the	state	of	each
person	is	updated	according	to	the	probabilities	in	the	transition	dictionary
on	the	following	line	and	the	value	of	dud	in	that	dictionary,	which	is	the
number	of	days	during	which	someone	needs	to	be	infected	before	the
disease	may	become	fatal.

The	population	matrix	is	called	world,	and	the	length	of	its	side	is	stored	in
n.	Don’t	take	the	matrix	geometry	too	literally.	It	does	not	assume	that
people	stand	in	one	spot	while	the	disease	runs	its	course.	The	matrix	world
represents	a	network	of	contact	rather	than	a	spatial	arrangement.

After	importing	some	libraries	that	you	have	seen	before	and	including	a



file	with	the	plotting	function,	which	we’ll	get	to	later,	the	pandemic()
function,	which	does	the	actual	calculation,	is	defined.	This	function	gets
two	keyword	arguments:	seeding	should	be	either	:normal	or	:center.	In	the
former	case,	infection	is	seeded	randomly,	according	to	initial["infected"];
but	if	seeding	is	set	to	:center,	a	single	infected	individual	is	placed	at	the
center	of	the	world.

The	second	keyword,	plotmode,	controls	whether	daily	plots	are	created,
and	if	so,	whether	they	are	displayed	or	saved	to	files.	At	the	end	of	the
calculation,	the	finish()	function	is	called,	which	saves	a	plot	of	the	final	state
if	the	plotmode	=	:last.	This	function	also	uses	the	@save	macro	to	save	the	world
and	the	infection	and	death	histories	to	a	.jld	file	(introduced	in	Chapter	9).

At	every	iteration,	the	program	has	to	decide,	for	each	ok	person,	whether
to	change	that	person	to	the	infected	state.	This	is	determined	randomly,
based	on	the	probability	of	infection	by	each	infected	neighbor	each	day,
given	in	transition["infected"],	and	on	the	number	of	infected	neighbors.

But,	we	need	to	be	careful	here.	The	probability	of	infection	with	two
infected	neighbors	is	not	twice	the	probability	of	infection	with	only	a	single
sick	neighbor.	We	need	to	subtract	the	probability	of	becoming	infected	by
both	neighbors.	We	won’t	provide	a	full	treatment	of	the	combination	of
events	in	probability	theory	here,	but	you	likely	can	easily	see	why	we	can’t
simply	add	the	probabilities.

Imagine	you	are	flipping	two	coins	and	want	to	find	the	probability	of
getting	at	least	one	head.	You	know	that	the	probability	of	a	head	with	either
coin	alone	is	1/2.	If	you	add	those,	you	get	a	probability	of	1.	But	that	can’t
be	right,	because	it	would	mean	a	head	must	appear,	and	you	know	there’s	a
good	chance	you’ll	get	two	tails.	The	correct	calculation	includes	subtracting
the	probability	of	two	heads:	1/2	+	1/2	–	1/4	=	3/4.	You	will	get	at	least	one
head	three-fourths	of	the	time	in	the	long	run.	At	this	point,	you	are	in	a
good	position	to	write	a	little	Julia	program	to	verify	this,	if	you	have	any
doubts.

The	coin	problem	corresponds	exactly	to	the	case	where	you	are	in
contact	with	two	infected	people	and	the	probability	of	infection	=	1/2.	On
the	grid,	however,	each	person	can	have	up	to	eight	neighbors.	It’s	a	bit
more	complicated	than	the	case	of	two	neighbors,	but	the	idea	is	the	same.
For	each	new	neighbor,	you	have	to	add	the	probability	of	infection	by	that
neighbor,	but	subtract	all	the	combinations	it	can	make	with	the	other



neighbors.	The	word	combinations	suggests	that	we	might	have	to	reach	for	a
binomial	coefficient,	and	indeed	we	do.	The	formula	for	the	total	probability
of	infection	by	n	neighbors,	if	the	probability	of	infection	by	a	single
neighbor	is	p,	is:

See	“Further	Reading”	on	page	359	for	more	about	this	formula	and
related	matters.	This	probability	is	pre-calculated	for	all	possible	numbers	of
neighbors,	1:8,	and	the	results	are	stored	in	the	tpi	➋	array.

It	is	necessary,	before	each	iteration’s	calculations	begin,	to	make	a	copy
of	the	world	array,	which	is	called	next	in	the	program	➌.	We	update	the	cells
in	next,	and	then	copy	it	back	into	world.	If	world	is	updated	in	place,	cells	will
be	transitioned	based	on	the	partially	updated	information	in	neighbor	cells,
which	would	be	inconsistent.	A	copy	is	required,	as	we’ve	encountered	in
previous	chapters,	because	a	simple	next = world	would	create	a	second
reference	to	the	array	rather	than	an	actual	copy.

An	array	aoi	is	initialized	to	0s	➍;	it	will	record	the	day	on	which	each
person	becomes	infected,	so	that	the	survival	probability	can	be	applied	at
the	appropriate	time.

The	subsequent	loops	over	persons	within	the	loop	over	days,	given	all
the	foregoing,	should	be	self	explanatory.	After	the	sweep	of	the	matrix,	we
push!()	➎	new	values	for	the	current	total	number	of	infected	and	dead
people	onto	the	vectors	noi	and	nod,	respectively.	Julia’s	neat	and	succinct
syntax	calculates	these	totals	using	a	sum	over	a	binary	array.

Here,	and	in	the	previous	loops	over	the	world,	the	program	treats	only
elements	in	2:n-1	rather	than	the	entire	array,	to	implement	the	boundary
condition.	In	keeping	one	row	or	column	of	cells	on	the	boundaries
“frozen,”	the	updating	logic	is	simplified,	as	the	expression,	for	example,	for
calculating	the	number	of	each	person’s	infected	neighbors	is	identical	for
each	nonfrozen	person.

As	in	a	physics	problem,	there	are	other	possibilities	for	boundary
conditions.	The	people	on	the	edges	could	be	updated	based	on	their
reduced	numbers	of	neighbors,	but	doing	so	can	induce	artifacts.	Periodic



boundary	conditions	are	another	possibility,	where	the	neighbor-ness	wraps
around	the	matrix	to	the	opposite	side.	Any	choice	is	to	some	degree
arbitrary.

The	conditional	block	➏	checks	to	see	whether	the	calculation	has
reached	a	steady	state.	If	it	has,	there	is	no	point	in	continuing,	and	the
cleanup	operation	is	called.	The	final	line	in	the	program	starts	the
calculation	by	calling	pandemic().

This	simple	algorithm	can	produce	interesting	behavior,	and	it	can	be
used	to	explore	questions	such	as	the	effect	of	lockdown	conformity	on	the
spread	of	the	infection,	and	how	a	higher	fatality	rate	can	slow	the	growth	of
a	pandemic.

Figure	10-3	shows	the	output	of	a	512×512	simulation	with	these	initial
and	transition	probabilities:

initial = Dict("infected"=>0.001, "isolated"=>0.5)
transition = Dict("infected"=>0.08, "dead"=>0.25, "dud"=>5)

The	simulation	stops	after	1,064	iterations	when	reaching	a	steady	state.
The	notation	on	the	figure	means	that	5.48	percent	of	the	population	was
protected	from	infection	due	to	the	isolation	of	others	and	the	effects	of
mortality	interrupting	disease	transmission.



Figure	10-3:	Steady	state	reached	in	a	pandemic	simulation

See	the	book’s	supplementary	website	(https://julia.lee-phillips.org)	for	a
color	version	of	the	plot	and	an	animation	of	a	similar	simulation.	In	the
printed	grayscale	version,	the	darkest	shades	on	the	heatmap	plot	represent
dead	or	infected	people,	white	represents	people	who	remained	protected
from	infection,	and	the	middle	tone	corresponds	to	isolated	people.

Listing	10-3	shows	the	simple	function	that	calculates	the	protected
percentage	and	makes	plots	as	in	Figure	10-3.

using Plots
using Printf
"""Plot a heatmap of the current state of the pandemic with the histories

https://julia.lee-phillips.org


of the number of infected and dead people; calculate and display the
proportion of people protected from infection."""
function plotworld(world, noi, nod, worldgrad)
    ok::Int32 = 1
    day = length(noi)
    protected = sum(world[2:n-1, 2:n-1] .== ok) / n^2 * 100
 ➊ prot = @sprintf("%.2f%% protected", protected)
    p1 = heatmap(1:n, 1:n, world, c=worldgrad, clims=(1, 4), legend=nothing);
    p2 = plot(1:day, noi, label=nothing, yformatter=y -> @sprintf("%.1e", y),
              titlefontsize=10);
    p3 = plot(1:day, nod, label=nothing, annotate=
              (0.7day, 0.1nod[end], text(prot, :blue, 7)), yformatter=
               y -> @sprintf("%.1e", y), titlefontsize=10);
 ➋ layout=@layout [a{0.6w} grid(2, 1)];
    return plot(p1, p2, p3, layout=layout,
                title=["" "Number infected." "Number dead."]);
end

Listing	10-3:	Visualizing	the	pandemic

The	plotworld()	function	uses	the	@sprintf	macro	➊,	introduced	in	“Macros
for	String	Formatting”	on	page	177,	to	format	the	variable	protected	and	the
y-axis	label	for	display.	After	creating	three	plots	and	storing	them	in	p1,	p2,
and	p3,	the	@layout	macro,	described	in	“Creating	Complex	Layouts	Using
@layout”	on	page	118,	arranges	them	➋	into	a	summary	display	of	the
simulation.

Common	Statistics	Functions
Julia	provides	functions	to	calculate	all	of	the	common	statistical	parameters,
as	well	as	special	plotting	functions	for	statistical	visualization	of	data.

Some	reorganization	of	the	Julia	statistics	packages	is	underway,	so
everything	may	not	be	where	you	might	expect	it.	This	section	describes
where	the	packages	are	at	the	time	of	writing,	but,	when	you	try	things	out,
you	may	discover	that	a	function	or	two	have	moved.

If	you	are	analyzing	data	of	any	kind,	you	will	make	heavy	use	of	at	least
some	of	the	functions	described	in	this	section,	most	of	which	are	in	the
Statistics	package,	which	is	part	of	the	standard	Julia	library.	In	the
remainder	of	this	chapter,	I	will	assume	you’ve	imported	the	package	with
the	using Statistics	command.

The	package	provides	the	basic	functions	that	summarize	datasets	with
statistical	parameters.	For	the	mean,	or	arithmetic	average,	use	mean(data),



where,	here	and	below,	data	is	some	vector	of	observations.
For	the	median,	which	is	the	middle	value	in	the	data,	use	median(data).	If

there	are	an	even	number	of	data	points,	none	of	them	can	be	the	middle
value.	In	this	case,	median()	returns	the	mean	of	the	two	middle	values:

julia> median([1, 2, 3])
2.0

julia> median([1, 2, 3, 4])
2.5

At	the	time	of	writing,	Statistics	does	not	contain	a	mode	function.	The
mode	is	the	most	common	value,	or	the	maximum	of	a	continuous
distribution,	if	it	exists.	From	this	idea	come	the	terms	bimodal	and
multimodal	to	describe	distributions	with	more	than	one	local	maximum.
The	height	distribution	in	Figure	10-4	is	an	example	of	a	bimodal
distribution.

If	you	need	a	mode	function,	you	can	import	it	from	another	package
called	StatsBase,	which	you	will	need	to	add.	StatsBase	contains	some	other	less
commonly	used	statistical	functions	that	are	not	in	the	standard	Statistics
package,	but	you	may	want	to	import	only	the	ones	you	plan	to	use.	If	you
just	need	to	add	a	mode	function	to	your	toolbox,	you	can	enter	import
StatsBase.mode.

Here	are	a	few	examples	showing	how	the	mode()	function	behaves:

julia> mode([1, 3, 2, 9, 9])
9

julia> mode([1, 3, 2, 9, 9, 4, 4])
9

julia> mode([1, 3, 2, 9])
1

If	there	is	more	than	one	mode,	the	function	returns	the	first	one.
Consequently,	if	each	value	appears	only	once,	they	are	all	modes,	so	the
function	returns	the	first	value.

The	standard	Statistics	package	contains	most	of	the	other	basic	statistical
functions,	including	the	following:

std		Standard	deviation



stdm		Standard	deviation	with	specified	mean

var		Variance

varm		Variance	with	specified	mean

cor		Pearson	correlation

cov		Covariance

middle		(max	+	min)	/	2

quantile		Quantile

These	commands	work	on	vectors	or	pairs	of	vectors	of	data	in	the	way
you	would	expect.	In	addition,	the	cor()	function	will	accept	a	matrix	and
return	a	correlation	matrix,	and	the	cov()	function	can	work	similarly.

The	mean()	function	takes	an	optional	first	argument	that	can	be	a	unary
operator	or	a	function	of	one	numeric	variable.	The	function	then	maps	the
operator	or	function	over	the	data	vector	before	calculating	the	mean.	This
can	be	convenient	if	you	need	to	scale	or	otherwise	process	the	data,	but,	for
the	case	of	a	simple	vector,	it	gives	the	same	result	as	broadcasting	the
function	over	the	array:

julia> mean([1, 2, 3])
2.0

julia> mean(x -> 2x, [1, 2, 3])
4.0

julia> mean(2 .* [1, 2, 3])
4.0

There	are	two	versions	of	the	standard	deviation	and	the	variance	used	in
statistics.	The	formula	the	var()	function	uses	by	default	is

where	μ	is	the	mean,	the	xn	values	are	individual	data	points,	N	is	the	total
number	of	data	points,	and	σ2	is	the	sample	variance,	or	the	variance	with
Bessel’s	correction	applied.	The	standard	deviation	std()	is	just	the	positive
square	root	of	this.

In	order	to	calculate	the	population	variance	and	population	standard



deviation,	supply	the	keyword	argument	corrected	with	a	value	of	false	to
either	of	these	functions.	This	will	replace	the	1/(N	–	1)	term	in	the	formula
with	1/N.	Explaining	the	origin	of	the	correction	would	take	us	too	far	into
the	arcana	of	statistical	theory,	but	for	most	purposes,	the	defaults	are	what
you	want,	and	it	makes	little	difference	for	reasonably	large	N	in	any	case.

In	either	incarnation,	the	standard	deviation	is	a	measure	of	the	average
distance	from	the	mean	of	a	set	of	observations	or	of	a	theoretical
distribution.	It	tells	us	how	“spread	out”	the	distribution	is.

Distributions
We’ve	looked	at	several	examples	of	how	we	can	do	a	lot	with	simple,
uniformly	distributed	random	numbers.	However,	not	every	random
occurrence	is	uniformly	distributed.	Most	things	in	nature	display	other
types	of	distributions.

Consider	the	heights	of	adults	in	a	particular	city.	Obviously,	you	don’t
expect	that	the	probability	of	finding	a	7-foot-tall	adult	is	the	same	as	finding
one	with	closer	to	average	height:	heights	are	not	uniformly	distributed.	If
you	make	a	graph,	dividing	the	horizontal	axis	into	height	ranges	covering,
say,	intervals	of	2	inches,	and	collect	the	heights	of	a	sample	of	residents,	you
can	plot	how	many	heights	fall	into	each	interval.	After	collecting	a	large
number	of	measurements,	this	plot	will	start	to	look	like	a	smooth	curve,
something	like	Figure	10-4.	It	has	two	peaks,	because	the	average	height	of
men	is	a	little	higher	than	women,	and	it	shows	that	there	are	more	people
close	to	the	average	than	very	tall	or	very	short.



Figure	10-4:	Possible	histogram	of	adult	heights

This	type	of	graph	is	called	a	histogram;	it	is	one	way	to	represent	a
distribution.	Probability	distributions	are	the	mathematical	objects	at	the
center	of	statistics,	just	as	a	probability	forms,	naturally,	the	central	idea	of
probability	theory.	A	distribution	simply	tells	you	how	much	of	your	data,	or
what	proportion	of	your	data,	falls	within	different	ranges.	As	a	description
of	actual	data	it’s	called	an	empirical	distribution,	whereas	if	it	comes	from	a
model	it’s	a	theoretical	distribution.

You	can	think	of	the	discipline	of	statistics	this	way:	probabilities	tell	us
how	likely	something	is	to	happen,	and	the	mathematics	of	probability
theory	lets	us	elaborate	this,	telling	us	the	likelihood	of	combinations	of



events	and	answering	related	questions.	Statistics	is	the	reverse:	it	starts	with
observations,	and	lets	us	systematically	infer	the	probabilities	that	led	to
those	observations.	With	these	probabilities,	we	can	make	predictions	about
future	observations.

Julia	provides	several	packages	and	a	great	number	of	functions	for
helping	out	with	statistics,	including	functions	for	statistical	graphing.	To
produce	a	histogram	like	the	one	shown	in	Figure	10-4,	simply	call	(after
using Plots)	histogram(data, bins = 100).	The	data	in	this	call	is	the	actual	series	of
observations;	the	bins	tells	the	routine	to	use	that	number	of	intervals	to
construct	the	histogram.	For	each	interval,	it	will	count	the	number	of
observations	in	data	and	draw	the	rectangle	at	the	appropriate	height.	The
area	of	each	rectangle	represents	the	number	of	observations	in	the
horizontal	axis	interval	that	it	covers.	Beware	that	the	same	dataset	may
produce	very	different	plots	when	choosing	different	numbers	of	bins;	some
choices	will	better	reflect	the	underlying	distribution	than	others.	If	you
leave	out	the	bins	argument,	the	histogram()	routine	will	attempt	to	choose	the
“best”	value,	using	a	formula	from	statistical	theory	that	is	designed	to	best
represent	the	data.	This	formula	does	not	always	work	perfectly,	so	the
careful	scientist	or	statistician	will	always	be	aware	of	the	nature	of	the	data
being	plotted,	and	intervene	manually	if	necessary.

The	Normal	Distribution
Consider	the	rand()	function	described	earlier	in	this	chapter.	Since	it
generates	a	floating-point	number	that	is	equally	likely	to	be	anywhere	in	the
interval	from	0	to	1,	the	mean	value	of	the	numbers	it	returns	should	be	0.5.
The	number	is	just	as	likely	to	be	greater	than	0.5	as	to	be	smaller	than	that
midpoint.

This	means	if	you	call	rand()	many	times,	and	calculate	the	mean	of	the
results,	you	should	get	something	fairly	close	to	0.5:	mean(rand(1000))	should	be
approximately	0.5.	I	did	it	just	now	and	got	0.49869515604579906.
Intuitively,	you	may	expect	if	you	use	a	number	smaller	than	1,000,	the	mean
is	more	likely	to	be	farther	from	0.5,	and	that	is	correct.

But	even	using	1,000	numbers,	the	mean	will	rarely	be	exactly	0.5.	Since
(unless	you	reset	the	seed)	you	will	get	a	different	set	of	random	numbers
each	time,	the	mean	will	be	different	each	time,	as	well.	The	numbers
themselves,	as	you	know,	are	uniformly	distributed	in	[0,	1).	If	you	call



mean(rand(1000))	many	times,	how	will	the	means	be	distributed?
You	know	they	can’t	be	distributed	uniformly,	because	they	are	more

likely	to	be	near	0.5	than	far	from	it.	But	what	exactly	is	the	distribution	of
the	means?

Let’s	write	a	little	program	to	find	out.	Even	those	who	have	studied
statistics	and	know	what	to	expect	may	find	the	numerical	experiment	in
Listing	10-4	interesting.

using Plots
using Statistics
N = 10000
averages = zeros(N)
for i in 1:N
    averages[i] = mean(rand(1000))
end
histogram(averages, label="Empirical")

Listing	10-4:	Exploring	the	distribution	of	the	mean

The	program	is	a	straightforward	calculation	of	the	N	means	of	1,000
random	numbers.	To	see	how	these	means	are	distributed,	we	turn	to	the
histogram()	plotting	function	introduced	earlier	in	the	chapter.	The	purpose
of	this	function	is	exactly	to	display	distributions.	The	"Empirical"	label
indicates	that	the	histogram	is	the	result	of	a	numerical	experiment.	Figure
10-5	shows	the	result.



Figure	10-5:	Distribution	of	the	mean	of	uniform	random	numbers

Obviously,	the	distribution	of	the	means	is	not	uniform.	As	we	expect,	it
shows	that	means	closer	to	0.5	are	more	frequent.

In	fact,	from	a	central	result	in	probability	theory,	we	can	predict	the
precise	mathematical	form	of	this	distribution.	It	should	be

where	x	is	the	random	variable	whose	distribution	we	are	describing,	σ	is	the
standard	deviation,	and	μ	is	the	mean.

This	is	the	equation	for	the	famous	normal	distribution,	also	called	the



Gaussian.	Does	it	describe	the	empirical	distribution	from	the	program?	We
don’t	need	to	translate	the	equation	into	code	to	find	out.	This	distribution
is	so	crucial,	it’s	included	in	the	second	most	important	Julia	package	for
statistical	work,	Distributions.

Once	you	import	this	package	into	your	namespace,	the	function	Normal(μ,
σ)	creates	a	normal	distribution	with	a	mean	of	μ	and	a	standard	deviation	of
σ.	You	can	interact	with	the	distribution	by	sampling	from	it	using	the	rand()
function.	For	example,	if	you	create	a	normal	distribution	with	a	mean	of	10
and	a	standard	deviation	of	2	with	d = Normal(10, 2),	you	can	draw	10	samples
from	it	with	rand(d, 10).	Calling	rand()	without	supplying	an	explicit
distribution,	as	we’ve	been	doing	up	to	now,	uses	the	uniform	distribution	by
default.

One	way	to	see	if	the	empirical	distribution	shown	is	predicted	by	the
normal	distribution	is	to	take	a	healthy	sample	from	the	normal	distribution
and	plot	its	histogram	with	the	previous	one.	To	make	the	plot	easier	to	see,
instead	of	trying	to	plot	two	histogram()	plots	on	the	same	graph,	we	can	plot
the	second	one	using	a	different	type	of	histogram	display	by	supplying	the
:scatterhist	series	type	to	the	normal	plot()	command.	Adding	the	four
additional	lines	shown	in	Listing	10-5	to	the	program	in	Listing	10-4	makes
the	graphical	comparison	that	we	want.

using Distributions
σ = std(averages)
nd = Normal(0.5, σ)
plot!(rand(nd, 10000), seriestype=:scatterhist, label="Normal sample")

Listing	10-5:	Sampling	from	the	normal	distribution

Figure	10-6	shows	that	the	two	distributions	are	close,	as	theory	predicts.



Figure	10-6:	Comparing	the	empirical	and	theoretical	distributions

Note	that	in	order	to	compare	two	histograms	directly,	they	must	have
the	same	bin	width,	or	both	be	normalized.	In	these	examples,	I	allow	the
routines	to	compute	the	bin	width	automatically,	knowing	that	for	similar
distributions	the	widths	would	be	the	same.

The	Distributions	package	provides	many	probability	distributions	in
addition	to	the	normal	distribution.	It	also	includes	many	functions	for	using
these	distributions,	along	with	other	statistical	tools.

Probability	Density	Functions
One	of	those	tools	is	pdf(),	which	stands	for	probability	density	function.	This



function	describes	the	distribution	in	the	following	sense:	if	you	integrate	the
probability	density	function	over	a	certain	interval,	the	result	is	the
probability	that	an	observation	lies	within	that	interval.	In	other	words,	the
probability	that	an	observation	lies	between	a	and	b	is	the	area	under	the
distribution	curve	between	a	and	b.

Usually,	when	referring	to	the	graph	of	a	distribution,	we	mean	the	graph
of	its	probability	density	function.	The	integral	over	the	entire	distribution
must	exist	and	be	equal	to	1,	because	it	is	certain	that	any	observation	must
have	some	value	within	the	range	of	possible	values.

All	of	the	histogram()	plotting	types	have	an	optional	normalize	keyword
argument	that	can	be	set	to	true	to	make	the	histogram	plot	indicate
probabilities	rather	than	raw	counts—for	example:

   histogram(averages, label="Empirical", normalize=true)
   plot!(rand(nd, 10000), seriestype=:scatterhist, label="Normal sample",
         normalize=true)
➊ plot!(0.46:0.001:0.54, pdf.(nd, 0.46:0.001:0.54), lw=5, label="Normal PDF")

Those	three	lines	repeat	the	plots	of	the	two	histograms	just	plotted	in
Figure	10-6,	but	normalized.	Now	the	areas	of	the	histogram	rectangles,
shown	in	Figure	10-7,	are	probabilities	rather	than	raw	counts.	The	new
curve	is	a	plot	➊	of	the	probability	density	function	of	the	normal
distribution	with	the	same	mean	and	standard	deviation	as	the	sample.	It	is	a
graph	of	the	equation	for	ϕ,	displayed	after	Figure	10-5.	Figure	10-7	shows
how	accurately	it	predicts	the	results	of	the	numerical	experiment	in	Listing
10-4.



Figure	10-7:	Adding	the	probability	density	function

Because	of	the	normal	distribution’s	importance,	Julia	provides	another
function,	similar	to	rand(),	that	returns	normally	distributed	random	numbers
rather	than	uniformly	distributed	ones.	The	randn()	function	is	part	of	Base,	so
you	don’t	need	an	import.	It	returns	single	numbers	or	arrays,	normally
distributed	with	a	mean	of	0	and	a	standard	deviation	of	1.

Let’s	repeat	the	plot	from	Listing	10-1	using	randn():

using Plots
ra = randn(100000)
scatter(ra, markersize=1, label=nothing)

The	only	difference	is	in	using	randn()	instead	of	rand().	Figure	10-8	shows
the	result.	As	in	Figure	10-1,	each	of	the	105	numbers	is	represented	by	a



tiny	dot,	but	now	the	dots	are	not	uniformly	distributed.

Figure	10-8:	Normally	distributed	random	floats

Instead,	they	are	crowded	around	the	value	0	on	the	vertical	axis,	with
their	density	getting	thinner	the	farther	they	are	from	0,	the	mean	of	their
distribution.

Dealing	with	Data
So	far,	all	the	“data”	in	this	chapter	has	been	either	made	up	or	the	result	of
collecting	results	from	numerical	pseudorandom	processes.	If	you	are	using



Julia	for	statistical	analysis,	the	odds	are	good	that	you	have	some	actual,
real-life	data	to	analyze.

In	this	section,	we’ll	explore	the	most	important	methods	in	Julia	for
dealing	with	real	data.	We’ll	look	at	a	data	type	that	comes	in	handy	when
manipulating	data	in	the	real	world,	how	to	read	data	from	the	most
common	types	of	datafiles,	how	to	use	dataframes	to	view	and	analyze	this
data,	and	how	to	take	advantage	of	Julia’s	statistical	packages	to	understand
and	visualize	numerical	information.

Missing	Values
There	is	an	unusual	data	type	I	didn’t	mention	in	Chapter	8	because	I	was
saving	it	for	this	chapter.	It’s	a	singleton	type	called	Missing,	and	it	is	used	to
represent	missing	values.

Imagine	you	have	a	sensor	that	is	supposed	to	record	the	temperature
inside	a	tank	of	water	at	regular	intervals	of	time.	Unfortunately,	every	now
and	then	it	fails	to	record	a	measurement.	Those	failures	are	recorded	as	0s,
but	that	number	is	far	outside	the	range	of	possible	measurements,	so	these
failures	can’t	be	mistaken	for	actual	temperatures.	At	the	end	of	the
experiment	you	have	two	vectors,	or	perhaps	two	columns	of	a	matrix,	one
for	the	times	of	the	measurements	and	the	other	for	the	temperatures.	When
analyzing	this	data,	you	don’t	want	the	false	zero	temperatures	to	be
included	in	the	analysis	because	that	would	distort	your	calculations.	You
want	a	better	solution	than	simply	deleting	the	failed	readings	because	that
would	create	a	false	record	of	what	actually	happened	in	the	experiment,
and,	to	keep	the	timing	and	temperature	vectors	the	same	length,	perhaps
for	plotting	the	results,	you	will	have	to	delete	the	corresponding	entries
from	the	timing	vector,	leading	to	a	time	sequence	containing	gaps.

The	Missing	type	provides	one	solution	to	this	set	of	problems	and	others
—for	example,	in	data	science,	where	the	concept	of	missing	values	arises.	It
has	some	properties	that	may	seem	peculiar,	illustrated	in	Listing	10-6,
which	is	a	REPL	session	exploring	arithmetic	on	the	Missing	type.

julia> m = missing
missing

julia> 3m
missing

julia> 3 + m



missing

julia> missing/3
missing

julia> missing/0
missing

julia> missing + missing
missing

julia> typeof(m)
Missing

Listing	10-6:	Arithmetic	properties	of	missing	values

We	see	from	Listing	10-6	that	arithmetic	on	missing	values	leads	to	a
missing	result,	even	when	dividing	by	0.

Usually,	missing	values	are	not	floating	around	by	themselves,	but	are
found	as	part	of	a	collection	of	data.	Listing	10-7	is	a	little	function	that
creates	an	array,	replaces	some	of	its	values	with	missing	values,	and	plots	the
result.

using Plots
function plotmissing()
    a::Vector{Union{Missing, Float64}} = sin.(0:0.03:2π) .+ rand(210)/4
    a[49:54] .= missing
    plot(a, legend=nothing, linewidth=3)
end

Listing	10-7:	Creating	some	missing	data	for	plotting

We	need	to	declare	the	array	to	be	able	to	accept	missing	values	as	well	as
floating-point	numbers.	If	we	omit	this	declaration,	the	compiler	will
complain	when	we	try	to	assign	missing	to	any	location	in	the	array	because	it
will	have	defined	it	as	Vector{Float64}.

The	plot	in	Figure	10-9	shows	that	Plots	knows	how	to	handle	missing
data.



Figure	10-9:	Plotting	with	missing	data

By	default,	it	leaves	a	gap	where	there	are	missing	values.

Functions	for	Handling	Missing	Values
Julia	provides	several	functions	to	do	convenient	things	with	missing	values.
To	illustrate	what	these	do,	suppose	we	have	an	array,	a,	with	some	numbers
and	some	missing	elements:

a = [1, missing, 2, 3, missing, 4]

If	you	want	the	sum	of	the	numbers	in	the	array,	you	might	try	sum(a),	but
if	you	refer	to	Listing	10-6,	you	will	see	that,	since	adding	a	number	to	a
missing	value	yields	missing,	the	end	result	of	the	sum()	operation	will	just	be
missing.	Here,	Julia’s	skipmissing()	function,	which	does	as	its	name	suggests,



comes	to	the	rescue:

julia> sum(skipmissing(a))
10

The	skipmissing()	function,	which	is	built	into	Base,	returns	an	iterator:

for i in skipmissing(a)
    println(i)
end

If	you	run	that	loop,	you’ll	see	this:

1
2
3
4

If	you	need	to	make	a	new	array	with	the	missing	values	omitted,	use
collect(skipmissing(a)).

If,	instead,	you	want	to	make	an	array	with	a	particular	value	substituted
for	the	missing	values	in	the	original	array,	the	function	for	that	is	coalesce():

julia> coalesce.(a, NaN)
6-element Vector{Real}:
   1
 NaN
   2
   3
 NaN
   4

Notice	how	we	need	to	use	the	dot	operator	to	apply	coalesce()	to	all	the
elements	of	the	vector,	and	how	the	type	of	the	returned	array	is	no	longer	a
Union	with	missing.

If	you	have	a	program	that	analyzes	data,	and	want	to	generalize	it	so	it
can	handle	data	collections	with	missing	elements,	the	skipmissing()	function
makes	that	task	relatively	straightforward.	You	may	only	have	to	replace
occurrences	of	your	data	arrays	with	skipmissing()	acting	on	those	arrays.

You	may,	however,	prefer	an	approach	that	does	not	litter	your	code	with
a	multitude	of	calls	to	skipmissing().	You	can	take	advantage	of	Julia’s	multiple
dispatch	to	define	your	own	methods	for	sum(),	and	for	any	other	functions
that	operate	on	your	data	arrays,	to	handle	missing	elements	however	you	like.



If,	whenever	you	sum()	an	array	of	data	(and	keeping	in	mind	the	warning
about	type	piracy	from	Chapter	8),	you	know	that	you	will	always	want	the
missing	values	ignored	and	the	numerical	values	added	together,	you	can
define	a	method	this	way:

import Base.sum
function sum(a::AbstractArray{Union{Missing, Int64}})
    return sum(skipmissing(a))
end

That	example	works	for	integers,	but	it’s	easily	modified	for	other
numerical	types.

The	function	ismissing()	returns	true	if	its	argument	is	missing	and	false
otherwise.	It’s	often	more	expressive	than	comparing	against	the	Missing	type
in	data	expressions.

The	Missings	package	provides	a	few	more	convenience	functions	for
dealing	with	this	data	type.	This	package	is	not	in	the	standard	library,	so
you’ll	have	to	add	and	import	it.

Anyone	making	use	of	missing	values	is	likely	to	appreciate	two	functions
from	this	package.	As	shown	in	Listing	10-7,	it’s	a	little	cumbersome	to
define	a	vector	that	can	hold	both	the	needed	numerical	type	and	optional
values—and,	more	important,	you	may	have	a	numerical	array	that	you	need
to	convert	to	a	type	that	will	allow	you	to	add	missing	values	to	it.	The
following	little	REPL	session	shows	how	to	use	the	allowmissing()	function
from	the	Missings	package,	which	solves	both	of	these	problems:

julia> import Missings
julia> a = rand(4)
julia> a = Missings.allowmissing(a)
julia> a[3] = missing;
julia> a
4-element Vector{Union{Missing, Float64}}:
 0.6225362617934931
 0.4473340385496267
  missing
 0.5062746637386624

You	can	convert	a	Vector{Union{Missing, Float64}}	type	back	into	a	pure
floating-point	numerical	type	using	Missings.disallowmissing(),	but	first	you
must	eliminate	any	missing	values	from	it.



Logic	with	Missing	Values
Before	leaving	the	topic	of	Julia’s	Missing	data	type,	let’s	look	at	how	it
behaves	in	the	context	of	logic	expressions.	We	typically	think	of	operations
on	logical	values	as	following	a	two-valued	(Boolean)	logic,	where	the	only
possible	values	are	true	and	false,	a	calculus	that	is	reviewed	in	“Logic”	on
page	31.	The	missing	value	expands	the	world	of	Boolean	logic	to	encompass
a	third	truth	state,	which	is	neither	true	nor	false,	but	indeterminate.	In	Julia,
the	missing	type,	along	with	bitwise	AND	(&),	bitwise	OR	(|),	bitwise	exclusive
OR	(xor),	equality	(==),	and	negation	(!),	form	a	system	of	three-valued	logic.

The	results	of	a	logical	expression	thus	can	be	true,	false,	or	missing.	The
following	list	shows	how	the	system	works,	and	after	some	thought,	the
entries	should	make	intuitive	sense.	For	example,	the	result	of	true | missing	is
true	because	the	result	will	be	true	no	matter	the	truth	value	of	the	second
operand.	And	the	result	of	true & missing	must	be	missing,	because	it	will	depend
on	the	truth	value	of	the	second	operand,	which	is	undetermined.

true | missing			true

true & missing			true

false | missing			missing

false & missing			false

xor(true, missing)			missing

xor(false, missing)			missing

!missing			missing

missing == missing			missing

missing === missing			true

Since	the	truth	value	of	missing == missing	depends	on	the	values	of	the
missing	items,	it	is	itself	missing.	However,	since	missing	is	a	singleton	type,	all
instances	of	it	are	the	same	object;	hence	missing === missing	must	be	true.

CSV	Files
Data	that’s	of	moderate	size	often	comes	in	the	form	of	a	comma-separated
value	(CSV)	file.	These	are	text	files	with	items	delimited	by	commas,	and
optionally	with	descriptive	headers.	They	have	the	considerable	advantages



of	being	human	readable	and	amenable	to	processing	with	all	of	the	Linux
command	line	tools.	But	they	have	the	disadvantages	of	taking	up	more
space	than	necessary,	being	less	efficient	than	binary	representations,	and
possibly	not	faithfully	representing	the	original	values	after	conversion	into
text.	For	those	reasons,	this	format	is	probably	not	the	best	choice	for
storing,	say,	the	output	of	a	physics	simulation.	However,	CSV	is	perhaps
the	most	common	format	for	distributing	what	are	commonly	called
“statistics,”	such	as	demographic	data	or	the	pandemic	data	that	we’ll	explore
later.

You	may	be	tempted	to	write	your	own	programs	for	reading	CSV	files,
parsing	them,	and	turning	them	into	some	Julia	data	structure.	If	you’ve
come	this	far	in	the	book,	you	will	certainly	be	able	to	do	so.	However,	it
would	be	wise	to	resist	the	temptation,	except	as	an	exercise.

For	real	work,	it’s	a	better	idea	to	use	the	CSV	package,	which	we’ll	need	to
add	in	the	package	manager.	This	package	can	handle	any	delimiter,	in
addition	to	commas:	the	popular	tab-separated	file	format	as	well	as	any
custom	format	you	may	come	across.	It’s	even	able,	in	many	cases,	to	figure
out	by	itself	what	delimiter	the	file	is	using.	This	delimiter	need	not	be
limited	to	a	single	character;	it	can	be	a	string	as	well.	The	CSV	package	can
deal	with	comments	mixed	in	with	the	data,	column	headers,	and	anything
else	you’re	likely	to	encounter.	It	can	read	files	from	disk	or,	given	a	URL,
can	fetch	them	over	the	internet.	It	can	handle	dates	in	any	format	and
transform	labels	into	more	code-friendly	forms.	Perhaps	most	importantly,	it
transforms	the	textual	information	into	a	Julia	data	type	that	can	be	further
transformed	into	one	of	several	different	table-like	data	formats	designed	to
be	easily	manipulated	for	statistical	work.

Dataframes
The	most	important	of	these	table-like	data	structures	is	dataframe,	provided
by	the	DataFrames	package,	which	also	needs	to	be	added.	Indeed,	as	the	data
structure	returned	by	CSV	after	it	reads	a	file	is	not	the	most	convenient	for
exploration,	the	usual	strategy	is	to	immediately	transform	it	into	a	dataframe.

A	dataframe	is	a	table	of	values,	like	a	matrix,	but	with	extra	functionality
designed	for	data	exploration.	Along	with	the	dataframe	data	type,	the
DataFrames	package	exports	several	functions	for	manipulating	it.	In	addition,
many	Julia	functions	with	which	you	are	already	familiar	have	methods	that



extend	their	functionality	to	the	dataframe.
It	is	most	useful	to	think	of	a	dataframe	as	a	set	of	columns	stuck	together.

Each	column	has	a	unique	name.	A	column	can	be	referred	to	with	its
integer	index,	with	its	name	as	a	string,	or	with	its	name	as	a	symbol.	When
you	are	examining,	plotting,	or	manipulating	data,	you	are	doing	these
things	to	dataframe	columns.

NOTE

We	treat	dataframes	as	sets	of	columns	for	data	analysis	and	visualization.
However,	most	Julia	functions	that	operate	on	collections	treat	dataframes	as
collections	of	rows.	See	“Further	Reading”	on	page	359	for	an	illuminating
article	on	this	subject.

Let’s	consider	an	example	using	real-life	data	that	comes	in	a	typically
messy	form.	Our	journey	through	this	data	will	make	the	earlier	discussion
of	dataframes	concrete	and	introduce	the	important	functions	for	wrangling
data	from	sources	in	the	wild.

Let’s	look	at	some	data	from	the	COVID-19	Data	Repository	maintained
by	the	Center	for	Systems	Science	and	Engineering	(CSSE)	at	Johns
Hopkins	University	(https://github.com/CSSEGISandData/COVID-19).	This
data	comes	in	the	form	of	CSV	files,	using	an	actual	comma	as	a	delimiter.
The	first	line	contains	headings	to	describe	each	data	column,	but	the	format
of	those	headings	will	make	subsequent	manipulation	in	Julia	inconvenient.
The	first	problem	is	that	some	of	the	headers	are	names	of	countries	or
territories	that	contain	spaces.	The	second	is	that	some	of	the	headers	are
dates,	but	these	are	in	a	format	that	we	need	to	take	into	account	so	that	they
are	parsed	correctly.

NOTE

The	datafile	used	in	the	examples	here	is	available	in	the	online	resource	area
under	the	name	time_series_covid19_confirmed_global.csv.	The	CSSE
data	grows	in	size	over	time,	so	some	of	the	plots	shown	in	this	section	may
become	unwieldy	with	future	versions	of	the	file	from	Johns	Hopkins.

Fortunately,	the	file	reading	function	in	the	CSV	package	is	equipped	to

https://github.com/CSSEGISandData/COVID-19


deal	with	both	of	those	common	issues.	Listing	10-8	shows	the	instructions
for	reading	the	CSV	file	and	converting	it	immediately	into	a	dataframe.

using CSV, DataFrames
covdat = CSV.File("time_series_covid19_confirmed_global.csv";
    normalizenames=true) |> DataFrame

Listing	10-8:	Reading	a	CSV	file

The	normalizenames	option	replaces	spaces	and	other	troublesome
characters	in	column	names	with	underscores	and	performs	any	other
transformations	needed	to	turn	header	text	into	legal	Julia	identifiers.	The
dateformat	keyword	argument	should	be	self-explanatory.

The	first	argument	to	CSV.File()	is	the	name	of	the	file	on	disk,	which	I
previously	downloaded	and	saved.	Another	option	is	to	pass	the	URL	of	the
file	here.	CSV.File()	will	recognize	this	and	automatically	download	the	data
over	the	internet.	The	date	format	is	determined	by	inspecting	the	file,
whose	first	line,	which	contains	the	column	headers,	looks	like	this:

Province/State,Country/Region,Lat,Long,1/22/20,1/23/20,1/24/20,...

There	are	432	columns.	The	end	of	the	second	command	in	Listing	10-8
converts	the	CSV.File()	object	into	a	DataFrame	object,	which	is	stored	in	the
variable	covdat.	If	this	is	executed	in	a	REPL,	Julia	will	print	out	a	truncated
representation	of	the	dataframe.	Figure	10-10	shows	what	that	looks	like.	In
this	particular	case,	I’ve	narrowed	the	REPL	window	so	it	fits	better	on	the
page.



Figure	10-10:	Representation	of	a	dataframe	in	the	REPL

The	display	indicates	how	much	information	has	been	omitted,	the	names
of	the	visible	columns,	and	the	type	of	data	they	contain.	A	question	mark
after	the	data	type	means	some	values	may	be	missing.	Here	is	a	typical	use	for
the	missing	data	type:	most	of	the	countries	in	the	files	do	not	have	a	province
listed,	but	a	few	do.	Missing	data	is	represented	in	the	original	CSV	file	by	a
number	that	is	.	.	.	missing.

The	fancy	display	of	dataframes	in	the	REPL	is	accomplished	by	show(),



usually	implicitly.	A	print()	of	a	dataframe	spits	out	the	whole	thing,	without
the	nice	formatting	or	type	information,	and	is	usually	not	what	you	want.	In
addition,	show()	can	create	HTML	and	LaTeX	versions,	and	control	other
aspects	of	the	dataframe	display.	Consult	the	REPL	help	to	learn	the	details.

The	@df	Macro
For	the	rest	of	the	chapter,	we’re	going	to	make	extensive	use	of	a	macro
found	in	the	StatsPlots	package	called	@df.	It’s	part	of	StatsPlots	because	it’s
especially	effective	at	making	commands	for	plotting	from	dataframes	more
concise,	but	its	use	is	not	limited	to	plot()	commands.	From	this	point	on,
the	following	command	is	assumed:

using StatsPlots, Statistics

The	@df	macro	does	what	macros	do	best:	it	rewrites	code	so	that	our
programs	are	easier	to	write	and	read.	This	macro	has	one	job:	it	replaces
symbols	in	an	expression	with	the	columns	of	the	dataframe	that	appears	as
its	first	argument.	This	simple	expression	rewriting	is	enough	to	make	this
macro	popular	because	it	frees	the	programmer	from	having	to	repeat	the
name	of	the	dataframe	multiple	times	in	an	expression.	Consider	the
following	example:

julia> @df covdat print((minimum(:_1_1_21), maximum(:_1_1_21), mean(:_1_1_21)))
(0, 20252310, 306902.8576642336)

In	this	expression,	the	symbol	:_1_1_21	is	converted	to	covdat._1_1_21	each
time	it	appears.	The	argument	of	the	macro	following	the	name	of	the
dataframe	must	be	a	block	or	a	function	call,	so	the	above	would	fail	without
wrapping	the	result	in	the	print()	function.

Since	Symbols	are	converted	into	dataframe	columns	when	using	the	@df
macro,	we	need	some	syntax	to	indicate	when	a	Symbol	should	be	left	alone—
for	example,	if	there	is	a	conflict	between	a	column	name	and	a	symbol	used
for	another	purpose.	The	macro	provides	the	“^()”	wrapper	to	handle	these
conflicts.	If,	for	example,	a	column	called	“topleft”	happens	to	be	in	your
dataframe,	you’ll	need	to	use	the	syntax	legend=^(:topleft)	in	the	plotting
command	to	put	the	legend	in	the	Northwest.



Indexing	and	Filtering	Dataframes
A	dataframe	can	be	indexed	and	filtered	using	the	same	methods	that	we
apply	to	matrices.	However,	dataframes	come	with	some	extra	indexing
methods	that	let	us	take	advantage	of	their	named	columns.

I	include	in	this	chapter	only	the	indexing	and	filtering	methods	that	I
think	are	most	likely	to	be	useful	in	the	majority	of	cases.	There	are,	in
addition	to	everything	covered	here,	several	packages	that	supply	macros	and
functions	providing	yet	more	ways	to	select	and	transform	the	information
in	a	dataframe.	Their	intention	is	to	allow	a	more	streamlined	syntax	for
certain	common	tasks,	and	these	packages	can	be	convenient.	However,	most
of	them	are	in	somewhat	of	a	state	of	flux.	As	in	most	sections	in	this	book,	I
try	to	confine	myself	to	methods	that	have	solidified—that	you	can	learn
once	and	use	forever.

Items	in	a	dataframe	can	be	extracted	using	the	familiar	forms	of	integer
indexing.	Here	are	a	few	examples:

➊ julia> covdat[3, 2]
  "Algeria"

➋ julia> covdat[3:6, 2]
   4-element Vector{String}:
   "Algeria"
   "Andorra"
   "Angola"
   "Antigua and Barbuda"

➌ julia> covdat[1, 2:4]
   DataFrameRow
   Row | Country_Region  Lat       Long
       | String          Float64?  Float64?
  ------------------------------------------
     1 | Afghanistan      33.9391     67.71

Notice	how	the	data	type	of	the	result	depends	on	how	we	index	the
dataframe.	If	we	ask	for	one	element	➊,	we	get	back	a	single	value,	in	this
case	a	string.	If	we	ask	for	a	range	of	rows	in	a	single	column	➋,	we	get	a
Vector.	Finally,	if	we	extract	data	horizontally,	by	indexing	a	single	row	and	a
range	of	columns	➌,	we	get	a	data	type	that	we	haven’t	seen	before:	a
DataFrameRow.

Let’s	ask	Julia	for	a	range	of	rows	and	a	range	of	columns:

julia> covdat[266:268, 2:4]



3×3 DataFrame
 Row | Country_Region  Lat       Long
     | String          Float64?  Float64?
------------------------------------------
   1 | Uruguay         -32.5228  -55.7658
   2 | Uzbekistan       41.3775   64.5853
   3 | Vanuatu         -15.3767  166.959

We	get	back	a	smaller	dataframe.	What	else	could	it	be?
We	don’t	have	to	count	indices	to	refer	to	columns,	but	can	use	their

names,	as	in	Listing	10-9.

julia> covdat[272:end, [:Country_Region, :Lat, :Long, :_1_22_21]]
3×4 DataFrame
 Row | Country_Region  Lat       Long      _1_22_21
     | String          Float64?  Float64?  Int64
----------------------------------------------------
   1 | Yemen            15.5527   48.5164      2118
   2 | Zambia          -13.1339   27.8493     43333
   3 | Zimbabwe        -19.0154   29.1549     30523

Listing	10-9:	Selecting	columns	by	name

We	use	Symbols	to	index	the	dataframe’s	columns.	For	each	column	title,	a
Symbol	with	the	same	name	is	created	for	efficient	indexing.	We	could	just	as
well	have	used	the	string	versions	of	the	column	names	in	Listing	10-9,	but
using	Symbols	is	more	efficient.	This	is	one	reason	for	using	normalizenames
when	reading	the	data:	headers	containing	spaces	would	not	be	valid	Symbol
names,	and	we	would	be	forced	to	use	the	string	versions.	Listing	10-9	shows
the	last	three	countries,	their	latitude	and	longitude,	and	the	number	of
COVID	cases	on	January	22,	2021.

The	headings	of	the	columns	for	latitude	and	longitude	have	data	types
printed	with	question	marks.	This	means	somewhere	in	this	table	is	a
country	or	a	province	with	one	or	both	of	these	values	missing.	To	see	those
countries	or	provinces,	we	need	to	find	the	row	in	the	table	where	:Lat	or
:Long	has	the	value	missing.	To	select	rows	from	a	dataframe	where	one	or
more	columns	satisfy	some	condition,	we	can	use	the	filter()	function
(described	in	“The	filter()	Operator”	on	page	163.	The	DataFrame	package
extends	the	filter()	function	to	operate	on	dataframes	by	filtering	rows	and
returning	a	new	dataframe.	The	following	line	of	code	filters	our	COVID
dataframe,	looking	for	the	rows	with	missing	latitude	or	longitude:

filter(r -> (r.Lat === missing) || (r.Long ===  missing), covdat)



1×432 DataFrame
 Row | Province_State          Country_Region  Lat       Long     ...
     | String?                 String          Float64?  Float64? ...
-------------------------------------------------------------------
   1 | Repatriated Travellers  Canada          missing   missing  ...
                                                428 columns omitted

The	result	is	a	dataframe	with	a	single	row,	with	the	curious	notation
Repatriated Travellers	in	place	of	the	province.

Rather	than	use	the	filter()	function,	you	can	get	the	same	result	with
bitmask	indexing	or	any	other	technique	that	works	with	normal	arrays.

Notice	in	the	example	just	shown	how	we	specified	the	columns	for	the
filter	using	the	column	names	as	bare	words.	This	is	yet	another	form	of
indexing,	which	is	convenient	in	filter	expressions.	We	can	also	use	that
syntax	to	select	columns	from	the	dataframe,	turning	them	into	Vectors:

julia> covdat.Country_Region
274-element Vector{String}:
 "Afghanistan"
 "Albania"
 "Algeria"
 "Andorra"
 :
 "Yemen"
 "Zambia"
 "Zimbabwe"

Since	selecting	columns	provides	us	with	Vectors,	we	can	use	this	form	of
indexing	for	plotting:

using Plots
plot(covdat.Country_Region, covdat._1_1_21; xrotation=40,
     label="Cases on 1JAN2021", legend=:topleft)

Nothing	mysterious	is	going	on	here.	We	simply	extracted	two	vectors
from	the	dataframe	and	plotted	them	in	the	usual	way,	resulting	in	Figure
10-11.



Figure	10-11:	Cases	vs.	country

This	plot	is	not	ideal,	however.	It	shows	us	something	about	the
distribution	of	the	number	of	cases	on	the	date	in	question,	but	the
horizontal	axis	is	essentially	useless	because	there	is	no	room	for	hundreds	of
country	labels.	Perhaps,	instead	of	trying	to	plot	all	the	data	at	once,	it	would
be	more	useful	to	plot	some	meaningful	subset.	Let’s	limit	our	visualization
to	the	countries	with	a	lot	of	cases,	by	using	the	filtering	mechanism	we	just
learned.	Also,	let’s	switch	to	a	bar	chart,	which	is	the	more	appropriate
visualization	for	this	type	of	data:

covhc = filter(r -> r._1_1_21 > 2*10^6, covdat)
@df covhc bar(:Country_Region, :_1_1_21; xrotation=40,
     label="Cases on 1JAN2021", legend=:topleft)



Now	we	have	something	useful:	a	chart	of	the	countries	with	more	than
two	million	cases	on	New	Year’s	Day	2021,	shown	in	Figure	10-12.

Figure	10-12:	Countries	with	over	two	million	cases

In	the	previous	indexing	commands,	we	used	integer	indexing	to	select
columns,	which	worked	well,	but	required	us	to	count	to	the	first	column	of
interest.	Also,	it	was	only	convenient	because	we	knew	that	the	columns	we
wanted	extended	to	the	end,	which	simplified	the	indexing	expression.

An	alternative	that	lets	us	use	column	names	directly	is	the	Between()
function.	The	equivalent	expression	for	selecting	the	date	columns	is:

covdat[1, Between(:_1_22_20, end)]



This	can	be	easily	modified	to	choose	any	closed	interval	of	columns.
Another	option	is	the	Not()	function.	Here	is	a	selection	that	returns	the

same	DataFrameRow	as	the	previous	one:

covdat[1, Not([:Country_Region, :Province_State, :Lat, :Long])]

The	columns	that	remain	after	the	listed	ones	are	excluded	are	just	the
ones	we	want:	the	date	columns.

We	can	also	select	columns	using	regular	expressions	applied	to	the
names	of	their	titles.	Here	is	another	way	to	make	the	same	selection,
returning	the	same	DataFrameRow:

covdat[1, r"_2"]

Sometimes	this	is	the	most	convenient	way	to	select	data.	For	example,	if
we	want	to	extract	only	the	columns	for	February	2021	for	Afghanistan,	we
could	just	say	covdat[1, r"_2_\d*_21"].

But	what	if	we	want	to	make	a	DataFrameRow	with	all	the	date	columns	and,
say,	the	Country_Region	column	(but	none	of	the	other	ones)?	None	of	the
indexing	techniques	we’ve	seen	so	far	make	this	convenient,	although	you
might	be	able	to	twist	them	to	get	the	desired	result.	There	is	no	need	for
contortions,	however,	because	we	can	use	the	Cols()	function.	The	following
lines	show	four	different	ways	to	use	this	function	to	get	a	DataFrameRow	similar
to	the	one	we	created	using	multiple	techniques	earlier,	but	with	the
addition	of	the	Country_Region	column:

covdat[1, Cols(:Country_Region, r"_1")]
covdat[1, Cols("Country_Region", r"_1")]
covdat[1, Cols(2, r"_1")]
covdat[1, Cols(2, 5:end)]

As	we	can	see,	the	Cols()	function	lets	you	pick	out	individual	columns	or
ranges	of	columns	using	numerical	indices,	regular	expressions,	or	column
names	either	as	symbols	or	as	strings.	It	can	also	reorder	columns.	The
following	rearranges	the	covdat	dataframe	to	place	the	latitude	and	longitude
columns	at	the	end:

covdat[:, Cols(1:2, r"_", :Lat, :Long)]

With	this,	we	have	a	large	enough	toolbox	to	do	most	of	the	indexing,



selecting,	and	rearranging	of	dataframes	that	we’re	likely	to	encounter	in	our
work.

Mutating	Dataframes
The	indexing	expressions	covdat[:, :Country_Region]	and	covdat.Country_Region
both	seem	to	return	a	Vector	with	contents	identical	to	the	Country_Region
column	of	the	dataframe	called	covdat.	However,	they	are	not	identical:

julia> covdat[:, :Country_Region] == covdat.Country_Region
true

julia> covdat[:, :Country_Region] === covdat.Country_Region
false

This	tells	us	that	while	the	two	left-	and	right-hand	sides	contain	the
same	values,	they	are	not	the	same	object.	The	syntax	dataframe[:, :col]	makes
a	copy	of	the	column	and	returns	it	as	a	Vector.	But	covdat.Country_Region	is	a
reference	to	the	column.	If	you	have	a	choice,	avoid	making	unnecessary
copies,	as	it	is	slower	and	consumes	memory.	Also,	if	you	want	to	mutate	a
column	by	assigning	to	individual	elements,	you	must	use	a	reference	rather
than	a	copy,	as	shown	in	Listing	10-10.

julia> covdat.Country_Region[1] = "Disneyworld"
"Disneyworld"

julia> covdat
274×432 DataFrame
 Row | Province_State  Country_Region      Lat       Long    ...
     | String?         String              Float64?  Float64 ...
--------------------------------------------------------------
   1 | missing         Disneyworld          33.9391   67.71  ...
   2 | missing         Albania              41.1533   20.168
  :  |       :                 :              :         :
 274 | missing         Zimbabwe            -19.0154   29.154
                              429 columns and 271 rows omitted

Listing	10-10:	Mutating	a	dataframe

The	direct	dot	syntax	used	here	only	works	when	using	a	literal	column
name	after	the	dot,	not	with	a	variable	holding	a	column	name.	If	you’re
using	variables	to	hold	the	names	of	columns,	you	must	use	square	brackets.
However,	that	doesn’t	mean	you	are	obligated	to	make	copies	of	columns.
Another	syntax	allows	you	to	use	square	brackets	to	reference	a	column



using	a	variable,	and	without	making	a	copy:	dataframe[!,	var]	means	the	same
thing	as	dataframe.columnname	if	var	is	set	to	"columnname".

A	command	such	as	covdat[:, c][1] = "Disneyworld"	will	have	no	effect	on	the
original	dataframe.	However,	the	assignment	in	Listing	10-10	can	also	be
written	as

covdat[!, :Country_Region][1] = "Disneyworld"

which	will	mutate	the	dataframe.	The	meaning	of	the	exclamation	point	is
suggested	by	its	use	in	mutating	functions,	introduced	in	“Functions	That
Mutate	Their	Arguments”	on	page	56.

Transposing	Dataframes
Dataframes	make	it	convenient	to	plot	or	operate	on	columns	of	data.	But
suppose,	using	the	data	in	the	covdat	dataframe,	that	you	wanted	to	plot	the
time	histories	of	case	numbers	for	various	countries.	For	each	country,	its
time	series	is	the	part	of	the	row	for	that	country	starting	in	the	fifth	column.
We	know,	from	the	indexing	section	earlier,	that	we	can	extract	rows	from
the	dataframe,	and	that	doing	so	gets	us	not	a	Vector,	but	a	DataFrameRow.	This
means	that,	for	plotting,	we	need	to	convert	the	result	into	a	Vector.	Here	is
one	way	to	put	all	of	this	together	to	plot	the	time	histories	of	COVID	cases
in	the	US:

using Chain
@chain covdat begin
    filter(r -> r.Country_Region == "US", _)[1, 5:end]
    Vector()
    plot(names(covdat)[5:end], _, xrotation=45, legend=:topleft,
         label="US cases", lw=3)
end

I	snuck	in	a	function	you	haven’t	seen	before:	names()	returns	the	names	of
the	columns	in	a	dataframe	in	the	form	of	a	Vector	of	strings,	so	it	is	what	we
need	to	make	meaningful	x-tick	labels.

The	listing	employs	the	@chain	macro	introduced	in	“The	@chain	Macro”
on	page	174.	The	pipeline	syntax	is	popular	when	wrangling	data	from
dataframes,	as	this	activity	inherently	involves	a	series	of	transformations.
The	code	snippet	will	produce	the	desired	timeline	plot,	shown	in	Figure
10-13.



Figure	10-13:	US	cases	vs.	date

Now,	to	compare	different	countries,	I	would	merely	need	to	repeat	the
plotting	pipeline	using	plot!()	to	add	a	new	curve,	substituting	the	country
name	of	interest.

You	may	be	thinking	that	there	is	a	lot	to	type	just	to	plot	a	row	of	data,
and	that	this	could	be	a	bit	of	a	drag	for	interactive	work.	Again,	all	this
typing	is	required	because	the	intention	behind	dataframes	is	to	deal	with
them	as	a	set	of	columns,	so	plotting	rows	is	going	against	the	grain.	It
would	be	smoother	to	go	with	the	dataframe	flow	and	somehow	flip	the
dataframe	around	first,	so	the	rows	become	columns.	This	would	make	the
code	easier	to	write	and	read.	Selecting	the	data	to	plot	would	be	more
direct,	and	it	would	come	in	the	form	of	a	Vector	that	can	be	plotted



immediately,	eliminating	the	need	for	conversion.
We	want	to	end	up	with	a	series	of	columns	for	different	countries,	with

each	column	containing	the	series	of	case	numbers	for	the	country.	If	we
have	that	kind	of	dataframe,	we	can	plot	any	country’s	case	number	history
directly.	We	would	also	like	a	column	containing	the	date	labels	to	use	in
plots.	We	can	omit	the	other	columns.	We	don’t	plan	to	use	the	latitude	and
longitude	information	in	these	plots	or	in	our	subsequent	analysis,	but	they
will	remain	in	the	original	covdat	dataframe	if	we	need	them.	We	are	just
making	a	new	dataframe	as	a	tool	to	ease	our	exploration	of	the	data.

Before	proceeding,	however,	we	need	to	do	something	about	the	fact	that
some	of	the	country	names	appear	more	than	once,	because	some	of	them
are	listed	along	with	several	entries	for	Province_State.	If	these	country	names
are	to	become	column	titles,	they	must	be	unique.	A	little	later	on	we’ll	learn
how	to	incorporate	this	data,	but	for	now,	we	can	simply	eliminate	the	rows
with	provinces,	keeping	only	the	main	country	entries:

covmc = covdat[ismissing.(covdat.Province_State), :]

With	the	troublesome	rows	deleted,	we	can	now	safely	exchange	rows	for
columns.	It	probably	sounds	like	we	need	some	kind	of	transpose	of	the
dataframe;	however,	the	transpose()	function,	that	we	know	and	love	from	our
work	with	matrices,	will	not	work	here.	Fortunately,	the	DataFrame	package
comes	with	a	function	designed	exactly	for	this	purpose.	We	learned	about
the	permutedims()	function	in	“Adjoints	and	Transposes”	on	page	144,	as	a	kind
of	generalized	transpose	operation.	The	DataFrames	package	extends	this
function	to	handle	DataFrames;	here’s	how	to	use	it:

covmc = covmc[:, Not([:Province_State, :Lat, :Long])]
cdcn = permutedims(covmc, 1, "d")

In	the	first	line,	we	get	rid	of	the	columns	that	we	won’t	need.	The
transpose	happens	in	the	second	line,	where	the	first	argument	to
permutedims()	is	the	dataframe	to	be	transposed,	the	second	argument	selects
the	column	from	the	original	dataframe	whose	contents	are	to	be	used	as
column	names	for	the	transposed	dataframe,	and	the	third	argument	is	the
name	to	give	the	new	column,	whose	contents	will	be	composed	of	the
column	names	of	the	original	dataframe.	Since	we	eliminated	the
Province_State	column,	the	first	column	of	covmc	is	now	Country_Region,	so	the



names	in	the	column	of	countries	are	used	as	the	new	column	titles.	We	can
specify	the	column	to	pivot	around	using	any	kind	of	selector,	so	we	could
have	written	the	following	as	well:

cdcn = permutedims(covmc, :Country_Region, "d")

Our	new	dataframe,	cdcn,	appears	as	shown	in	Figure	10-14.

Figure	10-14:	The	cdcn	dataframe	in	the	REPL

There	is	one	problem	with	our	freshly	transposed	dataframe:	some	of	the
column	titles	now	have	spaces	in	their	names.	You	can’t	see	them	in	the
small	piece	of	the	dataframe	shown	in	Figure	10-14,	but	we	know	that
they’re	there:



julia> [c for c in covdat.Country_Region if contains(c, " ")]
46-element Vector{String}:
 "Antigua and Barbuda"
 "Bosnia and Herzegovina"
 "Burkina Faso"
 "Cabo Verde"
 :
 "United Kingdom"
 "United Kingdom"
 "West Bank and Gaza"

It’s	not	a	serious	problem,	but,	as	you	now	know,	legal	symbol	names	are
more	convenient	and	lead	to	neater	and	more	efficient	code.

The	function	rename!()	transforms	the	column	names	of	a	dataframe	in
place	(hence	the	mutation	warning	sign).	It	has	several	methods;	the	method
that	we	shall	use	takes	a	function	as	its	first	argument	and	the	dataframe	to
be	altered	as	its	second	argument.	The	supplied	function	is	applied	to	each
column	separately.	The	command	in	Listing	10-11	replaces	spaces	with
underlines	in	the	column	names	of	cdcn.

rename!(x -> replace(x, " " => "_"), cdcn)

Listing	10-11:	Renaming	columns	of	a	dataframe

Did	it	work?	Let’s	take	a	peek	at	a	relevant	bit	of	the	dataframe:

julia> cdcn[:, r"^Un"]
428×2 DataFrame
 Row | United_Arab_Emirates   United_Kingdom
     | Int64                  Int64
--------------------------------------------
   1 |                    0                0
   2 |                    0                0
  :                       :                :
 428 |               446594          4312908

Now	we	can	plot	time-dependent	case	numbers	for	selected	countries
with	ease:

@df cdcn plot(:d, [:Zambia :Albania :Afghanistan]; xrotation=35,
              legend=:topleft, lw=3, ls=[:solid :dash :dot])

The	@df	macro	from	StatsPlots	was	useful	there,	as	the	command	refers	to
several	columns	using	Symbols;	without	it,	we	would	be	obligated	to	mention
the	name	of	the	dataframe	each	time.	This	plot()	command	produces	the
graph	in	Figure	10-15.



Figure	10-15:	Timeline	of	cases	in	three	countries

In	a	plot()	command	inside	a	@df	macro	call,	the	cols()	function	(note	the
lowercase)	can	be	used	to	select	a	numerical	range	of	columns	with	cols(a:b),
all	the	columns	with	cols(),	or	a	column	whose	Symbol	name	is	stored	in	a
variable,	with	c = :thecol	and	cols(c).

NOTE

Remember	that	Cols,	with	an	uppercase	C,	is	for	column	selection	within	square
brackets	and	is	part	of	DataFrames.jl,	whereas	cols,	using	lowercase,	is	a	utility
function	for	use	in	the	@df	macro,	provided	by	StatsPlots.jl.



With	all	the	machinery	that	we	now	have	under	our	belts,	we	can	do
more	than	plot	random	selections	of	countries.	One	thing	that	might	be
interesting	is	to	plot	only	those	countries	whose	caseloads	rise	above	a
certain	level	on	any	day	included	in	the	dataset.	Here	is	one	way	to	do	that,
using	the	@df	macro	and	cols()	function	from	StatsPlots:

sc = [Symbol(c) for c in names(cdcn)[2:end] if maximum(cdcn[:, c]) > 3*10^6]
@df cdcn plot(:d, cols(sc); xrotation=35, lw=2, legend=:topleft, ls=:auto)

The	strategy	is	to	collect	the	relevant	columns	as	an	array	of	Symbols,	so
that	we	can	select	them	in	the	plot()	statements	using	cols().	Figure	10-16
shows	the	result.

Figure	10-16:	Countries	with	large	caseloads



StatsPlots	has	turned	the	symbols	identifying	the	columns	into	strings	for
the	plot,	providing	a	useful	legend.

Summarizing	Dataframes
Another	useful	device	that	DataFrames	provides	is	the	combine	function.	This
allows	us	to	map	a	function	onto	a	set	of	columns	to	create	a	new	dataframe
that	is	a	summary	of	an	existing	dataframe.	For	example,	suppose	we	want	a
table	that	contains	the	maximum	number	of	cases	seen	for	each	country.	The
combine()	function	makes	this	simple:

julia> combine(cdcn, 2:190 .=> maximum)
1×189 DataFrame
 Row | Afghanistan_maximum  Albania_maximum  Algeria_maximum ...
     | Int64                Int64            Int64           ...
--------------------------------------------------------------
   1 |               56192           122295           116438 ...
                                           186 columns omitted

For	each	column	in	the	range	of	columns	defined	in	the	second
argument,	combine()	applies	the	maximum()	function	to	its	contents.

The	combine()	function	creates	new	column	names	by	appending	the	name
of	the	function.	If	you	would	like	to	preserve	the	original	name,	pass	in
renamecols = false.

This	data	is	a	good	candidate	for	another	bar	chart,	but	it	would	be	more
convenient	to	have	it	transposed,	with	a	column	of	countries	and	a	column	of
maximums.	We	know	how	to	do	that	now,	but	something	is	missing:	we
need	to	add	a	column	to	hold	the	new	column	names.	Listing	10-12
combines	the	methods	we’ve	learned	to	first	make	a	permuted	dataframe
called	cdmp	and	then,	in	the	last	line,	copy	only	the	rows	with	the	largest
caseloads	into	another	dataframe,	cdmpc.

cdmax = combine(cdcn, 2:190 .=> maximum, renamecols=false)
cdmax[!, :Country] = ["Maximum"]
cdmp = permutedims(cdmax, :Country)
cdmpc = cdmp[cdmp.Maximum .> 2*10^6, :]

Listing	10-12:	Plotting	maximum	caseloads

After	executing	the	code	in	Listing	10-12,	cdmpc	looks	like	this:

14×2 DataFrame
 Row | Country          Maximum



     | String           Int64
--------------------------------
   1 | Argentina         2269877
   2 | Brazil           12220011
  :  |       :             :
  13 | US               30010928
  14 | United_Kingdom    4312908
                 10 rows  omitted

You	see	that	there	are	only	14	countries	that	experienced	a	caseload	of
more	than	two	million	during	the	time	period	covered	by	this	dataset.	Now
we	can	make	a	bar	chart	with	this	simple	command:

bar(cdmpc.Country, cdmpc.Maximum, xrotation=45, label=nothing,
    title="Countries with highest maximum caseloads")

This	creates	the	graph	in	Figure	10-17.



Figure	10-17:	The	highest	maximum	caseloads

The	need	for	summary	statistics	of	the	data	in	a	dataframe	is	so	common
that	a	function	is	available	that	does	the	foregoing	work	for	us,	but	it’s	good
to	know	how	to	do	it	“manually,”	in	case	you	need	something	it	doesn’t
provide.	That	function	is	called	describe(),	and	here’s	how	it	works:

julia> describe(cdcn, :max; cols=Not(:d))
189×2 DataFrame
 Row | variable             max
     | Symbol               Int64
------------------------------------
   1 | Afghanistan            56192
   2 | Albania               122295
   3 | Algeria               116438



   4 | Andorra                11638
   5 | Angola                 21836
   6 | Antigua_and_Barbuda     1080
  :  |          :              :
 184 | Venezuela             153315
 185 | Vietnam                 2576
 186 | West_Bank_and_Gaza    230076
 187 | Yemen                   3703
 188 | Zambia                 86993
 189 | Zimbabwe               36749
                    177 rows omitted

That’s	certainly	easier!	By	default,	describe()	returns	a	DataFrame	with	the
means	and	medians	as	well,	but	those	are	not	meaningful	for	these	timelines,
so	we	limit	the	statistics	calculated	by	passing	a	symbol,	:max,	for	the	one	we
want.	The	function	can	calculate	the	other	summary	statistics	as	well,	such	as
standard	deviation,	and	automatically	skips	missing	values.	It	can	even	report
the	number	of	missing	values	in	each	column,	if	you	so	desire.

Grouping	Dataframes
Earlier	we	threw	away	some	of	the	data,	namely	the	additional	provinces	for
the	several	countries	for	which	such	entries	existed.	As	promised,	we’ll	now
find	a	way	to	include	that	information.

Let’s	suppose	we	are	not	interested	in	looking	at	the	data	for	individual
provinces,	but	instead	would	like	to	add	up	the	numbers	for	all	the	provinces
belonging	to	each	country	and	just	look	at	the	total	case	numbers.	This
makes	a	bit	more	sense	than	just	deleting	that	data.	The	most	convenient
way	to	do	this	kind	of	thing	involves	the	concept	of	the	grouped	dataframe
and	an	associated	new	data	type,	the	GroupedDataFrame.

A	GroupedDataFrame	is	something	like	a	vector	of	dataframes.	Each	dataframe
in	the	vector	is	created	from	a	source	dataframe	by	collating	the	rows	that
have	the	same	value	in	a	chosen	column.	In	our	case,	we’ll	group	by
Country_Region.	Most	of	the	resulting	members	of	the	GroupedDataFrame	will	have	a
single	row	because	most	countries	appear	only	once.	But	those	countries	that
appear	multiple	times,	because	they	have	Province_State	values,	will	give	rise	to
members	of	the	GroupedDataFrame	with	more	than	one	row,	with	one	for	each
Province_State.

One	small	wrinkle	is	that	the	members	of	a	GroupedDataFrame	are	not	actually
dataframes,	but	have	a	new	data	type	called	SubDataFrame;	however,	the
distinction	is	usually	not	important.



The	following	will	group	the	covdat	dataframe	by	country:

cvgp = groupby(covdat, :Country_Region)

Now	cvgp	is	a	GroupedDataFrame.	Let’s	examine	it	in	the	REPL:

➊ julia> length(cvgp)
   192

➋ julia> length(covdat.Country_Region) - length(cvgp)
   82

➌ julia> cvgp[1]
   1×432 SubDataFrame
    Row | Province_State  Country_Region  Lat       Long      _ ...
        | String?         String          Float64?  Float64?  I ...
   --------------------------------------------------------------
      1 | missing         Afghanistan      33.9391     67.71    ...
                                              428 columns omitted

➍ julia> cvgp[183]
   12×432 SubDataFrame
    Row | Province_State                     Country_Region  La ...
        | String?                            String          Fl ...
   --------------------------------------------------------------
      1 | Anguilla                           United Kingdom   1 ...
      2 | Bermuda                            United Kingdom   3
     :  |                 :                        :
     12 | missing                            United Kingdom   5
                                   430 columns and 9 rows omitted

The	grouped	dataframe	has	192	members	➊,	which	tells	us	how	may
distinct	countries	are	included	in	the	data	(remembering	that	one	of	them	is
Repatriated Travellers).

Subtracting	that	from	the	total	number	of	rows	➋,	we	learn	that	82
countries	have	provinces	listed.

Looking	at	individual	members	of	cvgp	➌	➍	confirms	that	these	are
dataframes	devoted	to	individual	countries.	The	next	step	is	to	add	up	the
case	numbers	across	all	provinces	for	each	date,	so	each	country’s	numbers
will	include	all	of	its	provinces.	That’s	what	the	combine()	function	is	for.
When	I	introduced	combine(),	we	used	it	on	a	dataframe,	but	when	applied	to
a	grouped	dataframe,	it	does	exactly	what	we	want,	applying	the	specified
function	along	the	selected	columns	for	each	group	member	individually	and
then	returning	a	normal	DataFrame	as	the	result.

First	we	need	an	array	holding	the	columns	to	sum,	which	are	the	date



columns,	and	then	we	can	combine()	them.	We’ll	store	the	result	in	a	new
variable:

dcols = cdcn.d
cvsm = combine(cvgp, dcols .=> sum, renamecols=false)

Now	cvsm	has	the	same	structure	as	our	original	covdat,	but	only	192	rows,
one	for	each	country.	As	before,	it	will	be	convenient	to	have	on	hand	the
transpose	of	this	dataframe:

cvsp = permutedims(cvsm, :Country_Region, "d")

And,	as	before,	it’s	better	to	normalize	(remove	the	spaces	from)	the
column	names.	After	repeating	the	procedure	from	Listing	10-11	on	cvsp,	we
have	a	dataframe	convenient	for	plotting.

Now	it’s	easy	to	compare	the	timelines	for	France,	both	with	and	without
its	territories:

@df cvsp plot(:d, :France; xrotation=35, label="France with territories", legend=:topleft)
@df cdcn plot!(:d, :France; xrotation=35, label="France minus territories", legend=:topleft,
               ls=:dash)

Figure	10-18	shows	the	results.



Figure	10-18:	Time	history	of	the	caseload	in	France

In	most	cases,	the	inclusion	of	the	Province_State	columns	makes	a	barely
visible	difference	in	the	plot.

Multivariate	Data
The	previous	examples	all	dealt	with	timelines:	a	single	quantity,	in	this	case
numbers	of	infections,	as	a	function	of	date,	for	various	countries.	Another
form	of	data	involves	the	frequencies	of	a	number	of	events	in,	say,	different
places,	or	compared	among	different	demographic	groups.	Figure	10-4
showed	a	simple	example	of	this	form	of	data,	where	the	events	are



observations	of	height	and	the	demographic	groups	are	men	and	women.
When	you	have	data	on	more	than	one	variable,	you	can	use	statistical

methods	to	look	for	associations	among	them,	always	remembering	that
“correlation	does	not	imply	causation.”	But	an	association	can	suggest	that	it
might	be	worthwhile	to	look	further,	and	the	lack	of	correlation	might	be
useful	in	ruling	out	hypotheses.

In	the	(made	up)	example	of	men’s	and	women’s	heights,	if	we	also	had,
from	the	same	subjects,	data	about	income	level,	or	age,	we	could	look	for
associations.	Are	richer	people	taller?	When	does	the	increase	of	height	with
age	level	off?	Julia’s	DataFrames,	combined	with	its	convenient	statistical
functions	and	the	visualizations	provided	by	StatsPlots,	make	this	kind	of	data
exploration	a	relatively	easy	and	pleasant	task.

I	compiled	our	second	datafile	from	data	maintained	by	the	US	Census
Bureau	(https://www.census.gov).	It	is	available	in	the	supplementary	website
at	https://julia.lee-phillips.org,	in	the	file	named	census.dat.	The	file	is	in
tabseparated	value	format,	with	one	line	of	column	headers	and	comment
lines	that	each	begin	with	a	hash	mark	(#).	The	data	consists	of	absolute
numbers	of	reported	crimes	in	several	categories	in	2011	for	each	county	in
the	US,	plus	a	column	for	the	total	population	of	the	county	and	one	for	the
percentage	of	minors	who	did	not	complete	high	school.	The	comment	lines
give	the	totals	for	each	state	and	for	the	entire	country.	Here	are	the	first
nine	lines	of	the	3,143-line	file:

Areaname    Larceny Murder  MVTheft Robbery MinorsNHI   EstimatedPop
##UNITED STATES 6384687 16107   1196608 405471  10.8    295753151
##ALABAMA   97640   308 10796   5636    7.8 4545049
Autauga, AL 1149    0   112 28  8   47870
Baldwin, AL 1973    5   137 37  11.3    162564
Barbour, AL 64  0   7   1   7.8 29452
Bibb, AL    144 0   18  3   8.  21375
Blount, AL  558 0   134 6   11.8    55035
Bullock, AL 54  0   0   3   7.9 10975

Clearly,	the	first	thing	we	need	to	do	is	use	the	CSV	package	to	read	this
and	store	it	in	a	dataframe.	The	CSV.File	function	will	detect	that	tabs	are
used	as	delimiters,	and	also	that	the	first	line	is	a	header,	but	we	should	tell	it
about	the	comments:

cbc = CSV.File("census.dat", comment="#") |> DataFrame
cbc = cbc[cbc.EstimatedPop .!= 0, :]

https://www.census.gov
https://julia.lee-phillips.org


The	second	line	eliminates	any	rows	(there	were	three)	with	a	zero
population.	As	we	plan	to	divide	the	absolute	numbers	by	population	to
convert	them	into	rates,	we	need	to	delete	those	rows.	Here	is	the
conversion:

for c in 2:5
    cbc[!, c] = cbc[!, c] ./ cbc[!, 7]
end

At	this	point,	our	dataframe	looks	like	this:

julia> cbc
3143×7 DataFrame
  Row | Areaname        Larceny      Murder      MVTheft      Robber ...
      | String          Float64      Float64     Float64      Float6 ...
----------------------------------------------------------------------
    1 | Autauga, AL     0.0240025    0.0         0.00233967   0.0005 ...
    2 | Baldwin, AL     0.0121368    3.07571e-5  0.000842745  0.0002
    3 | Barbour, AL     0.00217303   0.0         0.000237675  3.3953
    4 | Bibb, AL        0.00673684   0.0         0.000842105  0.0001
    5 | Blount, AL      0.010139     0.0         0.00243481   0.0001 ...
    6 | Bullock, AL     0.00492027   0.0         0.0          0.0002
    7 | Butler, AL      0.0227653    9.83381e-5  0.00108172   0.0007
    8 | Calhoun, AL     0.0256511    4.46106e-5  0.00215915   0.0014
  :   |       :              :           :            :            :
 3137 | Sheridan, WY    0.0167767    0.0         0.000921795  3.6871 ...
 3138 | Sublette, WY    0.0387191    0.0         0.00262009   0.0
 3139 | Sweetwater, WY  0.0296249    2.68341e-5  0.00262974   0.0001
 3140 | Teton, WY       0.0197487    0.0         0.00149925   0.0001
 3141 | Uinta, WY       0.0283567    0.0         0.00190417   0.0002 ...
 3142 | Washakie, WY    0.00425093   0.0         0.000128816  0.0
 3143 | Weston, WY      0.0122008    0.0         0.0          0.0001
                                       3 columns and 3128 rows omitted

How	is	a	particular	crime	category,	say,	larceny,	distributed	among	the
counties?	Are	they	all	the	same?	How	likely	is	it	for	a	county	to	have	an
unusually	high	larceny	rate?	We	can	answer	those	kinds	of	questions	with	a
histogram,	which	we	can	produce	with	this	command:

@df cbc histogram(:Larceny; legend=nothing)

In	many	commands	that	pull	data	from	the	dataframe,	the	@df	macro	will
save	some	typing	and	make	the	code	easier	to	read.	The	histogram,	shown	in
Figure	10-19,	shows	that	about	400	counties	had	no	larceny	at	all	during	the
report	year,	and	most	had	rates	(total	number	divided	by	population)	below
2	percent.	Above	that	rate,	the	distribution	drops	off	steadily	and	fairly
rapidly.



Figure	10-19:	Histogram	of	larcenies

With	our	dataframe	set	up,	exploring	this	data	in	the	REPL	is	simple	(the
following	assumes	that	Statistics	has	already	been	imported):

julia> mean(cbc.Larceny)
0.014305068778810368

julia> @df cbc cor(:Murder, :Larceny)
0.29993876295850447

julia> @df cbc cor(:MVTheft, :Larceny)
0.6528140798664165

The	average	larceny	rate	is	about	1.4	percent.	How	is	this	crime
correlated	with	other	crimes?	The	correlation	with	murder	is	weak,	meaning



that	knowledge	of	a	high	larceny	rate	in	a	particular	county	tells	you	nothing
about	its	murder	rate.	However,	the	correlation	with	vehicle	theft	is
significant:	a	county	with	a	high	larceny	rate	is	a	place	where	you	are	more
likely	to	get	your	car	stolen.	That	may	not	be	surprising,	but	before	we	take
it	seriously,	we	should	remember	that	the	correlation	coefficients	calculated
by	the	cor()	function	of	the	Statistics	package	are	the	Pearson	coefficients,
which	assume	a	linear	relationship	between	the	two	variables	under
consideration.	Does	such	a	linear	relationship	hold	between	these	two	crime
categories?	The	way	to	answer	this	kind	of	question	is	with	a	scatterplot:

@df cbc scatter(:MVTheft, :Larceny; legend=nothing, markersize=2,
    opacity=0.3, xlabel="Motor vehicle theft", ylabel="Larceny",
    xrange=[0, 0.015])

It	does	look	from	Figure	10-20	as	if	there	is	at	least	a	roughly	linear
relationship	between	the	two	rates,	so	the	correlation	coefficient	is
meaningful.



Figure	10-20:	Larceny–motor	vehicle	theft	scatterplot

Using	a	small	marker	size	combined	with	a	low	opacity	is	effective	when
making	scatterplots	with	many	points.	The	idea	is	that	there	are	likely	to	be
regions	with	a	lot	of	overlap.	Using	small,	transparent	points	allows	the
point	density	at	any	location	to	appear	as	a	buildup	of	image	density	there.
Using	opaque	or	larger	points	would	create	a	plot	where	we	can’t	distinguish
between	moderate	and	high	densities	once	the	markers	begin	to	obscure
each	other.

This	idea	is	made	more	systematic	with	a	plot	recipe	from	StatsPlots	called
histogram2d().	As	the	name	suggests,	it	takes	two	variables	and	creates	a	two-
dimensional	histogram.	The	result	is	similar	to	a	scatterplot,	but	with	the



plane	divided	into	cells	and	the	cells	colored	according	to	the	number	of
points	they	contain.	Here	is	how	it	works:

@df cbc histogram2d(:MVTheft, :Larceny; xlabel="Motor vehicle theft",
                    ylabel="Larceny", xrange=[0, 0.015])

As	with	ordinary	histograms,	we	can	adjust	the	number	of	bins	if	the
automatic	calculation	is	not	optimal,	but	in	this	case,	the	algorithm	does	a
good	job.	The	result	shown	in	Figure	10-21	conveys	information	similar	to
the	scatterplot	in	Figure	10-20,	but	now	we	can	read	off	the	number	of	cases
from	the	color	map.

Figure	10-21:	Two-dimensional	histogram	of	two	categories	of	crime



The	describe()	function	that	we	met	earlier	is	useful	for	getting	an
overview	of	this	type	of	data.	The	result	can	be	made	more	concise	by
eliminating	the	uninteresting	bits:

julia> describe(cbc, :mean, :max, :nmissing)[2:end,:]
6×4 DataFrame
 Row | variable      mean         max           nmissing
     | Symbol        ...Union     Any           Int64
--------------------------------------------------------
   1 | Larceny       0.0143051    0.0925926            0
   2 | Murder        3.01897e-5   0.000539374          0
   3 | MVTheft       0.00156298   0.0231045            0
   4 | Robbery       0.000357696  0.00987096           0
   5 | MinorsNHI     11.5316      42.9                 0
   6 | EstimatedPop  94099.0      9803912              0

The	last	column	in	the	description	table	informs	us	that	there	are	no
missing	values.	The	reason	for	the	composite	data	types	is	that	the	summary
dataframe	contained	a	row	of	county	names	that	we	eliminated	with	the
indexing	expression,	so	these	columns	actually	contain	a	mix	of	numbers	and
strings.

You	can	combine	the	two-dimensional	histogram	of	Figure	10-21	with
normal	one-dimensional	histograms	of	each	variable	using	the	marginalhist()
recipe	from	StatsPlots:

@df cbc marginalhist(:MVTheft, :Larceny; xlabel="Motor vehicle theft",
                     ylabel="Larceny")

The	result,	shown	in	Figure	10-22,	is	a	nice	visualization	of	two
distributions	simultaneously.



Figure	10-22:	Illustrating	the	marginal	histogram	plot	recipe

The	StatsPlots	package	has	another	trick	up	its	sleeve.	It	can	combine
some	of	the	plots	we’ve	already	seen	into	a	composite	visualization	that
makes	it	easy	to	pick	out	associations	and	patterns	among	a	group	of
variables	almost	at	a	glance.	This	is	achieved	with	the	corrplot()	recipe,	as
follows:

@df cbc corrplot([:MinorsNHI :MVTheft :Robbery]; fillcolor=cgrad(),
                 xrotation=40)

We’ve	chosen	three	variables	to	look	at;	it’s	possible	to	look	at	everything
at	once,	or	any	other	subset	with	more	than	two	categories.	The	need	to



include	the	fillcolor	argument	is	a	bug	that	may	be	fixed	by	the	time	you	are
reading	this,	so	you	may	want	to	try	omitting	it.	It	controls	the	palette	used
in	the	two-dimensional	histograms,	and,	as	you	saw	earlier,	it’s	not	needed	in
regular	histogram2d	plots	to	get	the	default	coloring.

Figure	10-23	shows	the	result.

Figure	10-23:	A	correlation	plot

The	recipe	produces	a	matrix	of	plots	comparing	every	possible
combination	of	pairs	of	variables	from	the	vector	of	arrays	provided	in	the
first	argument.	Along	the	diagonal	of	this	plot	matrix	(where	the	two
variables	are	identical)	we	have	conventional,	one-dimensional	histograms;



above	the	diagonal,	we	see	all	three	possible	two-dimensional	histograms;
and	below	the	diagonal,	we	have	all	the	scatterplots,	using	transparent
points.	As	a	bonus,	the	scatterplots	also	feature	regression	(best	fit)	lines
drawn	through	the	points,	and	the	marker	color	reflects	the	type	of
correlation:	positive	correlations	are	blue,	lack	of	correlation	is	indicated	by
yellow,	and	negative	correlations	are	red.	This	is	a	powerful	visualization
that	carries	a	rich	payload	of	information.	A	quick	look	tells	us	that	failure	to
complete	secondary	school	is	unrelated	to	rates	of	vehicle	theft	or	robbery,
but	those	two	types	of	crime	are	correlated	with	each	other.

Other	Packages
This	section	briefly	describes	a	few	more	tools	that	readers	interested	in
statistics	will	want	to	be	aware	of.	See	“Further	Reading”	on	page	359	for
some	additional	resources	you	may	find	useful.

JuliaDB	for	Out	of	Core	Datasets
Dataframes	are	powerful	data	types,	but	they’re	intended	for	data	structures
that	fit	in	RAM.	For	data	that	is	too	large	to	fit	in	memory,	a	better	choice	is
JuliaDB,	which	is	designed	to	work	efficiently	with	such	“out	of	core”	datasets.

RCall	for	Interacting	with	R
The	R	programming	language	is	a	long-established	language	and	system	for
statistical	analysis.	Like	Julia,	R	is	free	software	and	has	a	large	population	of
devoted	users.	However,	it	is	not	a	good	general-purpose	programming
language,	and	it	can	be	quite	slow	for	certain	types	of	calculations.	If	you	are
starting	a	new	project,	and	do	not	happen	to	have	a	personal	library	of	R
code	that	you	have	developed	over	the	years,	I	recommend	using	Julia	for
your	statistics	needs.	It	already	has	a	large	and	capable	ecosystem	of
statistical	packages,	and	more	packages	are	being	added	every	day.	Julia
won’t	let	you	down	if	your	analysis	program	turns	into	something	that	needs
to	run	quickly	on	big	data.	Its	ability	to	run	on	GPUs	and	other
multiprocessor	hardware,	and	the	efficiency	of	its	compiled	code,	means	that
you	won’t	need	to	rewrite	your	programs	in	order	for	them	to	scale.

However,	if	you	have	already	invested	time	and	effort	into	writing	R
routines	that	you	want	to	keep	using,	you	need	not	rewrite	them.	You	can



use	them	from,	and	in	combination	with,	Julia.	The	RCall	package	has	several
macros	for	interoperating	with	R	routines	and	data	structures,	as	well	as	a
special	REPL	mode	for	interacting	directly	with	R	within	the	Julia	session.
In	fact,	as	soon	as	you	type	using RCall,	an	R	process	starts	up	in	the
background.	It	locates	your	R	installation	and	can	even	install	R	for	you.

P-hacking
For	calculating	p-values	and	performing	other	analyses	to	contribute	to	the
replication	crisis	in	science,	the	HypothesisTests	package	at
https://github.com/JuliaStats/HypothesisTests.jl	is	invaluable.

Conclusion
The	concepts	and	techniques	of	statistics	cut	across	all	scientific	disciplines.
Julia,	with	its	statistics	packages,	puts	a	lot	of	exploratory	and	analytical
power	at	our	fingertips.	Good	integration	with	the	Plots	package	makes
visualization	fast	and	easy	as	well.	While	systems	such	as	R,	a	standard	for
statistical	analysis	for	decades,	offer	some	functions	not	yet	built	into	Julia’s
packages,	the	latter	are	developing	quickly.	Julia	has	some	advantages	today
over	the	venerable	workhorses:	the	ease	of	developing	in	the	language	makes
it	easier	to	add	missing	capabilities,	and	Julia’s	efficiency	frees	you	from	the
need	to	rewrite	your	code	in	a	faster	language	when	faced	with	big	data	or
computationally	intensive	analyses.

We’ll	revisit	some	of	the	concepts	introduced	in	this	chapter	in	the	next
chapter,	with	simulated	evolution,	and	in	Chapter	13,	where	we	explore	the
techniques	of	probabilistic	programming	to	make	inferences	about	models.

FURTHER	READING

For	details	on	the	lava	lamp	entropy	project,	see
https://blog.cloudflare.com/randomness-101-lavarand-in-production/.
The	pandemic	simulation	in	this	chapter	implements	a	simplified
model	along	the	lines	of	the	widely	used	COVID-19	model
developed	at	https://github.com/mrc-ide/covid-sim.

https://github.com/JuliaStats/HypothesisTests.jl
https://blog.cloudflare.com/randomness-101-lavarand-in-production/
https://github.com/mrc-ide/covid-sim


The	formula	for	the	combination	of	events	used	in	the	pandemic
simulation	is	derived	in	Chapter	IV	of	William	Feller’s	standard
work	on	probability	theory,	An	Introduction	to	Probability	Theory
and	Its	Applications,	Volume	1	(Wiley	1968).
An	alternative	random	number	generator	designed	for	long-term
stability	is	available	at
https://github.com/JuliaRandom/StableRNGs.jl.	You	may	want	to	use
it	if	you	would	like	your	programs	to	use	the	same	pseudorandom
sequences	across	future	versions	of	Julia	and	its	packages.
The	RCall	package	resides	at	https://github.com/JuliaInterop/RCall.jl.
A	frequently	updated	list	of	Julia	statistics	and	machine	learning
packages,	with	brief	descriptions,	is	available	at
https://github.com/JuliaStats.
See	this	20-minute	tutorial	video	by	Juan	Klopper	for	an
introduction	to	statistics	in	Julia:	https://www.youtube.com/watch?
v=xbsr46Dw8hg.
A	textbook	by	Yoni	Nazarathy	and	Hayden	Klok	about	doing
statistics,	data	science,	and	machine	learning	with	Julia	is	available
at	https://statisticswithjulia.org.
The	headquarters	of	the	JuliaDB	package	is
https://juliadb.juliadata.org/latest/out_of_core/.
More	information	on	dataframes	as	collections	of	rows	is	available
at	https://bkamins.github.io/julialang/2023/02/24/dfrows.xhtml.

https://github.com/JuliaRandom/StableRNGs.jl
https://github.com/JuliaInterop/RCall.jl
https://github.com/JuliaStats
https://www.youtube.com/watch?v=xbsr46Dw8hg
https://statisticswithjulia.org
https://juliadb.juliadata.org/latest/out_of_core/
https://bkamins.github.io/julialang/2023/02/24/dfrows.xhtml


11
BIOLOGY

Modern	biology	is	becoming	very	much	a	branch	of	information
technology.

—Richard	Dawkins

As	Professor	Dawkins	points	out,	computation	has	become	a	central	tool	in
many	areas	of	biology.	This	was	perhaps	inevitable,	as	evolution	is	the
central	organizing	principle	of	biology,	and	evolution	occurs	through	the
transmission	of	information	in	the	form	of	a	digital	storage	device	known	as
DNA.

The	biology	ecosystem	around	Julia	is	sophisticated,	wide-ranging,	and
growing	rapidly.	The	language	and	its	packages	are	being	used	in	many	areas
of	biological	and	medical	research,	in	both	industry	and	academia.

This	chapter	begins	with	a	brief	overview	of	the	Julia	biology	landscape
and	proceeds	directly	to	a	detailed	case	study	in	simulated	evolution.

The	Julia	Biology	Ecosystem
Bioinformatics	has	become	a	major	subfield	of	biology	that	is	defined	by	the
use	of	computers.	It	mainly	deals	with	the	analysis	and	manipulation	of



protein	sequences,	so	it	has	a	strong	computational	linguistics	flavor.	The
BioJulia	GitHub	organization	provides	a	starting	place	for	browsing	this
large	collection	of	packages.	It	includes,	among	others,	modules	for	handling
the	various	file	types	that	bioinformaticians	have	devised	over	the	years.

To	discover	other	Julia	packages	outside	of	the	bioinformatics
organization,	we	can	turn	to	the	general	GitHub	search	methods	described
in	“How	to	Find	Public	Packages”	on	page	80.	Many	of	these	packages	do
not	include	general	tags	such	as	“biology,”	so	you	can	find	them	more	easily
with	focused	searches	using	terms	such	as	phylogenetics	or	ecology.

The	Pumas	pharmaceutical	modeling	and	simulation	toolkit	merits
particular	mention	as	a	major	success	story	for	Julia	in	medicine	and	biology.
Pumas	is	used	by	major	corporations	and	research	groups	to	develop	and	test
drugs.	Its	GitHub	page	contains	links	to	extensive	documentation	and
tutorials.

Many	Julia	biology	packages	were	created	to	work	with	other	packages	in
the	areas	of	statistics,	equation	solving,	or	other	areas	useful	in	mathematical
biology.	An	example	is	EvolutionaryModelingTools,	which	works	with	the
DifferentialEquations	package	(see	“Combining	DifferentialEquations	with
Measurements”	on	page	302),	providing	macros	to	assist	in	setting	up
problems	that	use	Gillespie’s	algorithm	(a	method	for	attacking	stochastic
differential	equations)	in	the	simulation	of	models	of	infectious	disease
propagation	and	problems	with	a	similar	structure.

Simulating	Evolution	with	Agent-Based	Modeling
Agent-based	modeling	(ABM)	is	a	simulation	technique	using	a	community	of
computational	entities,	the	agents,	interacting	with	each	other	and	their
environment	through	a	set	of	rules.	The	agents	may	be	representations	of	life
forms,	vehicles,	or	something	more	abstract,	such	as	information.	The	rules
can	depend	on	time,	the	distance	between	agents,	their	movement,	the	state
of	the	environment	near	the	agent,	or	nearly	anything	else	we	can	imagine.
Agents	may	move,	store	data,	die,	and	be	born.	The	environment	itself	can
change	as	well.

Researchers	have	used	ABM	to	simulate	traffic	flow,	the	progress	of
infectious	diseases,	the	collective	behavior	of	social	animals,	the	spread	of
opinions,	and	much	more.	See	“Further	Reading”	on	page	380	for	some



links	to	background	information	about	this	approach,	and	to	documentation
of	the	main	packages	used	in	this	section.

Our	project	will	be	the	simulation	of	evolution	through	natural	selection
in	a	population	of	two	types	of	simple	creatures	representing	predators	and
prey.	We	will	see	how	the	prey	creatures,	when	allowed	to	inherit	their
“genes”	from	their	parents,	evolve	to	be	better	at	evading	their	predators.
This	evolution	results	from	random	mutations	in	the	inherited
characteristics	combined	with	the	selection	pressure	from	the	predators
eating	the	less	evasive	prey	before	they	have	a	chance	to	reproduce.

The	Agents	package	provides	a	framework	for	a	wide	variety	of	ABM
calculations.	It	attends	to	the	lower-level	details,	such	as	calculating	the
motions	of	agents,	enforcing	boundary	conditions,	and	searching	for
neighbors,	allowing	us	to	concentrate	on	programming	the	rules	for	agent
interaction	at	a	fairly	high	level.

The	space	in	which	the	agents	live	can	be	a	continuous	physical	space	(the
one	we	will	use	here);	a	grid	space	on	which	agents	can	only	occupy	discrete
positions;	a	more	abstract	tree	space,	in	which	agents	are	not	located
physically,	but	within	a	tree	data	structure;	and	even	a	space	defined	on	an
actual	road	map,	using	OpenStreetMap	data.	The	space	can	become	an
environment	containing	spatially	and	temporally	varying	conditions	affecting
the	agents.

The	agents	have	position	and	velocity	properties	and	a	unique	ID.	We
can	endow	them,	as	well,	with	any	data	structures	convenient	for	our
simulation.	We	can	create	or	destroy	agents,	or	change	any	of	their
properties,	based	on	their	proximity	to	other	agents,	on	time,	or	on
environmental	conditions.	Agent	proximity—nearest	neighbors	or	neighbors
within	a	given	radius—is	returned	by	a	simple	function	call.

Any	particular	project	typically	will	make	use	of	only	a	small	subset	of
Agents’s	capabilities,	and	this	section’s	project	is	no	exception.

Overview	of	the	Simulation	Problem
Our	universe	will	contain	two	types	of	creatures:	predators	and	prey.	Each
type	has	a	simple	behavior.	Predators	chase	prey.	If	a	predator	manages	to
get	very	close	to	its	target,	it	vanishes	from	the	simulation,	devoured	by	its
pursuer.	The	predators	choose	their	targets	from	among	all	those	within



their	detection	range,	but	they	are	polite:	they	won’t	chase	prey	that	one	of
their	colleagues	is	already	chasing.	Predators	have	only	one	speed,	which	is
somewhat	faster	than	the	one	speed	with	which	the	prey	are	able	to	run.
They	turn	toward	their	prey	as	they	chase	them,	but	their	superior	speed	is
offset	by	limited	agility:	they	can	turn	only	through	some	maximum	angle	at
every	simulation	step.	Like	some	actual	predator	species,	our	simulated
predators	adjust	their	reproductive	rate	to	maintain	a	certain	ratio	of
predator	population	to	prey	population.

The	prey	make	turns	at	regular	intervals	according	to	a	list	of	angles;	each
prey	creature	has	its	own	list.	When	it	reaches	the	end	of	the	list,	it	goes
back	to	the	top.	Prey	don’t	react	to	predators,	they	simply	run	around
making	their	prescribed	turns.	One	can	imagine	that	their	environment	is
rich	with	uniformly	distributed	food,	as	a	property	(which	is	called	mojo	in	the
program)	gets	incremented	by	a	fixed	amount	at	every	step.	If	a	prey	creature
manages	to	reach	a	predetermined	amount	of	mojo	without	getting	eaten,	it
reproduces.	Reproduction	is	fatal;	the	creature	is	replaced	by	two
descendants.	Each	descendant	inherits	a	copy	of	its	parent’s	table	of	angles,
with	some	random	mutations.

The	only	property	that	distinguishes	different	prey	individuals,	aside
from	their	locations	and	velocities,	is	the	list	of	angles.	We	initialize	the
agents	with	a	random	list,	uniformly	distributed	from	–π	to	π.	Some	lists	of
turns	will,	by	chance,	be	slightly	better	than	others	in	allowing	the	agent	to
survive	longer,	as	they	will,	on	average,	make	it	more	difficult	for	the
predators,	with	their	limited	agility,	to	catch	it.	These	agents	will	be	more
likely	to	reproduce,	as	will	their	children.	Through	mutation,	some	of	these
children	may	be	even	more	likely	to	survive	to	reproduce.	We	hope	to
observe	an	evolution	in	the	distribution	of	angles	in	the	prey	population,	and
an	average	increase	in	the	ability	to	evade	predation,	as	a	result	of	this
selection	pressure.

The	foregoing	is	an	overview	of	the	structure	and	aims	of	the	project.	In
the	next	few	sections,	we’ll	put	together	all	the	components	of	our
simulation,	in	the	order	in	which	they	appear	in	the	complete	program,
which	is	assembled	for	convenience	in	the	code	section	of	the	web
supplement	for	this	chapter	at	https://julia.lee-phillips.org.	When	turning	these
ideas	into	a	program,	we’ll	have	to	make	everything	concrete.	For	example,
we’ll	decide	to	make	the	list	of	angles	contain	eight	elements.	Many	of	these
details	are,	within	limits,	arbitrary,	and	the	reader	might	experiment	with

https://julia.lee-phillips.org


altering	all	or	some	of	them,	and	perhaps	improve	upon	the	experiment
described	here.

The	Predator	and	Prey	Agents
The	Agents	package	provides	a	convenient	macro	for	defining	our	agents:

using Agents, StatsBase, JLD2, Random

@agent Prey ContinuousAgent{2} begin
    mojo::Float64
    moves::Vector{Float64}
end

@agent Predator ContinuousAgent{2} begin
    victim::Int64
end

First	we	import	the	needed	packages.	In	addition	to	Agents,	we	need
StatsBase	for	creating	histograms	of	the	angle	distributions,	JLD2	for	saving	and
loading	simulation	data	(see	Listing	9-4	on	page	289),	and	Random	for	random
numbers	(see	“Random	Numbers	in	Julia”	on	page	307).

The	@agent	macro	defines	the	agents	as	composite	types.	After	executing
the	macros	in	the	listing,	we	have	an	agent	type	called	Prey	and	another	called
Predator.	The	ContinuousAgent{2}	notation	means	that	the	agents	are	destined	to
live	in	a	continuous,	two-dimensional	space,	where	their	positions	are
defined	by	a	tuple	of	two	floating-point	numbers.

Each	instance	of	Prey	is	endowed	with	two	properties:	mojo,	the	float	that
will	determine	when	it’s	ready	to	reproduce;	and	moves,	its	vector	of	angles
that	determines	the	path	it	takes	as	it	wanders	blindly	through	the
environment.

A	predator	has	only	one	property:	victim	will	be	the	ID	of	the	individual
prey	that	it’s	chasing.	If	this	is	0,	it’s	sitting	still	and	waiting	for	a	potential
victim	to	wander	within	range.

Constants	Defining	Model	Behavior
Certain	parameters	determining	model	behavior	are	defined	in	a	list	of
constants,	shown	in	Listing	11-1.	We	can	alter	these	constants	to	experiment
with	evolution	under	different	conditions	without	making	changes	to	the



program.	These	are	declared	const,	a	declaration	we	should	apply	to	all	global
quantities	in	the	interests	of	performance.	In	general,	a	program	should	not
use	non-const	global	variables.

const NPrey = 16 # Number of Prey agents
const NPred = 8 # Number of Predator agents
const PPR = 0.5 # Predator/prey ratio
const M = 8  # Number of turns
const SBT = 100 # Steps between turns
const TAD = 0.2 # Target acquisition distance
const KD = 0.01 # Kill distance
const LS = 2 # Litter size
const MIPS = 0.1 # Mojo increase per step
const MNFR = 50.0 # Mojo needed for reproduction
const SPEEDR = 1.5 # Ratio (predator speed)/(prey speed)
const LAA = π/128 # Limit of angular agility
const dt = 0.001
const SEED = 43
const rng = Random.MersenneTwister(SEED)
const LF = open("logfile", "a+") # Logfile
const LI = 100 # Log interval

Listing	11-1:	Constants	defining	the	model

The	predator	population	adjusts	itself	at	every	step	to	maintain	the	PPR,
adding	predators	if	needed	and	eliminating	them	if	the	ratio	is	more	than	5
percent	too	large.

The	parameter	M	is	the	length	of	the	vector	of	angles	that	amounts	to	the
prey’s	genome.	The	prey	will	proceed	in	a	straight	line	for	SBT	steps	before
turning	through	the	next	angle	in	the	angle	vector.

A	predator	can	“see”	a	prey	creature	if	it’s	closer	than	the	distance	TAD.	It
begins	chasing	the	first	such	prey	that	it	sees	that	is	not	already	being	chased.
If	a	predator	manages	to	close	the	distance	to	its	target	to	within	KD,	the
target	is	eliminated.

When	a	prey	creature	reproduces,	it	replaces	itself	with	LS	descendants.
The	prey	creatures	eat	continuously	as	they	run,	increasing	their	mojo	by

MIPS	every	step.	The	mojo	is	really	just	a	measure	of	how	long	a	creature	has
survived.	Once	a	prey	creature’s	mojo	has	reached	MNFR,	it	reproduces.

The	predator’s	straight-line	speed	is	SPEEDR	times	the	prey’s	speed.	The
predator’s	ability	to	corner	is	limited	by	LAA.	It	turns	in	the	direction	of	the
prey,	adjusting	its	heading	at	every	step,	but	can	turn	no	more	than	LAA
radians	each	time.

The	Agents	integration	routine	(a	simple	Euler	step)	uses	a	timestep	of	dt.



This	constant	serves	as	an	overall	scale	for	agent	speeds.
In	order	to	be	able	to	repeat	simulations	using	identical	sequences	of

random	numbers,	and	to	create	ensembles	of	simulations	when	desired,	we’ll
use	a	random	number	generator	with	a	seed	that	we	can	control	(see
“Random	Numbers	in	Julia”	on	page	307).	This	is	the	purpose	of	SEED	and
the	rng.	Also,	the	rand()	functions	are	somewhat	more	efficient	when	passed
an	rng,	although	this	concern	is	not	as	acute	as	it	has	been	in	some	past
versions	of	Julia	and	the	Random	package.

Utility	Functions
We’d	like	to	have	a	few	functions	to	make	the	code	that	orients	the
predators	and	changes	the	direction	of	the	prey	more	concise:

function vnorm(v)
    v ./ sqrt(v[1]^2 + v[2]^2)
end

function angle_between(a, b)
    atan(b[2], b[1]) - atan(a[2], a[1])
end

function turn(v, θ)
    M = [cos(θ) -sin(θ); sin(θ) cos(θ)]
    M * [v...]
end

We’re	going	to	need	to	normalize	velocity	vectors,	which	means	adjusting
their	lengths	to	unity.	This	is	what	vnorm()	does.	The	angle_between()	function
returns	the	angle	between	two	vectors.	The	predators	need	this	to	calculate
where	to	turn	when	chasing	their	food.	And	turning,	both	of	predators	and
prey,	relies	on	turn(),	which,	when	supplied	with	a	starting	vector	and	an
angle,	returns	the	vector	rotated	through	the	angle.

In	addition,	we	need	a	function	to	mutate	the	moves	table.	Without	this,	no
evolution	takes	place:

function rmutate!(moves, nms)
    for ms in rand(rng, 1:M, nms) # nms random mutation sites
        θ = moves[ms] + (2rand(rng) - 1) * π/4
        # Keep within ±π:
        if abs(θ) < 1π
            moves[ms] = θ
        else
            moves[ms] = (θ - sign(θ) * 2.0π) % 2.0π
        end



    end
end

This	makes	a	random	change	to	a	specified	number	of	the	angles	in	the
table	by	an	angle	uniformly	distributed	from	–π/4	to	π/4.

Model	Initialization
Every	Agents	simulation	requires,	in	addition	to	the	agents	themselves,	three
data	structures:

arena = ContinuousSpace((1, 1); periodic=true)
properties = Dict(:stepno => 0, :total_step => 0)
model = ABM(Union{Prey, Predator}, arena; properties)

The	arena	is	the	space	in	which	the	agents	live	and	interact.	Our	space	will
be	continuous,	have	coordinates	running	from	0	to	1	along	each	dimension,
and	have	periodic	boundary	conditions.	This	makes	the	space	infinite	in	the
sense	that	an	agent	running	off	the	right	side	will	reemerge	on	the	left	side.

The	properties	is	a	dictionary	of	quantities	relating	to	the	simulation	as	a
whole.	In	our	simulation	we	use	it	just	to	keep	track	of	how	many	steps	have
passed.	For	keeping	track	of	when	it’s	time	for	the	prey	to	make	a	turn,	we
use	stepno	and	increment	total_step	at	each	step.	The	former	could	be	derived
from	the	latter,	but	maintaining	the	two	counters	can	be	convenient	when
restarting	a	simulation	from	a	saved	state.	We	initialize	both	counters	to	0.

With	these	two	objects	in	place	we	can	initialize	the	model,	which
maintains	the	whole	simulation	state.	Checkpointing	and	restarting	the
simulation	requires	merely	saving	the	model	to	disk.	The	two	positional
arguments	of	its	constructor	are	the	agent	types	and	the	space.	If	we	had
only	one	type	of	agent,	the	call	would	look	like	ABM(Prey, arena; properties),	for
example.

We	choose	properties	for	the	name	of	the	property	dictionary	because	that
name	is	used	for	a	keyword	in	the	model	constructor,	which	makes	the	call
to	ABM	simpler	(see	“Concise	Syntax	for	Keyword	Arguments”	on	page	154).

NOTE

With	the	version	of	Agents	used	at	the	time	of	writing,	we	get	a	warning	after
constructing	the	model	this	way.	The	message	warns	us	about	a	potential
inefficiency	when	using	a	Union	of	agent	types.	This	is	an	area	of	ongoing



development	effort,	and	the	warning	will	probably	disappear	in	future	versions.
The	inefficiency	doesn’t	actually	become	a	problem	unless	we	use	more	than
three	agent	types.

With	model	defined,	we	can	initialize	it	by	adding	the	agents:

for i in 1:NPrey # Initialize Prey agents
    vel = vnorm(Tuple(rand(model.rng, 2).-0.5))
 ➊ moves = π*(2rand(model.rng, M) .- 1)
    add_agent!(Prey, model, vel, 0.0, moves)
end

for i in 1:NPred # Initialize Predator agents
    add_agent!(Predator, model, (0.0, 0.0), 0)
end

The	add_agent!()	function	is	named	using	an	exclamation	point	to	remind
us	that	it	mutates	one	of	its	arguments:	it	alters	model	by	adding	agents	to	it.
This	function	creates	an	agent	at	a	random	position	within	the	arena.	It
expects	an	agent	type	as	a	first	argument,	the	model	in	the	second	position,
and	a	tuple	giving	the	agent’s	initial	x	and	y	velocities.	Positional	arguments
following	the	third	are	passed	to	the	agent	constructor.	Therefore,	in	the
first	loop,	each	add_agent!()	call	will	create	a	Prey	instance	using	Prey(0.0, moves).
The	initial	mojo	is	set	to	0,	and	the	starting	vector	of	angles	is	randomly	set
➊.

Functions	to	Extract	Information	from	the	Model
Let’s	look	at	some	more	short	utility	functions	that	accept	the	model	as	an
argument	and	return	information	about	its	current	state.	We’ll	use	some	of
them	in	the	calculation	and	others	to	extract	data	that	we’ll	store	and	use
later	when	we	analyze	the	results.

First	we’ll	need	functions	to	give	us	a	vector	of	all	the	prey	or	predators	in
the	system:

function preys(model)
    [a for a in allagents(model) if a isa Prey]
end

function predators(model)
    [a for a in allagents(model) if a isa Predator]



end

Inside	the	list	comprehensions	we	use	the	allagents()	function,	which
creates	an	iterator	over	the	agents	of	a	model.

The	following	suggestively	named	functions	simply	call	the	ones	just
shown	and	return	the	lengths	of	the	agent	vectors:

function number_of_predators(model)
    length(predators(model))
end

function number_of_preys(model)
    length(preys(model))
end

Since	the	predators	do	not	compete	for	prey	with	their	colleagues,	they
need	to	know	if	a	potential	meal	is	already	under	pursuit:

function being_chased(model)
    [a.victim for a in predators(model)]
end

This	function	returns	a	vector	of	all	the	IDs	of	prey	creatures	that	are
marked	as	victims	by	some	predator.	In	order	to	determine	if	a	potential
meal	is	not	already	being	chased,	a	predator	checks	whether	its	ID	is	in	this
list.

As	mentioned	earlier,	we	expect	the	vectors	of	angles	to	evolve.	One	way
to	get	an	overview	of	this	process	is	to	observe	the	evolution	of	the
distribution	of	angles	in	the	population	(see	“Distributions”	on	page	321	for
an	overview	of	the	concept	of	a	distribution).

The	following	function	gathers	all	the	angles	in	all	the	moves	vectors	from
all	the	prey	creatures	and	returns	a	Histogram	data	structure	representing	a
binning	of	the	distribution	into	40	equal	buckets.	We	can	then	normalize
and	plot	the	results	at	various	timesteps	to	analyze	one	aspect	of	the
simulation:

function moves_dist_data(model)
    moves_data = [m.moves for m in preys(model)]
    all_angles = [i for a in moves_data for i in a]
    fit(Histogram, all_angles, -π:2π/40:π)
end

This	function,	and	its	use	of	fit()	and	the	Histogram	data	structure,	are	the



reason	we	imported	the	StatsBase	package.	The	pattern	in	the	comprehension
in	the	second	line,	with	its	two	for	loops,	is	a	common	way	to	flatten	a
collection	of	collections.

Stepping	Through	the	Simulation
The	agent_step!()	and	model_step!()	functions	are	at	the	core	of	any	Agents
simulation.	At	every	timestep,	the	agent_step!()	function	updates	each	agent	as
it’s	selected	by	the	scheduler.	This	update	can	include	moving	the	agent,
changing	its	velocity,	altering	the	values	of	its	properties,	or	anything	else
that	makes	sense	to	apply	to	individual	agents.	The	scheduler	is	the
component	of	the	calculation	that	selects	which	agents	to	update	and	in	what
order.	In	most	Agents	simulations,	we	can	leave	the	order	unspecified;
allowing	the	scheduler	to	update	the	agents	in	an	arbitrary	order	is	the
fastest	option.

After	the	agent_step!()	function	comes	(by	default)	the	model_step!()
function,	which	makes	updates	that	apply	to	the	model	as	a	whole.	This
includes	updates	that	require	access	to	the	entire	agent	population,	including
those	that	search	for	near	neighbors.

The	agent_step!()	function	is	required,	but	model_step!()	is	optional;	our
calculation	uses	both.	Also,	there	is	an	option	to	perform	model_step!()	before
agent_step!()	if	the	calculation	needs	that.

Stepping	the	Agents
The	following	shows	the	entire	function	for	updating	both	predator	and	Prey
agents:

function agent_step!(agent, model)
    move_agent!(agent, model, dt)
    if agent isa Predator && agent.victim > 0
        if agent.victim in keys(model.agents)
            if euclidean_distance(agent, model[agent.victim], model) < KD
                kill_agent!(model[agent.victim], model)
                agent.victim = 0
                agent.vel = (0.0, 0.0) # Time to rest a bit ➊
            else
                θp = angle_between(agent.vel,
                     get_direction(agent.pos, model[agent.victim].pos, model))
                θf = min(abs(θp), LAA) * sign(θp) ➋
                agent.vel = Tuple(turn(agent.vel, θf))
            end



        else
            agent.victim = 0 # Already gone
        end
    end
    victims = being_chased(model)
    if agent isa Predator && agent.victim == 0
        food = [a for a in nearby_agents(agent, model, TAD)
                if (a isa Prey && !(a in victims))]
        if !isempty(food)
            agent.victim = food[1].id
            append!(victims, food[1].id)
           agent.vel = SPEEDR .* vnorm(get_direction(agent.pos, food[1].pos, model)) ➌
        end
    end
    if agent isa Prey
        if agent.mojo >= MNFR # Reproduce: add LS new Preys at my position
            for c in 1:LS
                child = add_agent!(agent.pos, Prey, model,
                                   vnorm(Tuple(rand(model.rng, 2).-0.5)), 0, agent.moves)
                rmutate!(child.moves, 2)
            end
            kill_agent!(agent, model) # Reproduction is fatal ➍
        end
        if model.stepno == 0
            vel = turn(agent.vel, agent.moves[1])
            agent.vel = Tuple(vel) ➎
            agent.moves = circshift(agent.moves, -1)
        end
        agent.mojo += MIPS # I eat as I run
    end
end

The	agent_step!()	function	(which	can	be	named	anything,	but	we’ve	used
the	conventional	name)	must	accept	agent	and	model	as	arguments.	The
scheduler	passes	each	agent	in	turn	to	the	function	as	it	cycles	through	them.

The	first	line	moves	the	agent	by	an	amount	determined	through	the
timestep,	dt.

We	then	kill	off	any	Prey	agents	that	have	been	caught	by	the	predators
that	are	chasing	them,	where	“caught”	means	that	the	distance	between
them	has	become	less	than	KD.	We	use	euclidean_distance(),	a	function	built
into	the	package,	to	measure	this	distance.

After	the	meal,	the	predator	waits,	stationary	➊,	for	another	available
prey	to	come	within	range.

If	the	prey	is	too	far	away	to	eat,	we	continue	the	chase	by	turning	toward
it.	The	first	step	is	finding	the	current	angle	between	the	predator’s	velocity
vector	and	the	vector	between	the	positions	of	the	predator	and	its	prey.
Fortunately,	Agents	comes	with	a	function	just	for	this:	get_direction().	In



calling	this	function,	we	use	two	additional	features	of	the	model:	an	agent’s
position	tuple	is	available	as	agent.pos,	and	model[i]	returns	the	agent	with	ID i.
Although	models	aren’t	arrays,	the	Agents	package	defines	a	getindex()	method
that	enables	this.	After	limiting	the	turning	angle	➋	to	the	predator’s	agility,
set	with	the	constant	LAA,	we	update	its	velocity.

We	then	check	for	any	sufficiently	close	eligible	prey:	any	Prey	agent
within	a	distance	TAD	that’s	not	already	being	chased.	If	we	find	one,	we	set
the	predator’s	velocity	vector	to	point	toward	the	prey,	again	using
get_direction()	➌.

Turning	to	the	prey	creatures,	first	we	check	if	they	have	accumulated
enough	mojo	to	reproduce.	Those	who	have	enough	give	birth	to	LS	copies,
which	are	then	mutated.	We	kill	off	the	parent	using	the	kill_agent!()
function	➍,	which	is	part	of	the	Agents	package.

When	it’s	time	to	make	a	turn,	we	rotate	the	velocity	using	our	turn()
function.	We	need	to	convert	the	result	to	a	Tuple	➎	because	the	package
uses	those	to	store	agent	velocities.

After	making	the	turn,	we	rotate	the	agent’s	private	turn	table	with	a
function	that	we’re	using	for	the	first	time:	circshift(),	which	rotates	an	array.
This	invocation	rotates	the	moves	vector	to	the	left,	so	its	second	element
becomes	its	first	and	its	first	becomes	its	last.	The	outcome	is	that	the	prey
makes	the	M	turns	stored	in	moves	repeatedly	(if	it	survives	long	enough	to	do
so).

Stepping	the	Model
After	the	scheduler	updates	all	the	agents,	it	calls	this	function,	passing	the
model	as	an	argument:

function model_step!(model)
    model.stepno = (model.stepno + 1) % SBT
    model.total_step += 1

    # Maintain predator/prey ratio:
    predators_pop = length(predators(model))
    prey_pop = length(preys(model))
    if predators_pop/prey_pop < PPR
        for i in 1:Int(round(PPR*prey_pop - predators_pop))
            add_agent!(Predator, model, (0.0, 0.0), 0)
        end
    end
    if predators_pop/prey_pop > 1.05PPR



        for i in 1:Int(round(predators_pop - PPR*prey_pop))
         ➊ kill_agent!(random_agent(model, a -> a isa Predator), model)
        end
    end
    # Logging and checkpointing:
    if model.total_step % LI == 0
        write(LF, "$(model.total_step), $prey_pop, $predators_pop \n")
        flush(LF)
    end
end

First	we	increment	model_step,	using	modular	arithmetic	to	maintain	a
cycle	of	length	SBT;	then	we	increment	the	total	step.	Since	total_step,	as	well
as	its	other	properties,	is	stored	along	with	the	model,	we	can	checkpoint	and
seamlessly	restart	the	simulation	by	using	JLD2	to	save	and	reload	the	model,
and	total_step	will	keep	track	of	how	long	it’s	been	run.

We	maintain	the	predator/prey	ratio	specified	with	PPR	by	adding	or
removing	predators	as	needed.	The	add_agent()	function	from	Agents	adds	an
agent	at	a	random	position.	The	tuple	in	the	argument	list	is	its	initial
velocity,	and	subsequent	arguments	are	passed	to	the	agent	constructor.	In
this	case,	there	is	only	one	such	argument:	the	initial	victim	property	is	set	to
0.

We	remove	agents	by	passing	a	random	agent	to	kill_agent()	using	the
function	random_agent()	➊.	This	Agents	function	takes,	in	its	optional	second
argument,	a	function	expressing	a	condition	that	the	potentially	doomed
agent	must	satisfy.

Finally,	the	routine	maintains	a	logfile,	writing	an	entry	every	LI	steps.
We	flush()	the	logfile	so	that	we	can	take	a	look	at	it	while	the	simulation	is
running.	Without	this	call,	the	file	may	not	be	written	until	the	calculation
ends.

Running	the	Simulation
The	run!()	function	is	Agents’s	basic	facility	for	stepping	through	a	model,	as
shown	in	Listing	11-2.	Its	four	positional	arguments	are	the	model,	the
function	for	updating	the	agents,	the	optional	function	for	updating	the
model,	and	the	total	number	of	steps.

function evolve!(model, nruns, nsteps_per_run)
    for run in 1:nruns
        adf, mdf = run!(model, agent_step!, model_step!, nsteps_per_run;
                        adata=[:mojo],



                        mdata=[:total_step, number_of_predators,
                               number_of_preys, moves_dist_data])

        jldsave("mdf$run"; mdf)
        jldsave("model$run"; model)
    end
end

evolve!(model, 10, 1000)

Listing	11-2:	Running	the	simulation

It	returns	two	dataframes	(see	“CSV	Files”	on	page	332):	one	for	the
agents	and	one	for	the	model.	The	adata	keyword	argument	is	a	Vector	of
quantities	to	include	in	the	agent	dataframe,	and	the	mdata	keyword	argument
is	for	the	model	dataframe.	These	quantities	can	be	agent	or	model
properties,	which	become	symbols,	or	functions	of	the	model.	In	the	value	for
mdata,	we’re	using	three	functions	that	we	defined	with	this	in	mind:	we’re
keeping	track	of	the	two	population	sizes	and	the	angle	distribution.

We’ve	wrapped	run!()	in	a	function	that	calls	it	nruns	times,	each	time
asking	it	to	run	the	model	for	nsteps_per_run	steps,	and	uses	the	save	function
from	JLD2	to	store	the	model	dataframe	and	the	entire	model	to	disk.

To	load	the	model	from	its	saved	version	on	disk,	we	can	enter

mode = load(filepath, "model")

where	the	string	argument	specifies	the	variable	to	be	loaded	from	the	file.

Visualizing	System	Behavior
The	most	convenient	way	to	get	a	snapshot	of	the	model	at	any	time,	or	to
create	an	animation	of	its	progress,	is	to	use	two	functions	provided	by	the
InteractiveDynamics	package,	which	needs	a	separate	import:

julia> using InteractiveDynamics, CairoMakie

We	need	to	import	a	Makie	library	as	well	because	InteractiveDynamics	uses	it
for	drawing.	Makie	is	a	graphics	framework	along	more	or	less	the	same	lines
as	the	current	standard,	Plots.

As	we	plan	to	create	visualizations	of	our	model	with	its	two	agent	types,
let’s	create	functions	that	map	the	agent	types	to	two	distinct	colors	and
shapes:



function agent_color(agent)
   if agent isa Prey
       return :blue
   end
   if agent isa Predator && agent.victim > 0
       return :red
   end
   return :green
end

function agent_shape(agent)
   if agent isa Prey
       return '•'
   end
   return '⊙'
end

These	functions,	when	used	together,	will	render	prey	creatures	as	blue
dots	and	predators	as	circles	with	dots	inside	them.	Predators	on	the	chase
will	be	red,	while	idle	predators	will	be	green.

After	evolving	the	model	to	any	step	using	run!(),	we	can	create	and	save	a
picture	of	its	state	with	the	following	calls:

julia> fig, _ = abmplot(model; ac=agent_color, as=20, am=agent_shape)
julia> save("model_snapshot.pdf", fig)

The	plotting	function,	abmplot(),	returns	two	values,	of	which	we	only
need	the	first.	The	agent	color	(ac)	and	agent	shape	(am)	use	our	functions
defined	earlier,	and	we	set	the	agent	marker	size	(as)	to	a	value	that	worked
well	in	the	visualization.	Figure	11-1	shows	the	result	after	10,000	steps.



Figure	11-1:	The	model	configuration	at	step	10,000

At	the	moment	shown	in	Figure	11-1,	there	are	139	total	agents.	None	of
the	predators	happen	to	be	idle	at	this	moment,	so	they	are	all	rendered	in
the	same	color.

We	can	also	create	an	animation	of	the	model	using	abmvideo(),	which	is
supplied	by	InteractiveDynamics	as	well.	It	actually	runs	the	model,	beginning
with	the	initial	state	supplied	in	its	second	argument,	stepping	through	it



using	the	same	step	functions	that	we	supply	to	run!():

julia> abmvideo("arena.mp4", model, agent_step!, model_step!;
         ac=agent_color, am=agent_shape,
         frames=500, framerate=30)

The	run	stops	after	the	number	of	steps	given	in	the	frames	keyword
argument,	and	the	video	file	is	saved	with	the	name	given	in	the	first
argument.	We	can	use	constants	or,	as	we	did	here,	functions	for	agent
shapes	and	colors,	as	in	abmplot().	You	can	view	some	animations	made	with
this	method	in	the	online	supplement	for	this	chapter.

Animations	are	excellent	devices	for	verifying	that	an	ABM	simulation	is
working	as	intended	and	for	communicating	the	results	when	the	dynamic
behavior	is	interesting.	However,	running	the	model	through	abmvideo()	is
much	slower	than	running	it	with	run!()	because,	in	addition	to	the	model
calculations,	the	function	renders	an	image	at	each	step	using	abmplot()	and
assembles	a	video	file.	A	strategy	for	long-running	agent	simulations,
therefore,	may	be	to	run	the	calculation	using	run!()	and	then	render	subsets
of	steps	as	animations.	This	strategy	requires	periodically	saving	the	model,
as	we	do	in	our	example	within	agent_step!(),	so	we	have	various	saved	states
available	to	start	from.

Two	additional	quirks	to	note	about	abmvideo()	are	that	it	doesn’t	use	the
convention	of	the	exclamation	point	in	its	name,	despite	mutating	the	model,
and	that	it	cannot	generate	dataframes	directly	as	can	run!().	We	can	get
around	this	last	issue	by	putting	data	recording	into	model_step!(),	as	we	did	in
our	example	with	logging.	This	is	a	more	flexible	approach	in	any	case,	as	it
allows	us	more	control	over	the	recorded	data.	For	example,	we	might
decide	to	add	a	row	to	the	dataframes	less	frequently	than	every	step.

The	CairoMakie	graphics	library	is	appropriate	for	making	high-quality
plots	and	animations	saved	in	files.	For	more	immediate	feedback,	we	can
import	GLMakie	instead.	If	both	are	imported,	the	calls	GLMakie.activate!()	and
CairoMakie.activate!()	switch	between	them.	When	GLMakie	is	active,	abmplot()
and	abmvideo()	open	a	dedicated	graphics	window	when	using	the	REPL,	or
they	can	insert	graphics	into	a	computational	notebook.

Analyzing	the	Results



The	call	to	run	the	simulation	in	Listing	11-2	stores	the	distribution	of
angles	in	the	prey	angle	tables	in	the	model	dataframe	at	every	timestep.
These	angles	are	initially	uniformly	distributed,	so	if	the	distribution
changes	over	time,	we	know	that	some	form	of	evolution	is	occurring.	The
angle	distribution	over	the	population	doesn’t	tell	us	everything	about	its
character,	but	if	we	reach	a	point	where	the	distribution	has	stopped
evolving,	this	suggests	that	the	population	may	have	achieved	some	form	of
optimum	in	response	to	the	selection	pressure	exerted	by	the	predators.

We	can	plot	a	histogram	of	the	distribution	at	any	step	by	extracting
moves_dist_data	from	the	model	dataframe.	The	dataframe	for	the	20th	run
looks	like	this:

julia> mdf20 = load("mdf20", "mdf")
1001×5 DataFrame
  Row | step   total_step  number_of_predators  number_of_preys  moves_dist_data
      | Int64  Int64       Int64                Int64            ...Histogram
----------------------------------------------------------------------------------------------
    1 |     0       19000                 1787             3447  Histogram{Int64, 1, Tuple...
    2 |     1       19001                 1787             3444  Histogram{Int64, 1, Tuple...
    3 |     2       19002                 1787             3438  Histogram{Int64, 1, Tuple...
    4 |     3       19003                 1787             3434  Histogram{Int64, 1, Tuple...
  :   |   :        :                :                  :                         :
  999 |   998       19998                 2559             5075  Histogram{Int64, 1, Tuple...
 1000 |   999       19999                 2559             5072  Histogram{Int64, 1, Tuple...
 1001 |  1000       20000                 2559             5069  Histogram{Int64, 1, Tuple...

Here	is	the	call	to	plot	the	histogram	from	the	last	row	in	this	dataframe:

julia> using LinearAlgebra, Plots

julia> Plots.plot(normalize(mdf20.moves_dist_data[end], mode=:pdf);
                  xticks=([-π:π/2:π;], ["-π", "-π/2", "0", "π/2", "π"]),
                  legend=false, xlabel="θ", ylabel="PDF(θ)")

We	need	the	LinearAlgebra	package	for	the	normalize()	function,	which
rescales	the	histogram	of	raw	counts	into	one	that	can	be	interpreted	as	a
probability	density	function	(see	“Probability	Density	Functions”	on	page
325).	This	allows	us	to	compare	distributions	from	populations	of	different
sizes	directly.	At	this	stage,	there	are	5,069	Prey	agents,	as	can	be	read	off
from	the	dataframe,	and	comparing	the	distribution	at	earlier	times	shows
that	it	seems	to	have	converged	to	the	shape	shown	in	Figure	11-2.



Figure	11-2:	Evolved	angle	distribution

A	bit	of	reflection	reveals	why	the	prey	creatures	may	have	evolved	such	a
distribution.	The	predators	are	significantly	faster	than	their	prey	(SPEEDR	=
1.5)	but	they	have	severely	limited	agility:	LAA =	π/128,	which	means	that	they
can	turn	no	more	than	1.4°	in	any	step.	If	the	prey	try	to	run	in	a	straight
line,	the	predators	are	likely	to	catch	them	before	they	have	a	chance	to
reproduce.	This	fact	produces	the	pronounced	dip	in	the	distribution	near
0°.	Making	sharp	turns	of	close	to	180°	buys	the	most	time,	and	that’s	where
we	find	the	peaks	in	the	distribution.

If	this	idea,	that	the	prey	have	“learned”	to	avoid	predators	with	these
particular	attributes,	is	correct,	then	a	different	species	of	predator	with
different	attributes	should	give	rise	to	a	different	angle	distribution.



To	test	this	idea,	we	need	simply	to	change	the	LAA	and	SPEEDR	constants
and	run	the	simulation	again.	After	trying	this	with	SPEEDR = 1.05	and	LAA	=
π/16,	we	observe	the	distribution	shown	in	Figure	11-3	after	13,000	steps.

Figure	11-3:	Evolved	angle	distribution	with	slower	but	more	agile	predators

This	result	is	distinctly	different	and	admits	a	clear	intuitive	explanation.
These	predators	can	only	travel	5	percent	faster	than	the	prey,	so	their
potential	victims	can	often	survive	long	enough	to	reproduce	by	simply
continuing	in	something	close	to	a	straight	line.	Although	slow,	they	are	far
more	agile	than	the	predators	in	the	previous	simulation,	able	to	turn
through	11.25°	at	each	step,	so	prey	who	make	many	large	turns	are	more
likely	to	be	caught.	Hence	we	see	a	distribution	with	a	broad	peak	near	0°,



falling	off	at	larger	angles.
The	distribution	evolution	is	suggestive,	but	let’s	see	if	we	can	confirm

the	idea	that	the	prey	have	evolved	to	be	better	predator	avoiders.	We’ll	do
this	by	comparing	the	evolved	population	to	unevolved	populations	with
uniform	distributions	of	angles	in	their	moves	tables.	Since	we	use	a	seeded
random	number	generator,	we	can	create	ensembles	of	populations	by
running	the	simulation	multiple	times	while	varying	the	SEED.

The	ability	of	a	population	to	survive	in	an	environment	with	predators	of
a	particular	type	is	its	fitness.	The	predators’	type	in	our	model	is	defined	by
two	parameters:	SPEEDR	and	LAA,	their	speed	and	agility.

To	test	the	fitness	of	the	initial,	unevolved	population,	we	start	with	200
Prey	agents	and	100	Predator	agents,	and	turn	off	the	Prey	agents’	ability	to
reproduce.	In	such	a	situation,	the	prey	population	should	decay	roughly
exponentially,	eventually	dwindling	to	zero.	We	perform	this	experiment	10
times.

To	test	the	fitness	of	the	evolved	population,	we	load	the	model	after
20,000	steps	and	extract	a	random	sample	of	200	Prey	agents	from	it.	We	put
that	sample	into	the	arena	with	100	predators	and	observe	the	population
decay,	repeating	this	experiment	10	times	as	well.	Each	experiment	uses	a
different	random	seed,	so	we’ll	get	a	different	random	sample	each	time.

Figure	11-4	shows	the	results:	the	evolved	population	performs	distinctly
better	than	the	initial	population.



Figure	11-4:	Comparing	fitness

Of	course,	the	evolved	population	becomes	extinct	as	well,	as	it	must
without	the	ability	to	reproduce.	But	the	comparison	shows	that	the
sharpturn	strategy	suggested	by	Figure	11-2	is	effective,	as	this	population
decays	more	slowly.

Conclusion
In	this	chapter,	I	presented	a	complete,	detailed	example	of	a	research
problem:	we	began	with	some	curiosity	about	whether	we	could	simulate
natural	selection	acting	on	specific	attributes	of	a	population.	Then	we	made



the	question	concrete	by	devising	a	scenario	where	behavior	was	codified	by
a	list	of	eight	numbers.	Next,	we	constructed	a	simulation	capturing	the
mechanisms	we	wanted	to	study	and	observed	that	the	simulation	displayed
evolution	of	the	population,	apparently	converging	to	some	optimum.
Lastly,	we	tested	the	evolved	population	and	found	that	it	did	have	increased
fitness.

The	Agents	package,	and	Julia’s	expressiveness	and	efficiency,	dramatically
streamlined	the	path	from	initial	speculation	to	a	verifiable,	quantitative,	and
easily	visualized	result.	The	ability	to	try	out	a	variety	of	scenarios	and
analyze	and	view	the	results,	all	within	a	unified	interactive	environment,
and	with	no	compromise	in	performance,	is	an	unprecedented	boon	for	the
researcher.

FURTHER	READING

For	more	information	on	BioJulia,	the	“bioinformatics
infrastructure	for	the	Julia	language,”	see	https://biojulia.dev.
The	article	“Julia	for	Biologists”	provides	an	overview	of	the	use
of	the	language	in	biology:	https://arxiv.org/abs/2109.09973.
More	details	on	Agents.jl	is	available	at
https://juliadynamics.github.io/Agents.jl/stable/.
Watch	a	video	about	Agents.jl	here:	https://youtu.be/Iaco6v6TVXk.
A	detailed	survey	of	the	field	of	artificial	life	is	available	at
https://www.ais.uni-bonn.de/SS09/skript_artif_life_pfeifer_unizh.pdf.
For	interesting	anecdotes	about	artificial	life	simulations,	visit
https://direct.mit.edu/artl/article/26/2/274/93255/The-Surprising-
Creativity-of-Digital-Evolution-A.

https://biojulia.dev
https://arxiv.org/abs/2109.09973
https://juliadynamics.github.io/Agents.jl/stable/
https://youtu.be/Iaco6v6TVXk
https://www.ais.uni-bonn.de/SS09/skript_artif_life_pfeifer_unizh.pdf
https://direct.mit.edu/artl/article/26/2/274/93255/The-Surprising-Creativity-of-Digital-Evolution-A


12
MATHEMATICS

The	people	of	Ulm	are	mathematicians.
—Motto	of	Ulm,	the	birthplace	of	Albert	Einstein

In	this	chapter,	we’ll	explore	several	Julia	packages	for	symbolic	and
numerical	mathematics.	Symbolic	mathematical	software	can	replace	tedious
pencil-and-paper	calculations	or	long	evenings	in	the	company	of	tables	of
integrals	with	automated	manipulations	of	mathematical	expressions.
Numerical	packages	include	modules	for	linear	algebra,	equation	solving,
and	related	fields.	The	two	classes	of	packages	have	substantial	overlap,	and
both	are	a	boon	to	the	applied	mathematician	or,	potentially,	to	anyone	who
uses	mathematics	in	research.

Symbolic	Mathematics
This	category	of	software	is	sometimes	called	computer	algebra,	but	it
includes	all	types	of	automated	symbol	manipulation,	such	as	algebraic	and
trigonometric	simplification;	generation	of	Taylor	series;	calculation	of
limits,	derivatives,	and	integrals;	and	more	specialized	areas	such	as	algebraic
number	theory.

Symbolic	mathematical	software	is	distinguished	from	the	more	familiar



intersection	of	computers	and	math	by	its	ability	to	handle	mathematics	as
mathematics,	rather	than	by	simply	performing	arithmetic.	We	feed	it
expressions	incorporating	variables,	and	it	returns	rewritten	expressions,	or
the	solution	to	a	problem,	in	terms	of	those	variables,	rather	than	numbers.

Numerical-Symbolic	Modeling	with	Symbolics
This	section	introduces	Symbolics,	which	is	described	as	a	symbolic	modeling
language	and	as	numerical-symbolic	software.	These	descriptions	are	meant
to	suggest	that	Symbolics	emphasizes	the	synergy	between	symbolic	and
numerical	calculations,	and	is	designed	with	efficiency	in	mind.	Symbolics	does
not	feature	all	the	abilities	of	a	full-blown	computer	algebra	system—it	can’t
calculate	indefinite	integrals,	for	example.	But	it	has	other,	unique	abilities.
For	example,	it	can	transform	a	normal	Julia	function	into	a	symbolic
function,	and	it	can	create	a	C	program	from	a	Julia	Symbolics	program.
Symbolics	is	written	entirely	in	Julia,	which	means	that	we	can	reach	for	any
part	of	the	language	in	working	with	its	symbolic	expressions.	Symbolics	is	a
key	part	of	the	ModelingToolkit	package,	a	framework	for	automatically
parallelized	scientific	machine	learning.

To	establish	names	as	symbolic	variables,	as	shown	in	Listing	12-1,	it’s
most	convenient	to	use	a	macro	supplied	by	the	Symbolics	package.

@variables a b c φ z;
 5-element Vector{Num}:
 a
 b
 c
 φ
 z

Listing	12-1:	Declaring	Symbolics	variables

After	calling	this	macro,	we	can	use	the	five	mentioned	variables	similarly
to	how	we	would	use	variables	in	mathematical	expressions.	They	have	the
type	Num	and	share	much	of	the	behavior	of	the	Real	type,	but	they	have	extra
powers,	which	we’ll	explore	next.

Let’s	create	a	rotation	matrix	as	we	did	in	“Matrix	Multiplication”	on
page	146:

RM = [cos(φ) -sin(φ); sin(φ) cos(φ)]



Since	φ	is	a	Symbolics	variable,	this	matrix	is	a	Symbolics	expression.
Let’s	see	what	happens	if	we	try	to	rotate	a	vector	with	it	using	matrix

multiplication,	as	we	did	with	the	“normal”	rotation	matrix	in	Chapter	5:

julia> RM * [1, 0]
2-element Vector{Num}:
 cos(φ)
 sin(φ)

julia> RM * [0, 1]
2-element Vector{Num}:
 -sin(φ)
  cos(φ)

julia> RM * [1, 1]
2-element Vector{Num}:
 cos(φ) - sin(φ)
 cos(φ) + sin(φ)

julia> RM * [0.5, 0]
2-element Vector{Num}:
 0.5cos(φ)
 0.5sin(φ)

julia> RM * [0.5, 0.6]
2-element Vector{Num}:
 0.5cos(φ) - 0.6sin(φ)
 0.5sin(φ) + 0.6cos(φ)

In	each	case,	the	matrix	multiplication	returns	an	exact	result,	correct	for
any	value	of	φ.	The	*	operator	is	able	to	operate	on	Symbolics	expressions,
performing	matrix	multiplication	as	it	does	with	matrices	of	numbers.	This	is
another	example	of	the	composability	of	Julia	packages.	Most	array	and
numerical	operators	and	functions	will	handle	Symbolics	expressions	the	way
we	would	expect.

To	compute	a	numerical	result,	we	can	use	the	substitute()	function:

julia> substitute(RM * [1, 0], Dict(φ => π/2))
2-element Vector{Num}:
 6.123233995736766e-17
 1.0

The	result	is	identical	to	the	one	in	“Matrix	Multiplication”	on	page	146.
The	substitute()	function	takes	a	Symbolics	expression	in	its	first	argument

and	a	dictionary	of	substitutions	to	make	in	its	second	argument.	The
resulting	expression	is	not	always	simplified	as	we	might	expect:



julia> ex = a^2*z^2 + a^4*z^4;

julia> substitute(ex, Dict(a => sqrt(b)))
(z^2)*(sqrt(b)^2) + (z^4)*(sqrt(b)^4)

julia> substitute(ex, Dict(a => b^(1//2)))
b*(z^2) + (b^(2//1))*(z^4)

Here	we	have	a	polynomial	that	we	attempt	to	write	in	a	slightly	simpler
form	by	making	a	change	of	variable.	Our	first	attempt	is	foiled	because
Symbolics	seems	not	to	know	that,	for	example,	sqrt(b)^2 = b.	We	had	better
luck	on	our	second	try.

Symbolics	is	able	to	automatically	simplify	expressions	involving
multiplication	or	division	of	variables	raised	to	integer	powers:

julia> z^3 * z^5
z^8

julia> a^5/a^3
a^2

It	also	comes	with	a	simplify()	function,	but	it’s	not	able	to	do	much—not
even	the	limited	simplification	that	appears	in	the	documentation.	The
emphasis	of	Symbolics,	as	mentioned	previously,	is	on	efficient	numeric-
symbolic	modeling.	We	can	always	turn	to	SymPy,	explored	in	the	next
section,	to	perform	nontrivial	simplifications	of	an	expression,	the	results	of
which	we	can	use	in	a	Symbolics	program.

An	Example:	Bessel	Functions
As	an	example	of	a	practical	use	of	Symbolics,	let’s	say	we	need	to	compute	the
Bessel	function	of	the	first	kind,	of	various	orders,	and	some	of	its
derivatives.	These	functions	appear	throughout	physics	and	engineering.	We
used	a	Bessel	function	in	Listing	7-5	on	page	206	to	represent	the	shape	of	a
vibrating	drumhead,	where	we	gained	access	to	it	through	the	SpecialFunctions
package.

To	roll	our	own	Bessel	function,	which	we’ll	denote	Jm(x),	where	m	is	the
order,	we	can	turn	to	its	well-known	series	representation:



A	Julia	function	implementing	this	representation,	shown	in	Listing	12-2,
will	accept	x,	m,	and	a	number	of	terms	(because	we	can’t	compute	an	infinite
number	of	terms)	that	we’ll	call	N.

function Jm(x, m::Int, N)
    s = 0
    for k in N:-1:0
        s += (-1)^k * x^(2k + m) / (2^(2k + m)*factorial(k)*factorial(k + m))
    end
    return s
end

Listing	12-2:	Calculating	a	Bessel	function	using	its	series	expansion

This	function	will	return	the	value	of	Jm(x)	computed	using	N	terms	in	the
series.	Because	it	uses	normal	integers,	rather	than	big	integers,	we	can	only
use	it	with	N	<	19	(see	“‘Big’	and	Irrational	Types”	on	page	216).	Keeping
nine	terms	is	more	than	sufficient	for	an	extremely	accurate	approximation
in	the	interval	0	≤	x	≤	6.

Our	little	function	Jm()	is	useful	if	we	need	to	know	the	numerical	value	of
Jm(x)	at	various	values	of	x,	especially	if	we	don’t	know	about	the	Special
Functions	package.	If	we	happen	to	need	the	value	of	various	derivatives	of
Jm(x),	we	could	calculate	them	using	some	finite	difference	scheme,	calling
Jm(x, m, N)	at	two	or	more	closely	spaced	values	of	x	to	compute	the	derivative
at	x.	However,	the	numerical	error	intrinsic	to	these	methods	accumulates	as
the	order	of	the	derivative	increases,	and	the	repeated	evaluations	of	Jm(x, m,
N)	are	an	additional	computational	cost.	Let’s	see	how	an	approach	using
Symbolics	neatly	dispenses	with	both	of	those	issues.

If	we	call	Jm(x, m, N)	with	numerical	values	for	x,	m,	and	N,	we	get	a	number
back,	the	approximation	for	the	mth	Bessel	function	at	x.	Listing	12-3	shows
what	we	get	if,	instead	of	a	number	for	x,	we	supply	the	name	of	a	Symbolics
variable.

julia> J19 = Jm(z, 1, 9)
(1//1917756584755200)*(z^17) + (1//1474560)*(z^9) +
(1//29727129600)*(z^13) + (1//384)*(z^5) + (1//2)*z -
(1//176947200)*(z^11) - (1//18432)*(z^7) - (1//6658877030400)*(z^15) -
(1//690392370511872000)*(z^19) - (1//16)*(z^3)



Listing	12-3:	A	Symbolics	expression	approximating	J1(z)

In	Listing	12-1,	we	created	the	Symbolics	variable	z,	among	others.	When
we	pass	z	to	Jm(),	it	returns	the	nine	terms	of	the	series	expansion	generated
with	m	=	1	and	N	=	9,	in	an	unfortunate	random	order.	We	assigned	this
Symbolics	expression	to	the	variable	J19.	We	can	get	the	numerical	value	of	this
expression	through	substitution:

julia> substitute(J19, Dict(z => 1.2))
0.4982890575672154

julia> Jm(1.2, 1, 9)
0.4982890575672155

The	difference	in	the	value	in	the	last	place	is	due	to	a	difference	in	the
order	of	operations.	The	strategy	shown	in	Listing	12-2	of	adding	up	the
small	terms	in	a	series	before	the	larger	ones	should	be	somewhat	more
accurate.

As	another	example	of	the	power	of	composing	Julia	packages,	we	can	use
Latexify	to	render	a	LaTeX	version	of	a	Symbolics	expression:

julia> using Latexify

julia> latexify(J19)
L"\begin{equation}
\frac{1}{1917756584755200} z^{17} + \frac{1}{1474560} z^{9} - [etc.]
\end{equation}
"

Copying	and	pasting	the	contents	(with	some	line	breaks	added)	of	the
resulting	LaTeX	string	into	the	source	of	this	book,	which	is	typeset	using
LaTeX,	shows	us	the	rendered	expression:

The	process	illustrated	here,	of	taking	a	normal	Julia	function	and
repurposing	it	to	generate	a	Symbolics	expression,	is	sometimes	called	tracing.



Only	functions	that	are	in	a	sense	deterministic	can	be	traced.	What	this
means,	in	the	case	of	our	Jm()	function,	is	that	we	can	supply	a	Symbolics
variable	for	x,	but	not	for	the	number	of	terms,	N.	For	that,	we	must	supply
an	integer.	If	we	try	to	sneak	in	a	Symbolics	variable	for	the	third	positional
argument,	we	get	a	cryptic	error	message:

julia> Jm(z, 1, a)
ERROR: TypeError: non-boolean (Num) used in boolean context

The	reason	we	didn’t	enforce	an	integer	N	in	the	function	signature,	as	we
did	for	m,	was	to	illustrate	this	behavior.

The	problem	with	attempting	to	trace	Jm()	while	using	a	Symbolics	variable
representing	the	number	of	terms	is	that	the	loop	limits	are	unknown:	what
expression	is	to	be	returned?	We	can	trace	only	functions	that	generate	a
completely	determined	expression	based	on	their	inputs.	The	particular
error	message	appearing	in	this	listing	is	a	signal	that	we’ve	run	into	this
problem.

Differentiating	the	Bessel	Function
Since	we’re	in	possession	of	an	analytic	expression,	generated	in	Listing	12-2,
for	the	approximation	to	J1(z),	we	can	derive	its	analytic	derivative	at	any
order	to	get	dpJ1/dzp,	the	pth	derivative.	Since	J19	is	only	a	polynomial,	this	is
a	simple,	albeit	tedious	and	error-prone,	procedure.

Symbolics	can	relieve	us	of	the	burden	of	differentiating	by	hand:

julia> Differential(z)(J19) |> expand_derivatives
(1//2) + (13//29727129600)*(z^12) + (17//1917756584755200)*(z^16) +
(5//384)*(z^4) + (1//163840)*(z^8) - (19//690392370511872000)*(z^18) -
(11//176947200)*(z^10) - (3//16)*(z^2) - (7//18432)*(z^6) - (1//443925135360)*(z^14)

Here	we	use	the	Differential()	function.	Differential(t)	returns	another
function	that	calculates	the	derivative	with	respect	to	t	of	the	Symbolics
expression	that	it	receives.	To	actually	see	the	result	of	this	manipulation,	we
need	to	pass	it	to	expand_derivatives().	The	result	is	the	correct	differentiation
of	the	polynomial	J19,	with	its	terms	in	yet	another	random	order.

As	suggested	previously,	we	can	repeatedly	apply	Differential()	to	generate
derivatives	at	any	order	without	worrying	about	the	accumulation	of	finite
differencing	errors.	Let’s	take	a	look	at	the	first	10	derivatives	of	the	Bessel



function:

   julia> using Plots, LaTeXStrings

   julia> dnJ19 = [Differential(z)(J19) |> expand_derivatives];

➊ julia> for ord in 2:10
              push!(dnJ19, Differential(z)(dnJ19[ord-1]) |> expand_derivatives)
          end

   julia> plot(J19; lw=2, xrange=(0, 6), yrange=(-0.6, 0.6), legend=false,
               xlabel=L"x", ylabel=L"J_1, J_1^\prime, J_1^{\prime\prime}, ...")

➋ julia> for ord in 1:10
              plot!(dnJ19[ord]; linestyle=:auto)
              gui()
          end

We	intend	to	plot	the	derivatives,	so	first	we	import	Plots	and,	to	get
typeset	math	in	the	axis	labels,	LaTeXStrings.	We	calculate	the	derivative	of	the
Bessel	function,	as	we	did	before,	and	place	the	result	inside	a	vector.	In	a
loop	➊	we	apply	the	derivative	operator	repeatedly	to	the	previous	result,
generating	the	first	10	derivatives.	We	set	up	the	plot	by	graphing	J1(x),
using	LaTeX	strings	for	the	labels,	and	then	loop	through	➋	the	elements	of
the	vector	of	derivatives,	adding	each	one	to	the	visualization.	Figure	12-1
shows	the	result.



Figure	12-1:	The	first	10	derivatives	of	J1(z)

The	thick	solid	line	shows	J1(x).	The	linestyle=auto	keyword	argument	to
plot!()	creates	a	series	of	lines	with	different	dash	patterns,	which	are	plotted
using	the	default	line	thickness.	These	are	the	10	derivatives.

That	we’re	able	to	plot	these	Symbolics	expressions	directly,	without	setting
up	vectors	of	numerical	variables	or	having	to	make	numerical	substitutions
by	hand,	is	another	example	of	composability.	The	Plots	package	was	written
without	any	knowledge	of	the	(future)	Symbolics	package,	yet	it’s	able	to	deal
with	Symbolics	expressions	in	a	natural	way.

Math	Manipulation	with	SymPy	and	Pluto



For	more	general	symbolic	mathematics,	SymPy	is	probably	the	best	package
available	at	the	moment.	This	package	is	a	Julia	wrapper	around	the	highly
capable	Python	library	of	the	same	name,	so	it’s	limited	to	Python
performance;	however,	for	the	kind	of	work	typically	done	with	such
packages,	raw	speed	is	not	usually	a	crucial	consideration.

NOTE

In	order	to	use	SymPy	from	Julia,	with	some	systems	and	configurations	it	may	be
sufficient	to	merely	execute	add SymPy	in	Julia’s	package	mode,	followed	by	using
SymPy.	On	other	systems,	we	need	to	install	the	Python	SymPy	library	(and	perhaps
Python	itself)	outside	of	Julia.	For	example,	on	Linux	(where	Python	is
routinely	available	with	most	distributions),	we	can	execute	pip3 install sympy	in
the	shell.	However,	as	there	is	no	official	method	of	installing	libraries	or
resolving	dependencies	in	the	Python	world,	it’s	impossible	to	provide	a	command
that	will	work	for	everyone.	The	remainder	of	this	section	assumes	that	you’ve
successfully	executed	add SymPy	and	using SymPy	in	a	Julia	environment.

SymPy	works	from	any	such	environment,	and	does	a	nice	job	of	rendering
mathematical	notation	in	the	terminal	REPL.	Its	use	from	Pluto,	however,	is
more	delightful,	and	we’ll	use	examples	from	that	environment.	In	Pluto,
math	is	automatically	rendered	in	LaTeX,	so	the	results	are	immediately	in
the	form	of	beautifully	typeset	formulas,	embedded	within	the	notebook.
Pluto	uses	MathJax	for	its	math	rendering.	A	right-click	on	any	displayed
expression	brings	up	a	contextual	menu	providing	several	options,	the	most
important	providing	one	to	copy	the	LaTeX	commands	that	create	the
expression	to	the	clipboard.

Another	reason	Pluto	is	a	natural	fit	for	SymPy	is	that,	when	using	a
computer	algebra	library,	we’re	usually	in	discovery	or	exploration	mode,	or
using	Julia	with	SymPy	as	a	calculator,	rather	than	developing	a	large	program.
The	reactive	nature	of	Pluto	lends	itself	well	to	this	mode	of	interaction	(see
“Pluto:	A	Better	Notebook”	on	page	17).	Because	of	Pluto’s	dependency
graph,	we	can	know	that	all	the	equations	displayed	in	the	notebook	at	any
time	are	consistent	with	each	other,	something	that	is	decidedly	not	true
with	Jupyter.

The	ability	to	use	Pluto	is	one	reason	we	might	prefer	to	use	SymPy	from
within	Julia	rather	than	with	Python	directly.	Another	is	that	the	wrapping



of	functions	and	data	structures	provided	by	SymPy	presents	a	more	familiar
interface	for	the	Julia	programmer	and	eases	interoperation	with	other	Julia
programs	and	libraries.	This	wrapping	is	not	complete	in	a	sense,	however.
The	user	of	SymPy	will	encounter	remnants	of	Python’s	class-method	syntax,
as	we’ll	see	in	such	calls	as	sol.rhs(),	for	the	right-hand	side	of	a	solution	sol.

Since	Pluto	is	such	a	powerful	(and	fun)	environment	for	using	SymPy,	the
examples	in	this	section	will	take	the	form	of	screenshots	from	a	Pluto
session	(see	Chapter	1	for	a	reminder	of	how	to	start	up	a	Pluto	notebook
session).

Figure	12-2	shows	the	start	of	the	session.

Figure	12-2:	Starting	a	SymPy	session	within	Pluto

After	importing	the	package,	we	establish	some	variables	as	SymPy	symbolic
names	using	the	@syms	macro.	This	serves	the	same	purpose	as	the	@variables
macro	used	with	the	Symbolics	package.	Entering	one	of	the	names	as	f()
establishes	f	as	the	symbolic	name	of	a	function	that	we	can	use	as	an
unknown	in,	for	instance,	the	definition	of	a	differential	equation	(we’ll	look
at	this	shortly).



Algebra	with	SymPy
SymPy	can	perform	algebraic	simplification,	expansion,	and	its	inverse,
factoring,	as	shown	in	Figure	12-3.

Figure	12-3:	Simplification,	expansion,	and	factoring

The	subtle	underlines	adorning	some	characters	in	the	input	cells	in
Figure	12-3	indicate	which	are	SymPy	symbols—a	nice	refinement	to	the
interface.

In	order	to	solve	systems	of	algebraic	equations,	we	can	place	the
equations	into	a	vector	and	call	solve()	with	the	vector	as	an	argument,	as
shown	in	Figure	12-4.



Figure	12-4:	Solving	a	system	of	equations

The	vector	p	contains	two	equations,	entered	so	their	right-hand	sides
equal	0;	therefore,	p	represents	the	following	system:

The	result	of	the	call	to	solve()	is	the	solution	a	=	–1/7,	b	=	3/7.

Numerical	Solutions	with	SymPy
Our	example	happens	to	involve	linear	equations,	but	SymPy	can	handle
higher-order	polynomials,	rational	equations,	and	more,	and	it	can	find
complex	and	multiple	solutions.	We	can	also	turn	to	its	built-in	numerical
solver,	useful	in	cases	where	no	symbolic	solution	exists.

As	an	example,	let’s	say	we	were	interested	in	values	of	a	for	which

sin(a)	+	log(a)	=	1



An	attempt	to	throw	this	at	the	symbolic	solver	only	gets	us	an	error
message	lamenting	that	SymPy	knows	no	algorithms	for	its	analytic	solution.
This	is	a	job	for	an	approximate,	numerical	solver.

Intelligent	numerical	solution	behooves	us	to	understand	something
about	the	behavior	of	the	equation	of	interest,	at	least	within	and	near	the
neighborhood	where	we	seek	solutions.	A	good	first	step	is	to	look	at	a	graph
of	the	equation,	as	shown	in	Figure	12-5.

Figure	12-5:	The	first	step	in	finding	a	numerical	solution

Here	we’ve	plotted	the	left-hand	side	of	the	equation;	the	curve’s
intersections	with	the	horizontal	line	at	1	show	us	where	we	can	expect	the
solutions.	Inspection	of	the	graph	shows	three	solutions	near	a =	1,	3,	and	5.

SymPy’s	numerical	solver	is	the	nsolve()	function.	It	expects	a	symbolic
expression	in	its	first	argument	and	a	guess	for	a	root	for	the	expression	in	its



second	argument.	By	calling	the	function	three	times	with	three	approximate
roots,	we	can	get	three	precise	answers,	as	shown	in	Figure	12-6.

Figure	12-6:	Numerical	root	finding

Integration	with	SymPy
SymPy	knows	calculus,	and	it	can	largely	replace	weighty	tables	of	integrals.
We’ll	use	the	package	to	evaluate	the	indefinite	and	a	definite	integral	of	the
Gaussian	distribution	(see	“The	Normal	Distribution”	on	page	323).	We	can
evaluate	these	integrals	in	one	step	by	using	the	integrate()	function,	but	we
can	also	divide	the	problem	into	two	stages.	The	first	stage	will	be	to	define
expressions	for	the	unevaluated	integrals,	shown	in	Figure	12-7.



Figure	12-7:	Unevaluated	integrals

We	create	an	unevaluated	integral	using	the	sympy.Integral()	function,
which	requires	the	namespace	prefix	because	it’s	not	exported	by	the
package.	In	this	case,	the	expression	under	the	integral	has	only	one
independent	variable,	but	if	it	had	more	than	one,	we	would	supply	the
variable	of	integration	as	a	second	argument	(which	we	can	in	any	case,	with
the	same	result).	The	second	argument	appears	in	the	definite	integral
version,	where	the	tuple	contains	the	variable	of	integration	and	the	lower
and	upper	limits.	Here	e	is	Euler’s	number,	which	we	can	enter	by	typing
\euler	followed	by	TAB	or	by	directly	entering	the	Unicode	character.	We
enter	symbolic	infinity	using	a	double	o,	and	symbolic	π	using	PI—which	is
not	to	be	confused	with	the	irrational	Julia	π.	The	two	are	not
interchangeable:	if	we	use	π	instead	of	PI,	the	former	will	be	converted	into
an	approximation	to	π,	and	factors	of	π	will	fail	to	cancel	in	subsequent
manipulations.

There	can	be	several	reasons	for	creating	such	intermediate	expressions,
rather	than	integrating	in	one	step.	We	may	want	to	use	these	unevaluated



integrals	in	other	calculations,	or	we	may	simply	want	to	examine	their
typeset	form	to	ensure	that	we’ve	entered	them	correctly—something	that’s
easier	to	accomplish	with	conventional	mathematical	notation	than	even	the
exceptionally	legible	computerese	that	Julia	makes	available	to	us.

To	evaluate	the	integrals,	we	pass	them	to	the	doit()	function,	as	shown	in
Figure	12-8.

Figure	12-8:	Evaluating	the	integrals

The	indefinite	integral	(antiderivative)	of	the	Gaussian	is	not	expressible
in	closed	form	in	terms	of	elementary	functions.	It’s	defined	as	the	error
function,	abbreviated	erf(z).	This	is	the	type	of	mathematical	knowledge	built
into	most	capable	computer	algebra	systems,	and	SymPy	is	no	exception.	The	

	factor	in	the	integral	normalizes	the	result	so	that	the	definite	integral
over	the	whole	line	yields	1.	With	this	normalization,	the	integrand	is	a
probability	density	function,	and	the	definite	integral	from	a	to	b	is	the
probability	of	an	observation	falling	within	that	interval.

Differential	Equations	with	SymPy
SymPy	can	also	solve	differential	equations.	In	keeping	with	our	minor	theme
of	the	Bessel	functions,	let’s	recall	that	these	mainstays	of	applied
mathematics	arise	as	the	solutions	of	differential	equations.	Figure	12-9
shows	a	particular	example	that	demonstrates	how	to	define	a	differential
equation	in	SymPy.



Figure	12-9:	Bessell’s	equation

Figure	12-9	shows	the	construction	of	the	differential	equation	for	the
Bessel	function	of	the	first	kind	of	order	1.	We	define	the	equation	using	the
Eq()	function,	which	takes	the	left-hand	and	right-hand	sides	as	its	two
arguments.	In	the	definition,	we’ve	used	the	symbolic	differential	operator:
diff(f(z), z, n)	is	the	nth	derivative	of	f(z)	with	respect	to	z.	It	was	with	this
in	mind	that	we	established	f()	as	a	symbolic	function	in	Figure	12-2.

To	find	the	solution	to	a	differential	equation,	we	use	SymPy’s	dsolve()
function,	which	takes	the	equation	to	solve	and	the	function	to	solve	it	for	in
its	first	two	arguments.	But	since	boundary	conditions	are	essential	for
nailing	down	which	solutions	we’re	interested	in,	dsolve()	also	takes	a
dictionary	of	boundary	conditions	as	the	value	of	the	keyword	argument	ics.
We	can	specify	values	or	derivatives	at	specific	points	in	this	dictionary;	here
we	only	need	a	simple	condition	to	exclude	another	Bessel	function	that’s
singular	at	the	origin.	Figure	12-10	shows	the	call	that	generates	the	solution
of	interest.



Figure	12-10:	Solving	a	differential	equation

Figure	12-10	shows	that	SymPy	uses	the	conventional	notation	for	the
Bessel	function	(in	Pluto;	in	the	REPL	it	spells	out	the	name).	The	solution
with	the	supplied	boundary	condition	is	undetermined	up	to	a	multiplicative
constant,	which	SymPy	names	C1.	The	second	cell	in	Figure	12-10	shows	how
to	extract	the	rhs	(right-hand	side)	of	the	solution	while	specifying	a	value	for
the	constant,	in	this	case	1.	We	can	use	the	rhs	to	plot	the	solution,	as	shown
in	Figure	12-11.



Figure	12-11:	Plotting	the	solution	to	Bessel’s	equation

The	curve	shown	in	Figure	12-11	agrees	with	the	Bessel	function
calculated	by	other	means	in	Figure	12-1.

Linear	Algebra
As	Professor	L.	Fox	says	in	his	1965	textbook	An	Introduction	to	Numerical
Linear	Algebra,	about	75	percent	of	scientific	computing	involves,	wholly	or
in	part,	numerical	linear	algebra.	Whatever	the	current	proportion	happens



to	be,	linear	algebra	is,	and	likely	always	will	be,	a	central	part	of	any
enterprise	where	we	turn	to	computers	to	help	us	solve	problems	in	science,
mathematics,	or	engineering.	The	fundamental	reason	for	this	is	because	the
central	problem	of	numerical	linear	algebra,	the	solution	of	simultaneous
systems	of	linear	equations,	arises	repeatedly	in	the	modeling	of	an
enormous	variety	of	systems—not	only	those	whose	behavior	is	truly	linear,
but	those	whose	behavior	can	be	linearly	modeled	within	some	range	of
parameters.	For	example,	a	system	of	partial	differential	equations	can	often
be	approximated	by	a	linear	algebraic	system	close	to	some	initial	condition
or	for	a	small	range	of	a	controlling	parameter.

Views
In	performing	calculations	using	matrices	(or	arrays	of	other	shapes),	we
often	employ	views.	A	view	in	Julia	is	a	reference	to	a	part	of	an	array	that	we
can	create	and	manipulate	without	copying	any	data;	modifications	to	the
view	modify	the	original	array.

We	can	create	views	using	the	@view	or	@views	macros.	The	first	version
immediately	precedes	the	array	expression	that	we	want	to	turn	into	a	view,
while	the	second	transforms	all	the	slicing	operations	within	an	entire
expression	or	code	block	into	views:

   julia> R = rand(5, 5)
   5×5 Matrix{Float64}:
    0.957982  0.206423  0.00489974  0.0881235  0.708827
    0.301785  0.107707  0.524776    0.83413    0.771915
    0.049844  0.031097  0.22972     0.415245   0.735899
    0.438108  0.57943   0.144575    0.131095   0.103629
    0.473649  0.237991  0.148043    0.0351828  0.724837

   julia> row1Rview = @view R[1, :]
   5-element view(::Matrix{Float64}, 1, :) with eltype Float64:
    0.9579822727773696
    0.20642276219972644
    0.004899741566674942
    0.0881235008776815
    0.7088267041115207

➊ julia> row1Rview .= 17;

➋ julia> R
   5×5 Matrix{Float64}:
    17.0       17.0       17.0       17.0        17.0
     0.301785   0.107707   0.524776   0.83413     0.771915
     0.049844   0.031097   0.22972    0.415245    0.735899



     0.438108   0.57943    0.144575   0.131095    0.103629
     0.473649   0.237991   0.148043   0.0351828   0.724837

   julia> @views row1RviewAgain = R[1, :];

   julia> row1RviewAgain === row1Rview
   true

After	creating	a	view	of	the	first	row	of	the	random	matrix	R,	we	set	all	of
its	elements	to	17	➊.	Since	modifying	a	view	modifies	the	original,	the	first
row	of	R	is	transformed	➋.	We	create	the	same	view	using	the	@views	macro,
and	verify	that	the	views	are	indeed	the	same	with	the	last	expression.

The	slice	syntax	used	earlier,	without	the	@view	or	@views	macros,	would
create	a	new	array	with	a	copy	of	the	data	from	the	first	row	of	R.	Modifying
the	copy	would	do	nothing	to	the	original	array.

When	should	we	use	copies	and	when	should	we	use	views?	The	answer
depends	on	the	pattern	of	computation	to	which	we	intend	to	subject	the
data	structures.	In	this	example,	since	arrays	are	stored	in	column-major
order,	manipulating	a	row	uses	noncontiguous	memory	accesses.	If,	after
extracting	the	row,	we	use	it	repeatedly,	then	the	time	consumed	in	creating
the	copy	may	be	a	good	investment.	However,	if	the	array	is	large,	the	copy
will	consume	significant	memory	that	the	use	of	a	view	would	avoid.	Copies
use	more	memory,	but	can	lead	to	faster	code.	There	is	no	universal	answer
to	the	question	beginning	this	paragraph.	Whether	it’s	better	to	use	views	or
copies	depends	on	the	size	of	the	arrays	involved	and	how	we	use	the	data.

Linear	Algebra	Examples
Let’s	look	at	a	simple	example	problem.	Consider	the	2×2	system	shown	in
Equation	12.1.

In	this	system	of	equations,	x1	and	x2	are	the	unknowns	for	which	we
ultimately	seek	a	solution;	the	axxs	are	numerical	coefficients,	whose	indices
indicate	their	positions	in	the	system.	The	right-hand	side	of	the	system
consists	of	the	two	numbers	b1	and	b2.

In	order	to	apply	the	machinery	of	numerical	linear	algebra,	we’ll	follow
the	universal	convention	and	write	the	system	more	compactly	as



where	A	is	the	matrix

x	is	the	vector	[x1,	x2],	and	b	is	the	vector	[b1,	b2].	The	juxtaposition	of	A	and	x
indicates	the	usual	matrix	multiplication.

The	form	of	Equation	12.2	suggests	that	we	can	somehow	divide	by	A	to
solve	for	x,	and	that	is	indeed	true.	As	this	is	a	section	on	numerical	linear
algebra,	in	Equation	12.3,	let’s	try	some	actual	numbers	in	place	of	the
symbols	in	Equation	12.1:

This	equation	may,	or	may	not,	have	a	solution	for	x1	and	x2.	In	order	to	try
to	solve	it	numerically,	we’ll	define	a	Julia	matrix	and	a	vector	for	the	right-
hand	side,	corresponding	to	A	and	b	in	Equation	12.2,	as	shown	in	Listing
12-4.

julia> A = [1 3; 2 4]
2×2 Matrix{Int64}:
 1  3
 2  4

julia> b = [1, 7]
2-element Vector{Int64}:
 1
 7

Listing	12-4:	A	small	linear	system

At	this	point,	if	we	could	make	sense	of	the	idea	of	dividing	by	a	matrix,
then	we	would	expect	that	the	solution	could	be	calculated	by	dividing	b	by	A.
This,	in	fact,	will	be	our	first	approach	to	solving	the	equation	system	in
Listing	12-4.

Of	course	we’re	familiar	with	the	/	operator	for	division.	Julia	comes	with
a	“reverse”	version,	called	the	left	division	operator,	that	we	haven’t	had



occasion	to	use	until	now:

julia> 1 / 3 == 3 \ 1
true

Julia’s	Base	extends	the	left	division	operator	to	operate	on	matrices,
calculating	the	inverse	of	a	matrix	and	then	performing	a	matrix
multiplication.	The	result	should	be	a	column	array	containing	the	solution:

julia> A \ b
2-element Vector{Float64}:
  8.5
 -2.5

This	is	indeed	the	solution,	as	we	can	immediately	verify:

julia> A * [8.5, -2.5]
2-element Vector{Float64}:
 1.0
 7.0

The	result	is	b,	as	defined	in	Listing	12-4.
As	mentioned,	the	meaning	of	A \ b	is	the	matrix	multiplication	of	the

inverse	of	A	with	b:

julia> inv(A) * b
2-element Vector{Float64}:
  8.5
 -2.5

julia> inv(A) == A^-1
true

The	second	input	expression	shows	another	way	to	spell	the	inverse	of	a
matrix.

Although	this	is	the	formal	meaning	of	the	\	operator,	we	should	never
solve	equation	systems	using	inv(),	but	instead	with	an	expression	such	as	A \
b.	This	is	because	the	left	division	operator	solves	the	system	using	the	most
efficient	algorithm	available,	which	may	not	involve	the	calculation	of	the
inverse	matrix.

The	inverse	of	a	matrix	is	defined	such	that	A−1	A	and	AA−1	are	both
equal	to	the	identity	matrix,	which	has	the	same	shape	as	A	and	has	1.0	on	the
diagonal	and	0.0	elsewhere:



julia> A * inv(A)
2×2 Matrix{Float64}:
 1.0  0.0
 0.0  1.0

The	identity	matrix	is	conventionally	represented	as	I,	and	is	called	thus
because	it	is	the	identity	element	under	matrix	multiplication:

julia> I22 = A * inv(A);
julia> I22 * A == A * I22 == A
true

In	general,	matrix	multiplication	is	not	commutative,	but	multiplication	by
the	identity	matrix,	and	multiplication	of	a	matrix	by	its	inverse,	are.

The	LinearAlgebra	Package
The	examples	in	this	section	so	far	require	no	package	imports,	as	inv()	and
the	extension	of	\	to	matrices	are	part	of	Base.	To	go	further,	we	need	to
import	the	LinearAlgebra	package,	which	is	part	of	the	standard	library,	so	it
imports	quickly	and	nothing	needs	to	be	downloaded.	The	rest	of	the	code
examples	in	this	section	assume	that	you’ve	executed	using LinearAlgebra.

The	LinearAlgebra	package	can	perform	all	of	the	standard	operations	on
matrices.	We’ll	demonstrate	using	our	little	matrix	A.	First,	the	trace	and	the
determinant:

julia> tr(A) # Trace of A
5

julia> det(A) # Determinant of A
-2.0

Next,	the	calculations	of	eigenvalues	and	eigenvectors	(Ax	=	λx	if	x	is	an
eigenvector	of	A	and	λ	is	its	eigenvalue):

julia> eigvecs(A) # Eigenvectors
2×2 Matrix{Float64}:
 -0.909377  -0.565767
  0.415974  -0.824565

julia> eigvals(A) # Eigenvalues
2-element Vector{Float64}:
 -0.3722813232690143
  5.372281323269014



The	nth	eigenvector/eigenvalue	pair	is	the	nth	column	of	the	matrix
returned	by	eigvecs()	along	with	the	nth	element	of	the	vector	returned	by
eigvals().	We	can	check	to	see	if	the	LinearAlgebra	functions	return	the	correct
values:

julia> evec1 = eigvecs(A)[:,1];

julia> eval1 = eigvals(A)[1];

julia> A * evec1  - evec1 * eval1
2-element Vector{Float64}:
  0.0
 -5.551115123125783e-17

Here	we’ve	assigned	names	to	the	first	eigenvector	and	its	eigenvalue;	we
should	see	that	A * evec1	is	equal	to	eval1 * evec1.	Comparing	the	two	values	in
the	final	expression,	we	see	that	they	are	the	same	within	floating-point
accuracy.

Specialized	Matrix	Types
Linear	algebra	routines,	such	as	eigvals()	and	others,	are	written	to	dispatch
an	algorithm	designed	to	take	advantage	of	the	symmetries	or	other
properties	of	the	matrices	involved.	The	routines	check	for	relevant
properties	of	the	matrix	arguments	passed	to	them	in	order	to	choose	the
most	efficient	method	of	solution.	For	example,	the	eigvals()	function	checks
for	symmetry	of	real	matrices	using	the	issymmetric()	function,	and	hermiticity
of	complex	matrices	using	ishermitian().

The	matrix	properties	that	are	important	in	choosing	an	efficient	routine
include,	among	others,	whether	a	matrix	is	symmetric,	banded,	triangular,
hermitian,	sparse	(see	“The	Adjacency	Matrix”	on	page	196),	or	diagonal.
Each	of	these	matrix	classes	has	an	associated	Julia	type.	We	can	convert	a
general	matrix	to	one	of	these	more	specific	types	by	creating	a	view	using
the	appropriate	function.	For	example,	Symmetric(M)	creates	a	view	of	the
matrix	M	that	is	symmetric.	We	might	want	to	do	this	in	order	to	pass	the
result	to	a	linear	algebra	function	ensuring	that	it	selects	the	optimal
algorithm,	in	case	it	doesn’t	detect	the	character	of	the	matrix.

To	get	an	idea	of	how	all	this	works,	let’s	look	at	the	behavior	of	the
eigvals()	function.	First,	we	create	a	moderately	large	matrix	for	our	timing
study,	as	shown	in	Listing	12-5.



julia> N = 3000;

julia> G = rand(N, N);

julia> sG = (G + G') / maximum(G + G');

Listing	12-5:	Creating	a	random,	symmetric	matrix

The	final	assignment	creates	a	symmetric	matrix	by	adding	G,
elementwise,	to	its	transpose.	Let’s	compute	the	eigenvalues	of	G	in	several
ways,	as	shown	in	Listing	12-6.	We	don’t	care	about	the	results,	but	we’re
interested	in	the	timings.

   julia> using BenchmarkTools

   julia> @btime eigvals(G);
     24.044 s (20 allocations: 69.58 MiB)

   julia> @btime eigvals(sG);
     4.612 s (14 allocations: 69.74 MiB)

➊ julia> SsG = Symmetric(sG);

   julia> SsG == sG
   true

   julia> typeof(SsG)
   Symmetric{Float64, Matrix{Float64}}

➋ julia> @btime eigvals(SsG);
     4.481 s (14 allocations: 69.74 MiB)

Listing	12-6:	Timing	the	calculation	of	eigenvalues

The	first	two	timings	demonstrate	that	the	eigvals()	function	can	exploit
the	symmetry	of	the	matrix	to	drastically	reduce	the	calculation	time.	We
also	create	a	Symmetric	view	of	sG	➊,	which	contains	the	same	values	as	the
original	matrix,	but	is	of	a	different	type.	In	this	case,	the	use	of	SsG	doesn’t
affect	the	calculation	time	➋,	as	eigvals()	has	already	detected	that	sG	is
symmetric.	We	could	also	ask	eigvals()	to	compute	eigvals(Symmetric(G)),	and	it
would	do	so	as	quickly	as	it	computed	the	eigenvalues	of	the	actually
symmetric	matrix	just	shown.	But	in	this	case,	the	computed	eigenvalues
would	not	be	the	eigenvalues	of	G,	as	G	is	not	symmetric.

The	eigvals()	and	eigvecs()	functions	check	for	symmetric	or	hermitian
arguments,	but	not	for	other	properties.	We	can	demonstrate	this	by
calculating	the	eigenvalues	of	an	upper	triangular	matrix:	a	matrix	with	zero



elements	below	the	diagonal.	First	we	need	to	construct	the	matrices	for	use
in	the	test:

   julia> N = 3000;

   julia> G = rand(N, N);

➊ julia> UTt = UpperTriangular(G);

   julia> typeof(UTt)
   UpperTriangular{Float64, Matrix{Float64}}

   julia> UT = Matrix(UTt);

   julia> typeof(UT)
   Matrix{Float64} (alias for Array{Float64, 2})

➋ julia> UT == UTt
   true

After	making,	again,	a	random	matrix	G,	we	create	➊	an	UpperTriangular
view	of	this	matrix	and	assign	it	to	UTt.	Then	we	assign	it	to	UT	after
converting	it	to	a	basic	Matrix	type.	This	is	a	convenient	way	to	make	a	full
matrix	that	happens	to	be	upper	triangular.	The	two	objects	contain	the
same	elements	➋	but	are	of	different	types.	The	type	of	UTt	tells	LinearAlgebra
functions	that	it’s	upper	triangular,	so	they	can	take	advantage	of	that	in	case
a	specialized	algorithm	is	available.	eigvals()	is	one	of	these	functions:

julia> @btime eigvals(UT);
  119.571 ms (18 allocations: 69.53 MiB)

julia> @btime eigvals(UTt);
  35.905 μs (2 allocations: 23.48 KiB)

The	time	to	compute	the	3,000	eigenvalues	is	much	shorter	than	for	a
matrix	with	no	structure	(Listing	12-6)	due	to	all	the	zeros	in	UT.	The	time
that	eigvals()	needs	to	work	on	the	UpperTriangular	view	of	the	matrix	is
drastically	reduced	(note	the	units	in	the	timings	returned	by	@btime),	as	are
the	memory	requirements.	The	matrices	have	identical	elements,	and	the
computed	eigenvalues	are	the	same	(but	are	returned	in	a	different	order).
However,	the	information	carried	by	the	UpperTriangular	type	informs	eigvals()
about	the	matrix’s	structure,	which	is	information	it	can	use	in	dispatching	to
an	algorithm	more	efficient	than	the	general-purpose	one.

The	moral	of	this	story	is	that	we	should	pass	the	most	informative	view



possible	to	any	LinearAlgebra	function.

Equation	Solving	and	factorize()
A	factorization	of	a	matrix,	analogous	to	the	factorization	of	a	number,	is	a
series	of	matrices	that,	when	(matrix)	multiplied	together,	yield	the	original
matrix.	Matrix	factoring	is	often	an	early	step	in	the	solution	of	a	matrix
equation	(a	system	of	linear	equations),	and	is	attempted	by	the	left	division
operator,	the	standard	function	for	solving	such	systems.	The	factorization
can	be	the	most	time-consuming	part	of	the	calculation	of	the	solution,
which	often	proceeds	rapidly	after	the	factorization	is	complete.	As	many
problems	involve	the	repeated	solution	of	equations	in	the	form	of	Equation
12.2	using	different	b	vectors,	it	would	save	significant	time	if	we	could
perform	the	factorization	once,	separating	out	that	part	of	the	calculation.
This	is	what	the	LinearAlgebra	function	factorize()	enables:

julia> N = 8000;

julia> G = rand(N, N);

julia> g = rand(N);

julia> fG = factorize(G);

julia> @btime G \ g;
  10.073 s (6 allocations: 488.40 MiB)

julia> @btime fG \ g;
  37.942 ms (2 allocations: 62.55 KiB)

Here	we	see	that	solving	the	equation	system	using	the	pre-factored
matrix	is	about	200	times	faster,	and	uses	a	small	fraction	of	the	memory
required,	than	when	we	use	the	unfactored	matrix.	However,	the	call	to
factorize()	itself	takes	about	as	much	time	as	the	calculation	G \ g.	The
advantage	is	that	we	can	use	fG	in	subsequent	problems	that	vary	only	in	their
right-hand	sides	to	get	solutions	cheaply.

Telling	\	about	the	properties	of	the	matrix	using	views	doesn’t	help,	as	it
did	with	eigvals():

julia> g = rand(3000)

julia> @btime sG \ g;
  504.239 ms (6 allocations: 68.71 MiB)



julia> @btime SsG \ g;
  556.492 ms (8 allocations: 70.18 MiB)

julia> fSsG = factorize(SsG);

julia> @btime fSsG \ g;
  6.161 ms (2 allocations: 23.48 KiB)

Here,	also,	although	the	Symmetric	view	doesn’t	help,	we	observe	a	large
speedup	and	decrease	in	memory	consumed	when	using	the	factorized
matrix.

Conclusion
This	chapter	covers	two	large	topics	that,	I	believe,	are	generally	useful	to
scientists,	engineers,	and	other	technical	users	of	Julia.

The	use	of	symbolic	mathematics	packages	is	potentially	valuable	for
everyone,	and	my	discussions	with	various	students	and	researchers
convinces	me	that	many	are	unaware	that	computers	can	calculate	integrals
and	derivatives,	solve	equations	symbolically,	and	perform	other	feats	of	real
mathematical	manipulation—not	merely	arithmetic.	Opening	this	door	leads
to	many	possibilities,	especially	when	symbolic	and	numerical	methods	are
combined,	as	encouraged	by	the	Symbolics	package.

Of	course,	linear	algebra	is	a	vast	traditional	area	for	computer
application,	and	we	only	scratched	the	surface	here.	Julia	is	particularly
convenient	for	calculations	in	this	arena.	BLAS	(Basic	Linear	Algebra
Subprograms)	and	LAPACK	are	the	Fortran	libraries	at	the	heart	of
numerical	linear	algebra,	and	most	languages’	linear	algebra	abilities	amount
to	interfaces	to	these	venerable	collections	of	optimized	routines.	Julia	is
unusual	in	several	regards:	BLAS	and	LAPACK	are	being	rewritten	in	pure
Julia,	an	ongoing	project,	and,	through	the	libblastrampoline	package,	Julia
offers	the	unique	ability	to	switch	between	BLAS	implementations	on	the
fly.

FURTHER	READING

See	“Symbolic	Mathematics	on	Linux”	for	more	details	on



symbolic	math:	https://lwn.net/Articles/710537/.
Documentation	for	Symbolics.jl	is	available	at
https://symbolics.juliasymbolics.org/stable/.
OSCAR	is	a	computer	algebra	package	that	covers	algebra,
geometry,	and	number	theory:	https://oscar.computeralgebra.de.
For	a	list	of	matrices	with	special	symmetries	and	structures,	visit
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#Special-matrices.
libblastrampoline	is	available	at
https://github.com/JuliaLinearAlgebra/libblastrampoline.
The	recently	developed	LinearSolve	package	provides	a	unified
interface	for	a	selection	of	linear	equation	solvers:
https://github.com/SciML/LinearSolve.jl.

https://lwn.net/Articles/710537/
https://symbolics.juliasymbolics.org/stable/
https://oscar.computeralgebra.de
https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#Special-matrices
https://github.com/JuliaLinearAlgebra/libblastrampoline
https://github.com/SciML/LinearSolve.jl


13
SCIENTIFIC	MACHINE	LEARNING

The	bewilderments	of	the	eyes	are	of	two	kinds,	and	arise	from	two	causes,
either	from	coming	out	of	the	light	or	from	going	into	the	light.

—Socrates

The	topic	of	this	chapter	is	a	rather	new	approach	to	solving	scientific
problems	through	computation.	Much	of	the	recent	development	in	the	field
of	scientific	machine	learning	(SciML)	has	taken	place	within	the	Julia
ecosystem	and	has	been	led	by	researchers	using	Julia	in	science.	Relatively
little	has	been	published	explaining	how	to	apply	the	new	techniques	in	a
form	digestible	by	those	not	conversant	with	machine	learning	jargon.	I
hope	to	fill	at	least	part	of	that	gap	here	through	the	selection	of	simple	but
concrete	examples	that	clarify	the	concepts	involved	so	that	readers	can
apply	them	to	a	variety	of	problems.

Scientific	machine	learning	is	not	machine	learning.	Machine	learning
(ML)	is	a	branch	of	artificial	intelligence	in	which	computers	train
themselves	(usually	guided	by	human	supervision),	by	practicing	on	a	large
corpus	of	data,	to	recognize	patterns	and	make	classifications.	ML
techniques	are	applied	to	such	problems	as	detecting	fraudulent	financial
transactions	or	trying	to	guess	what	movie	you	want	to	watch	next.	The
training	replaces	the	traditional	coding	of	a	specific	model	or	algorithm.



SciML	extracts	several	key	techniques	from	ML	and	applies	them	to	a
different	class	of	problem.	In	SciML,	we	assume	that	the	system	we’re
studying	is	described	by	a	particular	model,	often	expressed	as	a	set	of
differential	equations.	Certain	parameters	or	other	aspects	of	the	model,
however,	are	unknown.	If	we	have	data	about	how	the	system	behaves,
SciML	techniques	allow	us	to	infer	the	values	of	these	unknown	parameters
efficiently.

Automatic	Differentiation	in	a	Physics	Problem
Along	with	concepts	from	statistics	and	probability	theory,	SciML	borrows
automatic	differentiation	from	ML.	This	technique	is	critical	to	both	ML	and
SciML.	Traditionally,	differentiation	is	a	mathematical	procedure	from
calculus	that	finds	the	slope	of	a	curve	(in	one	dimension)	or	a	surface	(in
two	or	more	dimensions).	We	call	a	derivative	of	a	surface,	which	involves
dealing	with	several	variables,	a	gradient.	If	your	kitchen	sink	is	installed
correctly,	the	negative	gradient	of	its	surface	points	toward	the	drain	at	every
point,	so	that	when	you	pull	the	plug	all	the	water	drains	out	and	you’re	not
left	with	any	puddles.

Automatic	differentiation	is	the	calculation	of	a	derivative	or	gradient	of	a
function	expressed	in	a	programming	language,	rather	than	in	mathematical
notation.	The	programmed	function	can	be	the	direct	translation	of	a
mathematical	expression.	Often,	when	the	expression	is	complicated,	its
analytic	derivative	will	involve	many	terms	and	be	expensive	to	calculate	in
the	traditional	way.	Automatic	differentiation	can	be	faster.	We	can	even	use
automatic	differentiation	to	calculate	gradients	that	have	no	analytic	form:
the	function	being	differentiated	can	include	nearly	any	computation,
including	those	not	expressible	in	mathematical	notation.	Automatic
differentiation	is	not	numerical	differentiation;	it’s	not	a	finite-difference
calculation.	Neither	is	it	symbolic	differentiation,	as	explored	in	Chapter	12.
It	applies	knowledge	of	calculus,	such	as	the	chain	rule	for	derivatives,	with
knowledge	of	the	derivatives	of	specific	functions	and	numerical	techniques
to	differentiate	efficiently	and	accurately.

ML	uses	automatic	differentiation	to	guide	its	models	in	the	direction	of
the	correct	solutions,	and	it’s	used	within	the	SciML	machinery	in	a	similar
way.	We	can	also	use	it	explicitly	for	efficient	calculations	of	derivatives	in



mathematical	models,	as	shown	in	“Calculating	Forces	from	Potentials”	on
page	408.

Differentiating	with	ForwardDiff
We	can	meet	our	automatic	differentiation	needs	in	this	chapter	with	the
derivative()	function	from	the	ForwardDiff	package,	which	I’ll	assume	has	been
imported	in	the	following	examples.	Its	use	is	simple:	we	supply	a	function
and	a	value,	and	ForwardDiff.derivative()	returns	the	derivative	of	the	function
evaluated	at	the	supplied	value:

julia> ForwardDiff.derivative(sin, 0.0)
1.0

The	result	is	correct:	the	derivative	of	sin(x)	is	cos(x),	and	cos(0)	=	1.
The	ForwardDiff.derivative()	function	can	also	handle	functions	defined	in

Julia	that	may	contain	almost	any	type	of	computation:

julia> function fdst(x)
           (x - floor(x))^2 / ceil(x)
       end
fdst (generic function with 1 method)

julia> plot(fdst, 0, 5; label="fdst(x)", xlabel="x", lw=2);

julia> plot!(x -> ForwardDiff.derivative(fdst, x); label="fdst'(x)", lw=2, ls=:dash)

The	floor()	and	ceil()	functions	round	their	arguments	to	the	closest
smaller	or	larger	whole	number.	The	fdst()	function	defined	in	the	example
is	not	something	that	we	can	look	up	in	a	table	of	derivatives	or	handle	with
the	familiar	techniques	of	calculus,	but	Julia’s	automatic	differentiation
routine	calculates	the	derivative	correctly.	Figure	13-1	shows	the	result.



Figure	13-1:	Automatic	differentiation	of	a	strange	function

In	Figure	13-1,	the	legend	uses	a	prime	to	indicate	a	derivative.	The
dashed	line	shows	the	result	of	the	automatic	differentiation	function,	which
is	not	troubled	by	the	existence	of	discontinuities.

Calculating	Forces	from	Potentials
In	physics,	the	force	on	a	body	is	the	negative	gradient	of	its	potential
energy.	If	the	potential	energy	depends	on	only	one	variable,	this	is	simply
the	negative	of	its	derivative	with	respect	to	that	variable.	Let’s	revisit	the
finite-angle	pendulum	problem	from	Chapter	9.

Listing	13-1	recapitulates	the	problem	in	one	place	for	convenience.



   using ForwardDiff
   using DifferentialEquations
   const L = 1.0
   const g = 9.8
   const m = 1.0

➊ function ppot(θ)
       return m*g*L*(1-cos(θ))
   end

   function pendulum!(du, u, p, t)
       L, g = p
       θ, ω = u
       du[1] = ω
    ➋ du[2] = -ForwardDiff.derivative(ppot, u[1])/m
   end

   function pendulumF!(du, u, p, t)
       L, g = p
       θ, ω = u
       du[1] = ω
       du[2] = -g/L * sin(θ)
   end
   p = [L, g] #  <- Parameters

   u0 = [deg2rad(175), 0]
              #  θ   ω  <- Initial conditions

   tspan = (0, 20)

   prob = ODEProblem(pendulum!, u0, tspan, p)
   probF = ODEProblem(pendulumF!, u0, tspan, p)

➌ sol5d = solve(prob)
   sol5dF = solve(probF)

Listing	13-1:	Revisiting	the	finite-angle	pendulum

Listing	13-1	contains	something	extra,	however:	the	ppot()	function,
which	gives	the	gravitational	potential	energy	of	the	pendulum	as	a	function
of	height	➊.	The	pendulum!()	function	now	sets	up	the	problem	using
automatic	differentiation	to	calculate	the	(negative)	derivative	of	the
potential	➋	to	derive	the	force,	rather	than	using	the	force	function	directly.
A	second	function,	pendulumF!(),	sets	up	the	problem	as	before,	using	the	force
function.	We	proceed	just	as	we	did	in	Chapter	9,	but	we	find	two	numerical
solutions:	once	using	the	potential	➌	and	again	using	the	force.

Figure	13-2	compares	the	two	methods	of	solution.



Figure	13-2:	The	finite-angle	pendulum	computed	two	ways

The	two	solutions	agree	exactly.	Clearly	it	wasn’t	necessary	to	reach	for
the	ForwardDiff	package	to	handle	this	problem,	but	we	did	so	to	verify	that	it
works	as	expected.	When	applying	a	new	technique,	it’s	essential	to	test	it	on
a	relatively	simple	problem	with	a	known	solution	first,	to	gain	confidence	in
our	understanding	of	how	to	use	it,	and	to	confirm	that	we	understand	how
it	works.

Physicists	usually	think	in	terms	of	potentials	rather	than	forces,	so	when
conducting	numerical	experiments,	we’re	more	likely	to	try	different
potentials	rather	than	tweak	the	force	function	directly.	Having	a	solution
program	that	differentiates	the	potential	for	us	is	more	convenient	than



deriving	a	new	force	field	at	each	iteration.	Also,	the	potential	functions	we
work	with	have	a	simpler	form	than	the	force	functions	derived	from	them.
This	is	the	case	in	the	next	example.

Imagine	that	we’ve	discovered	a	new	particle	with	a	potential	that	is
strongly	repulsive	at	short	range,	has	a	well	at	a	particular	distance,	and	is
weakly	repulsive	at	longer	ranges.	The	potential

where	r	is	the	distance	from	the	particle,	has	these	properties,	as	shown	in
Figure	13-3.

Figure	13-3:	The	potential	of	an	imaginary	particle



Figure	13-3	shows	the	potential	well	at	r	≈	1.3.	This	is	a	location	at	which
an	interacting	particle	can	be	trapped	if	it	lacks	the	energy	to	escape.

The	system	will	contain	two	of	these	particles,	fixed	at	r	=	0	and	r	=	20.
We’ll	place	a	moving	particle	between	them,	and	use	units	where	its	mass	is
1.	Figure	13-4	shows	the	combined	potential	of	the	two	fixed	particles.

Figure	13-4:	The	total	potential	of	two	imaginary	particles

We’ll	insert	the	moving	particle	into	the	system	at	r	=	5.0,	with	an	initial
velocity	of	0.2035.	This	positive	velocity	starts	the	particle	moving	to	the
right	at	t	=	0.	With	a	zero	initial	velocity,	it	would	oscillate	within	the
shallow	well	centered	on	x	=	10,	between	x	=	5	and	x	=	15.	Its	particular
initial	velocity	gives	the	particle	barely	enough	energy	to	surmount	the
potential	hill	near	x	=	16.

In	Listing	13-2,	we	proceed	as	in	the	revisited	pendulum	problem	in



Listing	13-1.

   using DifferentialEquations
   using ForwardDiff

   U(r) = exp(-(exp((-0.4*(r-1)^2))))/sqrt(r+1)

   function particle!(du, u, p, t)
       x1, x2 = p
       r, v = u
       du[1] = v
    ➊ du[2] = -ForwardDiff.derivative(U, abs(r - x1)) +
                ForwardDiff.derivative(U, abs(r - x2))
   end

➋ p = [0.0, 20.0]
➌ u0 = [5.0, 0.2035]

   tspan = (0, 650)

   prob = ODEProblem(particle!, u0, tspan, p)
   sol = solve(prob)

Listing	13-2:	Solving	for	the	motion	between	two	imaginary	particles

We	derive	the	forces	by	applying	automatic	differentiation	to	the
potential	function,	which	is	the	sum	of	the	two	contributions	from	the	two
fixed	particles	➊,	evaluating	the	derivatives	at	the	distance	from	each
particle.	The	p	array	holds	the	positions	of	these	two	particles	➋,	and	the	u0
array	contains	the	initial	position	and	initial	velocity	of	the	moving	particle
➌.	After	establishing	a	time	span	for	the	solution,	we	define	the	ordinary
differential	equation	(ODE)	problem	and	store	its	solution	in	sol	as	before.

A	first	attempt	at	a	solution	is	shown	in	Figure	13-5,	which	shows	the
position	of	the	moving	particle	as	a	function	of	time.



Figure	13-5:	An	inaccurate	solution

We	extract	the	position	variable	from	the	solution	as	explained	in
Chapter	9.

Scientists	should	always	cast	a	critical	eye	over	purported	numerical
solutions	to	differential	equations.	Our	first	instinct	should	be	to	examine
the	output	of	the	solver	in	light	of	everything	we	know	about	how	the
solution	should	behave.	In	this	case,	we	know	that	the	solution	should	be
periodic,	as	nothing	in	the	definition	of	the	problem	can	add	or	remove
energy.	The	result	in	Figure	13-5	is	clearly	not	accurately	periodic.

The	DifferentialEquations	package	provides	many	options	for	solution
methods	and	exposes	several	parameters	for	tweaking	the	behavior	of	the



solvers.	See	“Further	Reading”	on	page	427	for	a	link	to	the	relevant	part	of
the	documentation.	As	the	differential	equation	set	up	in	Listing	13-2	is	not
of	a	difficult	type,	we	can	probably	stick	with	the	default	solver.	The
accuracy	issue	is	most	likely	caused	by	the	nature	of	the	potential	and	the
initial	velocity,	which,	as	mentioned,	is	near	a	critical	value	that	determines
whether	the	particle	will	surmount	a	local	potential	maximum.	This	suggests
that	simply	applying	an	error	bound	may	be	sufficient.	The	reltol	parameter,
supplied	as	a	keyword	argument	to	solve(),	adjusts	the	adaptive	timestepping
as	needed	to	limit	the	local	error	to	the	value	that	we	supply,	as	described	in
“Parametric	Instability”	on	page	300.	Its	default	is	0.001,	which	is	probably
not	stringent	enough	for	this	problem.	Smaller	changes	in	the	initial	velocity
have	a	large	effect	on	the	particle’s	motion.	If	we	try	again	using	sol =
solve(prob; reltol=1e-6),	we	get	the	solution	shown	in	Figure	13-6.



Figure	13-6:	An	accurate	solution

The	new	solution	appears	to	be	accurately	periodic.	Furthermore,
reducing	reltol	further	doesn’t	change	the	solution,	which	supplies	some
reassurance	that	it’s	converged	to	the	right	answer.

The	derivative	of	U	happens	to	be

which	would	be	somewhat	more	annoying	to	work	with	directly.



Probabilistic	Programming
This	section	introduces	the	Turing	package	through	several	examples.	This
package	allows	us	to	infer	likely	causes	given	observed	effects.	We’ll	assume
some	comfort	with	several	of	the	ideas	discussed	in	Chapter	10—in
particular,	probability	and	probability	distributions.	We’ll	need	to	be
familiar	with	these	ideas	to	understand	the	output	from	Turing	and	to
interpret	its	results.

Testing	for	Fairness	of	a	Coin
This	simple	example	introduces	the	basic	concepts	and	procedures	for	using
Turing	in	probabilistic	programming.

Suppose	we	flip	a	coin	L	number	of	times	and	observe	that	we	get	a	total
of	Nheads	heads.	We	want	to	assess	whether	what	we	observed	shows	that
the	coin	is	fair	or	not,	where	fair	means	that	the	probability	of	coming	up
heads	is	1/2,	or	very	close	to	it.	This	is	the	type	of	question	that	probabilistic
programming	claims	to	be	able	to	answer:	given	an	effect,	or	a	set	of
observations,	what	was	the	cause?	Here	the	effect	is	the	proportion	of	heads,
and	the	cause	is	the	probability	of	heads.

NOTE

I’m	cognizant	that	the	foregoing	brief	analysis	may	not	please	everyone,	but	wish
to	avoid	becoming	mired	in	metaphysics.	The	actual	causes	of	our	observations
will	be	the	physical	details	of	the	coin’s	construction	and	the	method	of	tossing.
The	probability	of	heads	represents	a	summary	of	the	cumulative	effect	of	this
myriad	of	unknown	details;	the	description	of	cause	as	a	probability	reflects	our
incomplete	knowledge.

The	first	step	in	using	Turing	is	to	construct	a	probabilistic	model
describing	the	probability	distributions	of	each	of	the	random	variables	in
the	problem.	For	some	variables,	these	distributions	are	unknown,	in	which
case	we	need	to	assume	something	reasonable,	such	as	a	uniform	or	normal
distribution	that	includes	all	possible	values,	perhaps	centered	on	the	value
that	we	think	is	most	likely.	For	others,	the	description	of	the	problem
implies	a	particular	distribution,	one	that	is	usually	parameterized	by
observations	or	the	values	of	some	of	the	other	variables.



In	this	example	we	have	one	unknown	random	variable,	Pheads.	We’ll
assume	that	it	can	have	any	value	from	0	to	1,	uniformly	distributed.	This
assumption	means	that	we	don’t	have	any	a	priori	belief	about	the	nature	of
the	coin.	If	we	had	reason	to	think	that	it	was	almost	certainly	fair,	we	could
instead	assert	that	it	was	normally	distributed	with	a	mean	of	1/2	and	a	small
variance.

In	Turing	models,	we	represent	assertions	about	the	distributions	of
random	variables	using	the	~	operator.	Our	assumption	about	the
distribution	of	the	probability	of	heads	takes	the	form	Pheads ~ Uniform(0, 1).
The	Uniform()	function	comes	from	Distributions.jl,	which	Turing	automatically
imports	(see	“Distributions”	on	page	321).

Listing	13-3	shows	the	complete	Turing	model.

julia> using Turing, StatsPlots

julia> @model function coin(Nheads, L)
           Pheads ~ Uniform(0, 1)
        ➊ Nheads ~ Binomial(L, Pheads)
       end;

Listing	13-3:	A	simple	probabilistic	program

After	importing	Turing	and	StatsPlots,	which	will	be	useful	for	visualizing
the	output,	we	use	the	@model	macro	from	Turing	to	define	the	model.	We	can
call	the	function	that	@model	acts	on	anything	we	want;	the	macro	understands
the	~	operator	and	transforms	the	function	into	a	Turing	model.

The	inputs	are	the	observed	number	of	heads	and	L,	the	total	number	of
flips.	As	mentioned,	we	assume	a	uniform	distribution	for	Pheads,	the	quantity
that	we’re	trying	to	infer.	The	number	of	heads	observed	when	we	flip	a	coin
L	times	is	a	random	variable	that	we	know	has	a	binomial	distribution
parametrized	by	L	and	Pheads	➊	(see	“Further	Reading”	on	page	427	for	a	link
to	a	brief	introduction).

To	understand,	in	outline,	how	Turing	carries	out	its	inductive	process	to
infer	the	unknowns	in	the	model	(Pheads	in	this	case)	from	the	observations,
we’ll	imagine	how	we	might	do	it	manually.	For	the	simple	problem	here,	we
might	choose	a	series	of	Pheads	values	from	0	to	1,	either	deterministically	or
randomly,	perhaps	using	rand().	For	each	of	these	values	for	Pheads,	we	can
calculate	the	expectation	value,	or	mean,	of	Nheads	from	its	binomial
distribution.	The	expectation	value	closest	to	the	observed	value	of	Nheads	is



our	inferred	value	for	Pheads.
This	inference	procedure	would	be	fairly	efficient	because	we	have	a

simple	formula	for	the	mean	of	the	binomial	distribution.	If	we	were	dealing
with	less	tractable	distributions,	including	ones	depending	on	many
parameters,	each	with	its	own	distribution,	the	only	way	to	extract	the
expectation	value	would	be	through	the	numerical	experiment	of	sampling
from	the	distribution.	As	pointed	out	in	“Random	Numbers	in	Julia”	on
page	307,	the	rand()	function	allows	us	to	sample	directly	from	a	distribution.
However,	as	we’ll	see	soon,	a	more	realistic	problem	may	include	thousands
of	random	variables	and	thousands	of	distributions.	Naive	sampling	from
each	of	them	would	take	a	prohibitively	long	time.

This	is	the	problem	that	Turing	solves.	It	allows	us	to	do	no	more	than	tell
it	what	the	probability	distributions	are,	then	it	samples	from	them
efficiently,	calculates	expectation	values	as	needed,	and	reports	the	results
and	their	uncertainties	and	error	estimates.	We	won’t	go	into	the	details	of
how	Turing	accomplishes	this	feat,	except	to	say	that	it	implements	the
technology	of	Markov	chain	Monte	Carlo	(MCMC)	sampling,	a	starting
point	for	readers	who	are	interested	in	investigating	the	theoretical
background.

To	tell	Turing	to	generate	a	report	about	its	inferences,	we	issue	one
command	using	its	sample()	function:

julia> flips = sample(coin(60, 100), SMC(), 1000)

Here	coin()	is	the	model	function	from	Listing	13-3.	Its	arguments	are	the
number	of	heads	and	the	total	number	of	flips—in	this	case	60	heads	out	of
100	coin	tosses.	The	next	argument	selects	a	sampling	strategy	from	among
the	handful	supplied	by	the	Turing	package.	The	initials	SMC	stand	for
sequential	Monte	Carlo,	which	performs	well	on	simple	problems.	The
choice	of	sampler	can	be	a	matter	of	trial	and	error;	different	samplers	are
best	suited	to	different	problems.	(See	“Further	Reading”	on	page	427	for
links	to	some	documentation	for	Turing’s	samplers.)	The	final	argument,	1000,
is	the	number	of	sampling	experiments	to	conduct.	Each	one	produces	an
estimate	for	Pheads,	and	Turing	reports	the	mean	of	these	estimates,	which	is	its
most	likely	value,	as	shown	in	Listing	13-4.

Chains MCMC chain (1000×3×1 Array{Float64, 3}):



Log evidence      = -4.5014682572661195
Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 12.73 seconds
Compute duration  = 12.73 seconds
parameters        = Pheads
internals         = lp, weight

Summary Statistics
  parameters      mean       std   naive_se      mcse        ess      rhat   ess_per_sec
      Symbol   Float64   Float64    Float64   Float64    Float64   Float64       Float64

      Pheads    0.6024    0.0460     0.0015    0.0023   410.5088    1.0002       32.2499

Quantiles
  parameters      2.5%     25.0%     50.0%     75.0%     97.5%
      Symbol   Float64   Float64   Float64   Float64   Float64

      Pheads    0.5058    0.5719    0.6092    0.6319    0.6862

Listing	13-4:	The	report	from	Turing

The	report,	which	appears	after	12.73	seconds	on	my	laptop,	contains	a
lot	of	information,	but	only	a	few	numbers	are	essential	for	us.	Under	Summary
Statistics,	the	Symbols	are	the	random	variables	whose	inferred	values	we	want:
in	this	case,	only	Pheads.	The	best	guess	that	Turing	has	for	Pheads	is	0.6024.
Another	number	to	keep	an	eye	on	is	rhat,	which	is	1.0002	in	this	example.	If
this	number	is	far	from	1.0,	the	sampling	process	did	not	converge	properly,
and	we	need	to	try	a	different	sampler	or	alter	the	controls	passed	to	the
sampler,	if	it’s	one	that	accepts	parameters.

Now	we	can	think	about	addressing	the	question	implied	in	the	title	of
this	section:	is	the	coin	fair?	We	can	gain	some	insight	by	looking	at	the
distribution	of	the	1,000	inferences	for	Pheads	resulting	from	the	sampling
procedure.	The	histogram()	function	(see	“Distributions”	on	page	321)	gains
the	power	to	plot	this	with	a	simple	call	to	histogram(flips; normalize=true)
courtesy	of	the	Turing	and	StatsPlots	packages.	We’ll	plot	the	histogram	with	a
normal	distribution	curve	on	the	same	graph	with	the	following:

julia> histogram(flips; normalize=true)
julia> plot!(Normal(0.6024, 0.0460); lw=2)

The	parameters	in	the	normal	distribution,	plotted	in	the	second	line,	are
the	mean	and	standard	deviation	taken	from	the	report	in	Listing	13-4.
Figure	13-7	shows	the	result,	where	we	can	see	that	the	sampling



distribution	from	Turing	is	quite	a	good	approximation	to	the	normal
distribution	with	the	parameters	that	it	reports.

Figure	13-7:	The	distribution	of	inferences	for	Pheads

Why	should	the	distribution	of	the	mean	values	of	Pheads	be	normal?	After
all,	we	set	Pheads	up	with	a	uniform	distribution	in	the	model.	The	answer	is
that	the	distribution	in	Figure	13-7	is	the	distribution	of	mean	values	of	the
random	variable	Pheads.	As	demonstrated	in	“The	Normal	Distribution”	on
page	323	(using	the	same	uniform	distribution),	the	distribution	of	the
means	will	be	normal	(Gaussian).	This	will	be	true	regardless	of	the
underlying	distribution	of	the	variable	itself,	which	is	an	important	theorem
in	probability	theory	and	the	fundamental	reason	for	the	ubiquity	of	the
normal	distribution.

We	can	apply	any	criterion	we	choose	to	decide	whether	this	coin	is	fair
after	examining	the	sampling	results.	Although	the	most	likely	value	for	the
probability	of	heads	is	very	close	to	0.6,	strongly	suggesting	that	we	have	a
biased	coin,	it’s	possible	that	the	coin	is	fair.	We	can	estimate	the	probability
that	Pheads	is	1/2	directly	from	the	normalized	histogram.	The	two	bars
surrounding	0.5	on	the	horizontal	axis	have	an	area	of	about	(0.52	-	0.48)	×
0.8	=	0.32,	yielding	a	probability	of	3.2	percent	that	the	coin	is	fair.	The
value	of	0.8	comes	from	visually	estimating	the	average	height	of	the	two
relevant	bins.	We	can	also	calculate	this	from	the	normal	distribution:



julia> cdf(Normal(0.6024, 0.0460), 0.52) - cdf(Normal(0.6024, 0.0460), 0.48)
0.032725277247186525

The	cdf()	function,	which	stands	for	cumulative	density	function,	returns	the
integral	of	the	distribution	supplied	in	the	first	argument	from	negative
infinity	to	the	value	supplied	in	the	second	argument.	Therefore,	to	extract
the	probability	that	a	random	variable	governed	by	the	distribution	lies
between	two	values,	we	need	merely	to	subtract	the	results	from	two	calls	to
cdf().	The	value	of	3.3	percent	agrees	pretty	well	with	our	estimate	for	the
same	interval	from	the	histogram.

This	coin	has	only	a	3.3	percent	chance	of	being	fair.	Is	that	strong
enough	evidence	to	convict	it	of	bias?	That’s	up	to	us.

Flipping	the	coin	100	times	provides	pretty	strong	evidence	of	its	shady
character.	Intuitively,	we	understand	that	if	we	had	flipped	it	only	10	times,
and	happened	to	observe	six	heads,	that	wouldn’t	be	strong	evidence	of	any
non-fairness	in	the	coin.	Similarly,	an	observation	of	600	heads	after	tossing
the	coin	1,000	times	would	be	pretty	conclusive.

We	can	see	the	results	of	these	two	scenarios	by	calling	sample()	twice	and
passing	the	result	directly	to	histogram():

julia> histogram(sample(coin(6, 10), SMC(), 1000); normalize=:probability, fc=:lightgray)
julia> histogram!(sample(coin(600, 1000), SMC(), 1000); normalize=:probability, fc=:gray)

This	is	a	quick	way	to	compare	the	distributions	when	we’re	not
interested	in	the	detailed	report.

NOTE

Because	the	results	returned	by	sample()	are	generated	partly	through	random
sampling,	the	details	will	be	different	every	time.	Everyone	running	the	code
samples	in	this	section	will	observe	slightly	different	distributions	and	means,
although	the	over-all	conclusions	should	be	invariant.	In	an	important	problem,	a
good	practice	would	be	to	run	more	than	one	sampling	experiment,	try	different
samplers,	and	perhaps	vary	some	of	the	details	in	the	model	concerning	assumed
distributions.

Figure	13-8	shows	the	result.



Figure	13-8:	Weak	and	strong	evidence

The	lighter	histogram,	showing	the	inferences	from	10	flips,	clearly
indicates	that	we	have	no	evidence	for	bias	in	the	coin.	It’s	about	as	likely
that	Pheads	is	1/2	as	it	is	6/10.	However,	the	observation	using	1,000	flips	is
unambiguous:	600	heads	in	that	experiment	makes	it	nearly	impossible	for
the	coin	to	be	fair.	The	darker	gray	overlay	of	the	second	histogram	shows	a
narrow	distribution	around	Pheads	=	0.6.

Inferring	Model	Parameters	from	Series	Observations
In	most	applications	of	probabilistic	programming,	scientists	are	interested
in	inferring	the	causes	of	a	series	of	observations	taken	over	time,	rather	than
merely	a	single	number.	We	can	extend	the	approach	in	the	previous	section
to	handle	time	series	by	considering	the	data	gathered	at	each	point	in	time
to	be	a	separate	measurement	with	a	distribution	around	some	predicted
value.	The	values	can	be	predictions	from	nearly	any	type	of	model,	as	long
as	we	can	express	it	as	a	Julia	function.

A	Simple	Mathematical	Model



To	demonstrate	the	approach,	we’ll	first	consider	the	problem	of	fitting	a
pair	of	parameters	in	a	simple	expression	that	we	assume	to	be	the	cause	of	a
series	of	observations.	The	model	is	a	sine	function	and	the	two	unknown
parameters	are	its	amplitude	A	and	its	frequency	f,	as	shown	in	Listing	13-5.

const t = 0:π/50:4π;
A0 = 3.4; f0 = 2.7;
data = A0*sin.(f0*t) + 0.5 .* randn(length(t));

@model function wave(data)
    f ~ Uniform(0, 3)
    A ~ Uniform(0, 4)
 ➊ prediction = A*sin.(f*t)
    for i in eachindex(t)
     ➋ data[i] ~ Normal(prediction[i], 0.5)
    end
end;

Listing	13-5:	The	sine	function	with	unknown	frequency	and	amplitude	as	a	model

After	defining	a	series	of	times,	we	pick	values	for	the	A	(amplitude)	and	f
(frequency)	parameters.	We	use	these	to	generate	some	simulated
observations,	containing	normally	distributed	errors,	that	we	store	in	data.
Our	plan	is	to	pretend	we	don’t	know	the	values	of	A	and	f	and	to	use	the
data,	along	with	the	assumed	sinewave	dependence,	to	infer	their	values.

In	the	model,	we	assert	a	priori	uniform	distributions	for	the	frequency
and	amplitude	that	establish	limits	for	their	possible	values.	For	each
possible	set	of	values,	we	have	a	prediction	➊	for	the	time	series	that	would
result.	We	consider	the	data	passed	to	the	model	to	be	a	set	of	physical
measurements,	so	we	assume	that	the	observation	at	each	time	is	normally
distributed	around	the	“true”	(predicted)	value	at	that	time,	with	a	standard
deviation	of	0.5	➋.

The	inference	through	sampling	proceeds	as	in	the	previous	section.
However,	the	SMC	sampler	seems	to	work	poorly	for	this	class	of	problems.
The	MH	sampler	(for	Metropolis-Hastings)	works	far	more	reliably,	and	it’s
quite	fast	as	well,	but	is	a	poor	performer	in	other	problems.	(As	mentioned
earlier,	we	may	need	to	experiment	with	a	variety	of	sampling	algorithms
and	their	input	parameters.)	Listing	13-6	shows	the	sampling	command	and
its	truncated	output.

julia> wavesample = sample(wave(data), MH(), 1000)
Chains MCMC chain (1000×3×1 Array{Float64, 3}):



Iterations        = 1:1:1000
Number of chains  = 1
Samples per chain = 1000
Wall duration     = 0.92 seconds
Compute duration  = 0.92 seconds
parameters        = f, A
internals         = lp

Summary Statistics
  parameters      mean       std   naive_se      mcse       ess      rhat   ess_per_sec
      Symbol   Float64   Float64    Float64   Float64   Float64   Float64       Float64

           f    2.6876    0.0247     0.0008    0.0039    8.9062    1.1077        9.7230
           A    3.4323    0.3867     0.0122    0.0681    2.5378    2.1700        2.7706

Listing	13-6:	Inferring	the	values	of	parameters

The	sampler	returns	reasonable	results	in	less	than	one	second.	This	is
impressive,	considering	that	the	algorithm	is	sampling	two	parameters	1,000
times	and	using	200	data	points,	each	with	its	own	distribution,	to	infer	the
final	distributions	of	A	and	f	and	their	expectation	values.

Let’s	visualize	the	inferred	solution	using	the	returned	means	of	A	and	f
superimposed	on	the	simulated	data	and	what	we	know	is	the	true	solution:

julia> plot(t, A0*sin.(f0*t); lw=2, legend=false, ylabel="A(t)", xlabel="t")
julia> plot!(t, data)
julia> A1 = 3.4323; f1 = 2.6876;
julia> plot!(t, A1*sin.(f1*t); ls=:dot)

In	the	first	two	lines,	we	plot	the	model	with	a	thick	line	and	the	noisy
data	with	a	thinner	line.	The	final	plot	command	plots	a	sinewave	using	the
inferences	for	A	and	f	as	a	dotted	line.	Figure	13-9	shows	the	combined	plot.



Figure	13-9:	Model	parameters	recovered	from	noisy	data

Figure	13-9	shows	how	the	correct	signal	was	recovered	from	the	noisy
observations.	The	periodic	nature	of	the	model	means	that	the	slight	error	in
the	inferred	frequency	will	cause	the	curves	to	diverge	further	at	later	times.

An	ODE	Model
The	model	used	for	generating	the	prediction	need	not	be	a	known	function;
it	can	be	a	set	of	differential	equations.	This	is	possible	because	Turing	and
DifferentialEquations	are	composable,	another	benefit	of	Julia’s	type	system.
The	combination	is	immensely	powerful,	and	opens	up	new	arenas	for
research.	In	science	our	models	often	take	the	form	of	differential	equations



that	encode,	in	general	terms,	our	hypotheses	about	how	the	system	works.
Some	of	the	details	of	the	system	may	remain	as	parameters	with	unknown,
or	partially	known,	values.	Probabilistic	programming,	using	the	general
procedure	outlined	in	“Inferring	Model	Parameters	from	Series
Observations”	on	page	419,	allows	us	to	infer	the	most	likely	values	of	these
parameters	and	then	check,	quantitatively,	how	well	our	purported	model
performs.

For	example,	we	may	measure	the	trajectory	of	a	cannonball	and	think	we
know	that	its	path	is	governed	by	Newton’s	laws	of	motion	and	the	forces	of
gravity	and	air	resistance.	But	we	might	not	know	the	correct	value	of	the
gravitational	acceleration	on	our	planet	or	the	coefficient	of	drag	for	the
cannonball	in	its	atmosphere.	Assuming	our	differential	equations	are
correct,	we	can	use	Turing	and	DifferentialEquations	to	infer	the	values	of	those
two	numbers	from	the	observed	trajectory,	and	then	plug	them	back	into	the
model	to	see	whether	we	can	reproduce	the	data.	This	approach	eliminates	a
huge	amount	of	trial	and	error,	and	it	lets	us	iterate	fluidly	over	variations	in
our	models.

Returning	to	the	parametric	instability	problem	from	Chapter	9,	let’s	go
backward:	assume	that	we	know	we	have	a	pendulum	in	a	gravitational	field,
with	a	varying	string	length,	and	that	we	know	the	values	for	gravity,	the
pendulum	mass,	and	the	mean	length	of	the	string,	but	that	the	frequency
and	amplitude	of	the	oscillation	in	the	string’s	length	are	unknown.	We	will,
however,	assume	that	the	function	defining	that	oscillation	is	a	sin(t),	where,
as	before,	t	is	time.

This	example	will	show	how	we	can	work	backward	from	data	about	the
pendulum’s	behavior	to	an	estimate	of	the	driving	frequency	and	amplitude,
using	the	assumption	of	the	underlying	physical	model	behind	the	data.
Naively,	we	might	approach	this	problem	by	solving	the	differential
equation,	using	the	techniques	from	Chapter	9,	multiple	times,	with	various
values	of	the	unknown	parameters,	until	we	hit	upon	a	solution	that	is	close
enough	to	the	data.	But	this	process	will	be	computationally	expensive	and
may	not	provide	systematic	knowledge	of	the	uncertainty	in	the	final	result.

Listing	13-7	shows	the	problem	set	up	for	solution	by	the	Differential
Equations	package,	assembled	here	for	convenience	from	Listings	9-8	and	9-9.

   using DifferentialEquations



   function pendulum!(du, u, p, t)
       L, g = p
       θ, ω = u
       du[1] = ω
       du[2] = -g/L(t) * sin(θ)
   end

➊ g = 9.8; A = 0.2; f = 0.97
   L(t) = 1.0 + A * cos(f*2*sqrt(g)*t)
   p = [L, g]

   u0 = [deg2rad(5), 0]
   #  θ   ω  <- Initial conditions

   tspan = (0, 80)

   sol = solve(ODEProblem(pendulum!, u0, tspan, p); saveat=0.1)

Listing	13-7:	The	parametrically	driven	pendulum

In	this	example,	the	driving	frequency	is	set	to	3	percent	smaller	than	the
parametric	resonance	frequency	➊.

Before	we	proceed	to	apply	Turing	to	this	problem,	let’s	take	a	look	at	how
varying	the	f	and	A	values	affects	the	results.	First,	we’ll	plot	the	solution	at
resonance	and	slightly	“detuned,”	at	0.95	resonance:

g = 9.8; A = 0.2; f = 1.0
L(t) = 1.0 + A * cos(f*2*sqrt(g)*t)
p = [L, g]
plot(solve(ODEProblem(pendulum!, u0, tspan, p)); idxs=1,
     legend=false, ylabel="A(t)")

f = 0.95
L(t) = 1.0 + A * cos(f*2*sqrt(g)*t)
p = [L, g]
plot!(solve(ODEProblem(pendulum!, u0, tspan, p)); idxs=1, lw=2)

annotate!(40, 1, ("Thin line:\nparametric forcing at resonance", 8))
annotate!(40, -0.5, ("Thick line:\n5% detuning", 8))

Figure	13-10	shows	the	two	solutions.



Figure	13-10:	The	parametrically	driven	pendulum	at	two	driving	frequencies

As	Figure	13-10	makes	clear,	the	solution	is	quite	sensitive	to	the	driving
frequency.

Changing	the	driving	amplitude	also	has	a	strong	effect	on	the	solution.
Figure	13-11	shows	the	effect	of	two	different	forcing	amplitudes	at	the
same	frequency.



Figure	13-11:	The	parametrically	driven	pendulum	at	two	driving	amplitudes

Changing	the	forcing	amplitude	alone	changes	the	envelope	amplitude,
the	envelope	timescale,	and	the	frequency	of	the	response.

When	we	compare	these	solutions,	we	can	see	that	amplitude	and
frequency	are	interdependent.	It’s	not	a	simple	matter	to	infer	either	driving
parameter	from	the	response.	Let’s	see	how	well	probabilistic	programming
with	Turing	does	with	this	problem.	First	we’ll	define	a	model	with	A	and	f
uniformly	distributed	within	reasonable	intervals:

using Turing

@model function pdpen(observation)
    A ~ Uniform(0.0, 0.3)



    f ~ Uniform(0.9, 1.1)
    g = 9.8
    L(t) = 1.0 + A * cos(2*f*sqrt(g)*t)
    p = [L, g]
    prediction = Array(solve(ODEProblem(pendulum!, u0, tspan, p); saveat=0.1))[1, :]
    mstd = 0.1 * maximum(abs.(prediction))
    for i in eachindex(prediction)
        observation[i] ~ Normal(prediction[i], mstd)
    end
end

As	in	the	simple	sinewave	model,	we’ll	generate	some	noisy	simulated
data	from	the	solution	returned	by	DifferentialEquations	for	given	values	of	A
and	f,	and	then	use	the	Turing	model	to	try	to	infer	those	numbers	from	the
data.	The	program	in	the	following	listing	goes	through	this	procedure	for	a
small	set	of	values	for	A	and	f	and	plots	the	inferred	numbers	with	the	known
values:

plot(; xrange=(0, 0.3), yrange=(0.9, 1.1), legend=false,
       xlabel="A", ylabel="f")
for A in range(0.02, 0.25; length=3)
    for f in range(0.95, 1.05; length=3)
     ➊ L(t) = 1.0 + A * cos(2*f*sqrt(g)*t)
        p = [L, g]
     ➋ sol = solve(ODEProblem(pendulum!, u0, tspan, p); saveat=0.1)
        mstd = 0.1 * maximum(abs.(Array(sol)[1, :]))
        observation = Array(sol)[1, :] + mstd * randn(length(sol))
     ➌ psamples = sample(pdpen(observation), MH(), 3000)
        scatter!([A], [f]; mc=:lightgray, ms=9)
        scatter!([mean(psamples[:A])], [mean(psamples[:f])];
                 xerror=std(psamples[:A]), yerror=std(psamples[:f]),
                 mc=:black, shape=:hexagon, ms=9)
    end
end
plot!()

For	each	A,f	pair,	the	program	defines	a	forcing	function	➊	and	generates
a	solution	➋	from	the	differential	equation.	We	tell	the	solver	to	save
solution	points	at	regular	intervals	using	the	saveat	keyword	argument	and
scale	the	simulated	noise	to	the	amplitude	of	the	solution.	The	purpose	of
the	solution	is	to	generate	the	simulated	noisy	observations,	which	we	then
feed	to	the	sampler	➌.	The	next	command	places	a	mark	on	the	A-f	plane	of
the	plot	corresponding	to	the	true	values	of	A	and	f.	Then	we	place	a	mark
for	the	inferred	values,	with	error	bars	taken	from	the	standard	deviations	of
the	distributions	returned	by	sample().

We	can	access	the	sampling	results	for	individual	parameters	using



indexing	on	the	name	of	the	parameter	as	a	symbol,	so	psamples[:A]	is	an	array
of	all	3,000	values	for	A	in	the	distribution	generated	by	the	sampler.	The
mean	of	this	array	is	its	expectation	value	(and	the	value	printed	in	the	report
printed	in	the	REPL).	The	std()	function	calculates	the	standard	deviation	of
an	array,	returning	the	same	number	as	in	the	report	under	std.

Figure	13-12	shows	the	result.

Figure	13-12:	Inference	of	forcing	parameters	in	the	parametric	pendulum

The	experiment	works	well	using	3,000	samples;	however,	the	same
program	run	with	1,000	samples	performs	distinctly	worse.	Figure	13-12
shows	that	each	inferred	value	is	correct	within	its	reported	standard
deviation,	and	most	of	those	spreads	are	small.	Despite	the	complexity	and



sensitivity	of	this	problem,	Turing	and	DifferentialEquations	were	able	to	work
together	to	confirm	the	faithfulness	of	the	model	and	accurately	induce	the
correct	model	parameters.	Doubtless	with	further	tuning	of	the	sampling
method,	we	could	improve	the	results	even	further.

Conclusion
The	field	of	scientific	machine	learning	is	making	impressive	strides	and
expanding	rapidly	as	I	write	this.	Julia	users	are	perfectly	positioned	to	take
advantage	of	recent	research	in	this	field,	as	it	finds	application	in	the
packages	of	the	SciML	ecosystem.	Scientific	machine	learning	selects	some
of	the	technologies	developed	in	ML	that	can	be	fruitfully	applied	to	science
and	engineering	concerns.	A	survey	of	the	entire	field	would	be	a	book	in
itself.	In	this	chapter	we’ve	explored	a	few	central	ideas	and	applied	them	to
problems	that,	while	interesting	in	themselves,	are	simple	enough	not	to
obscure	the	working	of	the	SciML	machinery	with	too	much	incidental
detail.	These	ideas	and	techniques	can	be	applied	to	all	areas	of	quantitative
science.	This	is	an	exciting	field	to	follow.	Wherever	it	goes,	it	will	inevitably
become	a	pillar	of	computational	science.

FURTHER	READING

See	“The	Essential	Tools	of	Scientific	Machine	Learning
(Scientific	ML)”	by	Christopher	Rackauckas	for	an	introduction
to	existing	open	source	tools:	http://www.stochasticlifestyle.com/the-
essential-tools-of-scientific-machine-learning-scientific-ml/.
A	solid	mathematical	introduction	to	automatic	differentiation	is
available	at	http://www.ams.org/publicoutreach/feature-column/fc-
2017-12.
Here	is	a	hub	for	Julia’s	SciML	documentation:
https://docs.sciml.ai/.
For	a	description	of	the	various	solver	options	for	the	Differential
Equations.jl	package,	visit
https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/.

http://www.stochasticlifestyle.com/the-essential-tools-of-scientific-machine-learning-scientific-ml/
http://www.ams.org/publicoutreach/feature-column/fc-2017-12
https://docs.sciml.ai/
https://docs.sciml.ai/DiffEqDocs/stable/basics/common_solver_opts/


Details	on	the	binomial	distribution	can	be	found	at
https://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm.
Documentation	for	the	Turing	package	resides	at
https://turinglang.org/dev/docs/using-turing/get-started.
For	a	tutorial	on	the	use	of	Turing,	visit
https://turinglang.org/dev/docs/using-turing/guide.

https://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm
https://turinglang.org/dev/docs/using-turing/get-started
https://turinglang.org/dev/docs/using-turing/guide


14
SIGNAL	AND	IMAGE	PROCESSING

I	studied	Latin	in	high	school,	and	I	was	reading	stuff	from	Cicero.	And
that	signal	took	a	few	thousand	years	to	get	to	me.	But	I	was	still

interested	in	what	he	had	to	say.
—Seth	Shostak

This	chapter	contains	examples	from	problems	in	both	signal	and	image
processing.	The	two	subjects	are	usually	considered	germane	to	unrelated
areas	of	research:	signal	processing	interests	the	audio	or	electrical	engineer,
while	image	processing	is	relevant	to	biologists	and	astronomers.	However,
they	belong	together	because	they	use	many	of	the	same	techniques,	and	the
relevant	tools	have	the	same	mathematical	foundations.	For	many	purposes,
we	can	think	of	an	image	as	just	a	two-dimensional	signal,	and	apply	similar
algorithms	to	transform,	smooth,	filter,	and	more,	extending	the	single	time
dimension	to	two	(or	three)	space	dimensions.

We’ll	first	look	at	one-dimensional	signals,	considering	the	common	case
of	an	independent	coordinate	representing	time.	After	that,	we’ll	explore
Julia’s	packages	for	image	processing.

Signals	in	Time



Sound	comes	to	us	as	a	time-varying	air	pressure,	and	we	store	it	as	a	record
of	amplitude	versus	time,	where	the	amplitude	may	represent	direct
measurements	of	pressure	or	its	conversion	to	electrical	voltages	or	some
other	quantity	by	our	measuring	apparatus.	We’ll	explore	signal	processing
in	Julia	by	working	with	a	sound	from	nature.

Exploring	a	Sound	Sample
Our	real-life	sound	is	the	call	of	the	endangered	cactus	ferruginous	pygmy
owl	(Glaucidium	brasilianum	cactorum),	a	native	of	Arizona.	I	found	the	sound
sample	at	http://www.naturesongs.com/falcstri.xhtml#cobo	and	saved	it	on	disk
with	the	filename	cfpo1.wav.	The	sample	is	a	WAV	file:	a	common	file
format	for	audio	that	nearly	any	music	playback	or	sound	editing	software,
on	any	operating	system,	can	play.	Listening	to	the	sample	reveals	a	call
consisting	of	a	short,	medium-high-pitched	vocalization	repeated	about
three	times	per	second	for	about	12	total	seconds.

NOTE

WAV	files	are	often	described	erroneously	as	“uncompressed”	audio.	The	audio
data	they	contain	is	almost	always	compressed	using	one	of	a	handful	of	available
lossless	compression	algorithms	(similar	to	the	compression	used	in	the	ZIP
family	of	file	compression	utilities).	They	take	up	far	more	space	than	the	same
sound	compressed	using	a	perceptual	encoder	such	as	that	used	for	MP3	files,	but
such	files	are	not	useful	for	scientific	signal	processing	and	analysis.

In	a	Linux	terminal,	we	can	get	some	information	about	the	file	using	the
file	command:

$ file cfpo1.wav
cfpo1.wav: RIFF (little-endian) data, WAVE audio, Microsoft PCM, 8 bit, mono 8000 Hz

The	output	reflects	the	most	common	file	format;	the	data	is	little-endian
because	the	WAV	format	was	invented	at	Microsoft.	The	third	clause	names
the	compression	algorithm;	Microsoft	PCM	is	the	most	common.	The	rest
of	the	output	means	that	the	samples	were	saved	with	8	bits	of	precision,
providing	28	=	256	available	amplitude	levels	per	point,	and	that	we	have	one
channel	sampled	at	8,000	samples	per	second.

Back	in	the	Julia	REPL,	let’s	read	in	the	sample,	assign	it	to	cfpo,	and	plot

http://www.naturesongs.com/falcstri.xhtml#cobo


the	waveform:

julia> using SignalAnalysis, SignalAnalysis.Units, Plots

julia> cfpo = signal("cfpo1.wav");

julia> plot(cfpo)

First	we	import	two	convenient	packages	for	signal	analysis.	All	the	other
examples	in	this	section	assume	this	using	statement.	The	SignalAnalysis.Units
package	provides	time	and	frequency	unit	abbreviations,	and	a	handy	form	of
time-based	indexing	that	we’ll	use	later.

The	signal()	function	has	many	methods.	When	supplied	with	a	string,	it
loads	the	named	file	and	packages	the	data	into	a	type	defined	in	the
package.	The	SignalAnalysis	package	also	extends	Plots	to	be	able	to	plot
signals	directly.	Figure	14-1	shows	the	waveform	of	the	owl	call.



Figure	14-1:	The	call	of	the	cactus	ferruginous	pygmy	owl

As	the	sound	sample	contains	100,558	elements,	plotting	is	not
instantaneous.	The	plot	recipe	uses	information	about	the	sample	rate	to
create	a	correct	time	axis,	and	labels	the	axis	as	well.	The	signal()	function
rescales	the	8-bit	samples	to	Float64	numbers	ranging	from	–1.0	to	1.0.

The	SignalAnalysis	package	supplies	several	functions	for	extracting
information	about	the	signal.	The	following	are	the	most	important	of	these:

julia> framerate(cfpo)
8000.0f0

julia> nframes(cfpo)
100558



julia> duration(cfpo)
12.56975f0

The	term	nframes	refers	to	samples	and	duration()	reports	the	length	of	the
signal	in	seconds.

Figure	14-1	shows	the	three-chirps-per-second	structure	of	the	owl	call
clearly,	but	we	can’t	tell	what	note	the	owl	is	singing.	Let’s	zoom	in:

julia> one_chirp = plot(cfpo[2.05:2.25s]);

julia> chirp_zoomed = plot(cfpo[2.1:2.11s]);

julia> plot(one_chirp, chirp_zoomed; layout=(2, 1))

The	first	two	plot	statements	take	advantage	of	the	convenient	time-
based	indexing	that	the	SignalAnalysis	package	enables.	It	frees	us	from	having
to	convert	between	time	and	index	number	of	the	signal	data.	The	indexing
works	only	with	seconds	and	only	with	a	range	of	floats.	To	access	the	single
frame	at	two	seconds,	we	can	write	cfpo[2.0:2.0s].

Figure	14-2	shows	the	combined	plot:	two	segments	of	the	signal	at	two
different	scales.	The	plot	recipe	always	labels	the	plots	beginning	at	t = 0,	but
we	can	always	define	xticks	to	reference	the	original	time	interval	if	desired.



Figure	14-2:	Two	magnified	segments	of	the	owl	call

The	bottom	plot	in	Figure	14-2	is	in	the	middle	of	one	of	the	chirps,	and
is	sufficiently	magnified	to	allow	us	to	count	cycles	easily.	There	appear	to
be	about	3.25	cycles	in	2.5	ms	(most	easily	counted	from	t	=	5.0	ms,	where	a
peak	of	the	wave	happens	to	align	exactly	with	a	grid	line,	to	t	=	7.5	ms),
which	is	a	frequency	of	3.25/2.5e–3	=	1,300.0	Hz,	which	is	very	close	to	the
musical	note	E6.

Analyzing	Frequencies
One	of	the	senses	of	the	word	analysis	is	the	separating	of	something	into
component	parts.	We’ll	perform	two	types	of	frequency	analysis	of	signals.
The	first	type	converts	the	signal,	a	function	of	amplitude	versus	time,	into	a
function	of	amplitude	versus	frequency.	This	is	the	purpose	of	the	Fourier
transform,	which	assumes	that	the	signal	is	periodic,	and	analyzes	it	into	a



sum	of	periodic	functions	(sines	and	cosines	of	various	amplitudes,	sines	or
cosines	of	various	phases	and	amplitudes,	or	complex	exponentials—all
equivalent	representations).	The	representation	as	a	sum	of	frequencies	is
the	signal’s	spectrum.	The	second	type	combines	temporal	and	frequency
information	into	a	spectrogram.	Here	we	no	longer	assume	that	the	signal	is
periodic.	The	spectrogram	shows	us	the	spectrum	as	it	varies	in	time.

The	SignalAnalysis	package	provides	several	plotting	routines	we	can	use	to
visualize	both	types	of	frequency	analysis.	The	psd()	function	plots	the	power
spectral	density	of	a	signal	based	on	its	Fourier	transform.	Its	interpretation	is
straightforward	when	applied	to	a	periodic	signal,	which	describes	the	owl
call	pretty	well:

julia> psd(cfpo; xticks=0:100:4000, xrot=90, lw=2)

Since	psd()	uses	the	Plots	package,	we	can	supply	the	familiar	keyword
arguments.	Figure	14-3	shows	the	spectrum.



Figure	14-3:	Fourier	spectrum	of	the	call	of	an	owl

The	spectrum	has	a	peak	just	barely	below	1,300	Hz,	which	agrees	with
our	estimate	from	counting	cycles	of	the	waveform.	We	can	also	see	peaks
close	to	the	second	and	third	harmonics	(twice	and	thrice	1,300	Hz).

Displays	such	as	Figure	14-3	are	useful	analytic	and	diagnostic	tools,	but
they	don’t	convey	a	full	idea	of	the	nature	of	the	signal	under	investigation.
We	can	see	that	the	signal	is	dominated	by	a	1,300	Hz	frequency,	with	two
strong	overtones,	but	there’s	no	hint	of	the	rapid	staccato	performance.

For	a	fuller	analysis,	we	turn	to	the	spectrogram.	The	SignalAnalysis
package	also	provides	a	function	to	create	these	visualizations	easily:

julia> specgram(cfpo; c=:grayC)

Figure	14-4	contains	the	spectrogram,	and	clearly	shows	the	frequency



distribution	of	energy	in	the	signal:	the	strong	component	near	1,300	Hz
and	the	two	higher	harmonics	at	lower	amplitudes.	We	can	also	see	the
temporal	structure;	the	chirps	repeating	at	about	three	times	per	second	are
obvious.

Figure	14-4:	Spectrogram	of	the	owl	call

Spectrograms	use	Fourier	transforms	and	a	window	sliding	over	the	signal
to	calculate	the	spectrum	as	it	evolves,	resulting	in	a	visualization	combining
frequency	and	time	information.	They’re	more	informative	than	a	psd()-type
plot	for	any	except	periodic	signals.	Practical	Fourier	transform	routines,
such	as	the	ones	used	by	psd(),	also	use	windowing,	but	for	the	purpose	of



eliminating	the	inevitable	discontinuities	at	the	edges	of	the	signal	and	the
resulting	“leakage”	of	spurious	high-frequency	components.

NOTE

This	section	presents	the	quickest	and	most	convenient	methods	for	signal
analysis,	with	an	emphasis	on	getting	to	the	visualizations	that	interest	most
scientists.	For	more	control,	or	to	obtain	direct	access	to	spectra,	import	the	DSP.jl
package.	The	SignalAnalysis	package	wraps	many	of	its	routines,	but	importing
DSP	grants	access	to	its	definitions	for	various	Fourier	transform	windows	and
other	details	that	we	can	invoke	with	keyword	arguments	to	the	higher-level
SignalAnalysis	routines	such	as	psd().

Now	that	we’ve	dealt	with	two	ways	to	examine	the	frequency	spectra	of
signals,	in	the	next	section	we’ll	explore	methods	for	transforming	the	signal
by	altering	the	spectrum.

Filtering
A	filter	in	the	context	of	signal	processing	is	a	circuit,	device,	or,	in	our	case,
a	computation,	that	attenuates	some	of	the	frequencies	present	in	a	signal.
Perhaps	the	most	familiar	examples	are	the	crossover	circuits	in	speakers	that
route	the	high	frequencies	to	the	tweeters	and	the	low	frequencies	to	the
woofers.

Filters	are	also	important	in	empirical	science—for	example,	in	reducing
noise	in	measurements.	Imagine	a	sensor	that	records	the	variations	in	depth
of	a	waterway.	We	might	be	interested	in	measuring	the	effect	of	tides,	and
detecting	any	long-term	change	in	the	average	depth.	These	changes	occur
on	the	timescales	of	hours	and	longer.	However,	the	measurements	will	be
polluted	by	the	more	rapid	changes	caused	by	wind,	weather,	and	passing
boats.	Using	filtering,	we	can	seek	to	erase	the	irrelevant	data	from	the	signal
by	eliminating	frequencies	faster	than,	say,	one	cycle	per	hour.

This	strategy	suggested	in	the	previous	paragraph	is	called	a	low-pass
filter,	because	it	attenuates	frequencies	above	a	specified	cutoff,	allowing
those	below	the	cutoff	to	pass.	An	example	of	a	high-pass	filter	would	be	the
crossover	circuit	leading	to	a	speaker’s	tweeter.

Another	type	of	filtering	common	in	scientific	instrumentation	is	a	notch



filter:	one	that	attenuates	frequencies	near	a	target	frequency.	Notch	filters
are	useful	for	eliminating	60	or	50	Hz	power	line	noise	from	instruments
through	which	the	signal	passes	(but	are	only	useful	if	the	signal	doesn’t
contain	information	near	the	power	line	frequency).

A	band-pass	filter	attenuates	anything	outside	a	narrow	band	around	a
target	frequency.

Making	Filters	with	fir()
The	SignalAnalysis	package	makes	it	easy	to	construct	any	of	these	types	of
filters	and	apply	them	to	signals.	In	each	case	we	begin	with	the	fir()
function	to	construct	the	filter.	Its	basic	use	involves	three	positional
arguments	and	an	optional	keyword	argument	named	fs,	giving	the	sampling
frequency	of	the	signal.

The	first	argument	is	an	integer	number	of	taps,	which	is	related	to	the
number	of	terms	retained	in	the	polynomial	that	describes	the	filter.
Essentially,	a	greater	number	of	taps	causes	the	filter	to	be	more	selective
and	its	response	to	be	smoother.	The	second	and	third	arguments	are	the
lower	and	upper	bounds	of	the	unfiltered	frequency	range.	If	we	provide	the
fs	keyword,	we	supply	these	arguments	in	Hz,	kHz,	or	another	unit	from
SignalAnalysis.Units.	For	example,	Listing	14-1	shows	how	to	make	a	low-pass
filter	that	filters	out	everything	above	2,000	Hz.

lpf = fir(127, 0, 2kHz; fs=8kHz);

Listing	14-1:	Constructing	a	low-pass	filter

The	example	makes	a	127-tap	filter,	which	is	a	typical	value.
The	lower	bound	for	a	low-pass	filter	is	0,	as	in	the	example.	To	make	a

high-pass	filter,	we	pass	nothing	as	the	upper	bound.
The	SignalAnalysis	package	provides	a	plotting	function	to	visualize	the

filters	created	with	fir().	To	see	a	plot	of	the	frequency	response	of	the	lpf
filter	defined	previously,	we	need	simply	enter:

julia> plotfreqresp(lpf; fs=8000)

This	creates	the	plot	shown	in	Figure	14-5.



Figure	14-5:	Frequency	response	of	a	low-pass	filter

The	top	graph	in	Figure	14-5	indicates	the	amount	by	which	the
frequency	component,	given	on	the	horizontal	axis,	will	be	reduced	when	the
filter	is	applied	to	a	signal.	The	units	are	in	dB	(decibels),	which	is
conventional	in	signal	processing.	Figure	14-5	shows	0	dB,	or	no	change,	to
the	frequencies	until	we	approach	2,000	Hz,	when	the	signal	is	rapidly
attenuated.	For	normal	sounds,	a	reduction	of	20	dB	effectively	silences	the
component	it’s	applied	to;	therefore,	the	oscillations	in	the	filter	response
below	–50	dB	have	no	audible	effect.

The	bottom	graph	shows	the	phase	shifts	created	by	the	filter.	These	are
usually	inaudible,	but	may	or	may	not	be	relevant,	depending	on	one’s	plans



for	the	filtered	signal.

NOTE

For	more	detailed	control	over	the	filter	characteristics,	we	can	import	DSP.jl	and
pass	a	method	keyword	to	fir()	using	one	of	the	filter	construction	methods
described	at	https://docs.juliadsp.org/stable/filters/.

The	dB	numbers	in	the	frequency	response	plot	are	directly	added	to	the
values	of	frequency	component	peaks	displayed	in	the	psd()	plot	of	a	signal,
which	are	also	displayed	in	dB.	To	calculate	the	change	in	amplitude	of	the
signal	itself,	we	use	the	formula

where	V	is	the	amplitude	of	the	component	in	the	input	signal	and	Vf	is	the
filtered	amplitude.	Therefore,	a	6	dB	reduction	halves	the	amplitude:

To	see	the	effect	of	larger	tap	values,	we	can	make	two	additional	low-
pass	filters	with	the	same	frequency	ranges	but	with	more	taps:

lpf_255 = fir(255, 0, 2kHz; fs=8kHz);
lpf_1027 = fir(1027, 0, 2kHz; fs=8kHz);

A	higher	tap	number	will	produce	a	filter	with	a	response	closer	to	ideal,
as	Figure	14-6	shows.

https://docs.juliadsp.org/stable/filters/


Figure	14-6:	A	low-pass	filter	using	different	tap	numbers

Although	using	a	higher	tap	number	creates	a	cleaner	filter	with	a	sharper
cutoff,	it	leads	to	a	more	expensive	filtering	calculation.	The	added
calculation	time	makes	no	difference	for	our	example,	using	a	stored	signal
of	moderate	length,	but	it	can	be	a	consideration	with	real-time	filtering,	for
example.

Applying	Filters
To	filter	the	signal,	we	can	use	the	function	sfilt():

julia> cfpo_lp = sfilt(lpf, cfpo);

This	applies	the	low-pass	filter	defined	in	Listing	14-1	to	the	owl	sample
and	assigns	the	result,	a	new	signal,	to	cfpo_lp.	Plotting	the	power	spectrum
of	the	filtered	signal	using	psd()	shows	the	effect	of	the	filtering	(see	Figure
14-7).



Figure	14-7:	The	filtered	owl	call

This	plot	displays	the	original,	unfiltered	spectrum	using	a	dotted	line
and	the	filtered	spectrum	with	a	thicker,	solid	line.	The	spectrum	below	the
low-pass	cutoff	at	2	kHz	is	untouched,	while	all	frequencies	above	have	been
eliminated.

We	create	Figure	14-7	with	the	following	commands:

julia> using Plots.PlotMeasures

julia> psd(cfpo_lp; lw=2, label="Filtered signal", legend=true)

julia> psd!(cfpo; ls=:dot, ticks=0:200:4000, xrot=90, label="Original signal",
            legend=true, margin=5mm)

It’s	necessary	to	repeat	some	of	the	keyword	arguments	when	adding	to



psd()	plots	because	the	plotting	recipe	resets	them.
The	spectrogram	of	the	filtered	signal	in	Figure	14-8	also	shows	the

elimination	of	the	second	and	third	harmonics	with	the	preservation	of	the
signal	otherwise.

Figure	14-8:	Spectrogram	of	the	filtered	owl	call

Synthetic	Signals
In	order	to	ensure	that	we	understand,	quantitatively,	signal	analysis	and
filtering,	let’s	start	with	a	signal	synthesized	from	known	frequency
components.	Another	method	of	signal()	creates	a	signal	with	embedded



sampling	rate	information	from	a	normal	vector.	In	Listing	14-2,	we	create	a
vector	consisting	of	the	addition	of	two	sine	waves,	representing	data	with
two	components	at	1,000	and	2,050	Hz	sampled	at	8	kHz.	We	then	package
the	data	into	a	signal.

julia> sin1000_2050 = signal(sin.((0.0:1.0/8000:1.0)*2π*1000)  .+
                             0.5 .*  sin.((0.0:1.0/8000:1.0)*2π*2050), 8000);

Listing	14-2:	Creating	a	synthetic	signal

We	assigned	the	result	to	sin1000_2050.	The	second	argument	to	signal()
gives	the	sampling	rate.	The	component	at	2,050	Hz	has	half	the	amplitude
of	the	component	at	1,000	Hz.	The	power	spectrum	should	show	two	peaks,
with	the	higher-frequency	peak	6	dB	lower	than	the	lower-frequency	peak.
Figure	14-9	shows	the	result	of	Listing	14-3.

julia> psd(sin1000_2050; xrange=(500, 2500), xticks=600:100:2500,
           xminorticks=2, yticks=-61:3:-02, xrot=45, margin=5mm)

Listing	14-3:	Spectrum	of	a	synthetic	signal

Because	the	signal	contains	embedded	sampling	rate	information,	psd()	is
able	to	scale	the	plot	correctly.



Figure	14-9:	Spectrum	of	a	synthetic	signal	with	two	frequency	components

Figure	14-9	shows	the	power	spectrum	with	two	narrow	peaks	where	we
put	them,	and	the	correct	6	dB	difference	in	their	amplitudes.

Now	let’s	measure	the	effect	of	filtering.	We’ll	use	the	lpf	filter	defined	in
Listing	14-1,	but	first	we	need	to	take	a	closer	look	at	it	near	its	cutoff
frequency:

julia> plotfreqresp(lpf; fs=8000, xrange=(1800, 2100), yrange=(-50, 1),
                    yticks=0:-4:-50, xticks=1800:50:2100, right_margin=5mm)

The	expanded	plot	of	the	filter	response	in	Figure	14-10	(with	the	phase
response	omitted)	shows	that	the	filter	should	reduce	the	2,050	Hz
component	by	16	dB.



Figure	14-10:	The	cutoff	region	of	the	low-pass	filter

We	can	check	whether	the	filter	is	working	as	expected	by	overlaying	the
power	spectrum	of	the	filtered	signal	onto	the	plot	created	in	Listing	14-3:

julia> psd!(sfilt(lpf, sin1000_2050), xrange=(500, 2500), xticks=600:100:2500,
            xminorticks=2, yticks=-61:3:-02, xrot=45, margin=5mm)

Figure	14-11	shows	that	the	higher-frequency	peak	is	reduced	by	16	dB
while	the	lower-frequency	peak	is	unchanged.



Figure	14-11:	Power	spectrum	of	the	filtered	synthetic	signal

This	little	exercise	shows	that	the	filters	have	predictable	effects,	altering
the	spectra	without	introducing	artifacts.

Saving	Signals
We	can	read	a	WAV	file	from	disk	into	a	signal	using	the	signal()	function,
but	saving	a	signal	as	a	WAV	file	requires	importing	the	WAV.jl	package:

julia> using WAV
julia> wavwrite(cfpo_lp, "cfpo_lp.wav"; compression=WAVE_FORMAT_PCM, nbits=8)

The	keyword	arguments	select	a	compression	format	and	word	size	that’s
compatible	with	a	wide	variety	of	software.	After	making	the	wavwrite()	call,	a



WAV	file	called	cfpo_lp.wav	will	exist	on	the	disk	drive.
If	we	want	to	save	our	sin1000_2050	signal	as	a	WAV	file,	we	first	have	to

scale	it	to	have	unit	amplitude:

julia> scaled = sin1000_2050 ./ maximum(sin1000_2050)

Then	we	save	it	using	wavwrite()	as	before	and	play	it	using	any	audio
software.

Image	Processing
Let’s	consider	an	image	interpretation	task	common	in	medicine	and
laboratory	biology:	how	many	blood	cells	are	in	a	photograph	of	a	blood
sample	taken	through	a	microscope?	The	traditional	method	of	acquiring
this	“blood	count”	was	to	enumerate	the	cells	manually,	a	tiresome	and
errorprone	process.	We’ll	see	how	to	use	various	image	processing
techniques	with	Julia	to	automate	the	procedure.	The	result	will	be	a	faster
and	more	accurate	count	that	doesn’t	require	tedious	labor.	However,	the
techniques	we’ll	investigate	here	aren’t	limited	to	blood	counts.	We	could
apply	them	to	everything	from	counting	bacteria	to	analyzing	satellite
reconnaissance.

Loading	and	Converting	Images
The	command	using Images	imports	the	file	and	image	input-output	functions,
including	optimized	routines	for	most	image	types:

julia> using Images

julia> frog_blood = load("frogBloodoriginal.jpg");

After	the	import,	a	simple	load()	command	reads	the	file	into	an	image,
which	in	Julia	is	an	array	of	pixels.

When	working	in	a	notebook,	such	as	Pluto,	the	results	of	image
operations	are	displayed	as	images;	in	the	terminal	REPL,	they’re	displayed
similarly	to	other	arrays.	For	graphical	image	display	from	the	REPL,	the
ImageView	package	supplies	the	imshow()	function.	The	window	opened	by
imshow()	features	a	few	GUI	powers,	the	most	useful	of	which	is	a	display	of
pixel	address	and	color	value	in	response	to	moving	the	mouse	pointer	over



the	image.
Images	can	be	matrices	of	numbers	or	pixel	types.	There	are	several	types

of	pixels,	but	the	ones	we’ll	be	using	are	RGB	and	Gray	pixels.	Since	we	loaded
the	frog_blood	image	from	a	color	picture,	it’s	an	array	of	RGB	(red-green-blue)
pixels:

julia> eltype(frog_blood)
RGB{N0f8}

This	is	clearly	a	parametric	type	(see	“Parametric	Types”	on	page	248).
The	parameter	N0f8	is	another	(parametric)	type	that	maps	unsigned	8-bit
integers	to	floats	in	the	range	[0.0, 1.0].	An	element	of	frog_blood	looks	like
the	following:

julia> frog_blood[1, 1]
RGB{N0f8}(0.361,0.008,0.384)

This	would	be	purple:	nearly	equal	amounts	of	red	and	blue	and	almost	no
green.

If	we	want	to	replace	the	extreme	upper-left	pixel	with	pure	green,	we
could	execute:

frog_blood[1, 1] = RGB{N0f8}(0.0, 1.0, 0.0)

However,	we	won’t.
We	can	convert	the	color	image	to	a	grayscale	version	by	broadcasting

Gray()	as	a	conversion	function	to	the	image	array:

frog_blood_gs = Gray.(frog_blood);
save("frog_blood_gs.jpg", frog_blood_gs)
save("frog_blood_gs.png", frog_blood_gs)

The	listing	also	shows	how	to	save	images	in	files.	The	save()	function
converts	image	data	to	the	file	format	indicated	by	the	filename	extension.
Here	we’ve	saved	two	versions	of	the	same	image,	one	as	a	.jpg	file	and	one
as	a	.png	file.

Figure	14-12	shows	the	grayscaled	image.



Figure	14-12:	The	frog	blood	image	converted	to	grayscale.	Original	image	by	Wayne	Large	(CC	BY-
ND	2.0).	Available	from	https://flic.kr/p/cBDUEG.

Other	useful	color	conversion	functions	are	red(),	green(),	and	blue(),
which	extract	the	named	color	channels	from	an	RGB	pixel	and	can	also,	of
course,	be	broadcast	to	entire	images	to	separate	them	into	their	color
channels.

In	order	to	compare	two,	or	several,	versions	of	an	image,	perhaps	to
eyeball	the	effect	of	a	transformation	or	processing	step,	the	mosaicview()
function	is	handy:

julia> imshow(mosaicview(red.(frog_blood), green.(frog_blood),

https://flic.kr/p/cBDUEG


              blue.(frog_blood), frog_blood_gs; ncol=2, npad=6))

This	command	creates	four	images	showing	the	three	color	channels	of
the	original	frog_blood	image	and	the	composite	grayscale	version,	sticks	them
together	in	a	grid,	then	displays	them.	If	working	in	a	notebook,	we	don’t
need	the	imshow()	call.	The	ncol	argument	specifies	the	numbers	of	columns	in
the	image	grid	(an	nrows	is	also	available),	and	the	npad	argument	puts	a	border
of	the	specified	number	of	pixels	between	the	images.

Figure	14-13	shows	what	mosaicview()	produces.

Figure	14-13:	The	red,	green,	blue,	and	all	channels	(top	to	bottom,	left	to	right)	of	the	frog	blood
image



The	original	image,	containing	all	of	the	color	channels,	is	in	the	lower-
right	quadrant.

Counting	Cells	Using	an	Area	Fraction
Our	first	attempt	at	automating	the	counting	of	blood	cells	will	use	the
ImageBinarization	package.	This	package	contains	a	handful	of	algorithms	for
separating	an	image	into	a	“foreground”	and	a	“background,”	coloring	the
foreground	pure	black	and	the	background	pure	white.	In	other	words,	each
pixel	in	the	original	image	is	assigned	either	0.0	or	1.0,	depending	on	the
results	of	the	algorithm	invoked.	The	package	documentation	displays
examples	of	the	results	of	all	the	available	algorithms	on	a	variety	of	image
types.

The	goal	is	to	generate	an	image	that	separates	the	blood	cells	from
everything	else,	as	much	as	possible.	This	binary	image	will	then	be	a	good
starting	point	for	further	analysis.	We’ve	already	made	some	progress	in	this
direction	through	the	color	separations	shown	in	Figure	14-13.	The	blue
channel,	at	the	bottom,	seems	to	have	increased	the	contrast	between	the
(larger)	red	blood	cells	and	the	other	particles.	Instead	of	binarizing	the
original	color	image,	we’ll	start	with	the	blue	channel:

julia> using ImageBinarization

julia> frog_blood_blue = blue.(frog_blood);

julia> frog_blood_b1 = binarize(frog_blood_blue, Intermodes())

The	binarize()	function	takes	the	image	as	the	first	argument	and	the
name	of	the	binarization	algorithm	as	the	second	argument,	and	returns	the
binarized	image.	The	documentation	describes	the	details	of	the	Intermodes
algorithm.	For	our	purposes,	it	does	a	good	job	at	detecting	discrete
structures,	such	as	cells,	against	a	plain	background.

Figure	14-14	shows	the	binarized	image.



Figure	14-14:	The	blue	channel	of	the	frog	blood	slide	after	binarization

We’ll	use	this	image	as	the	basis	for	the	blood	count.
If	we	knew	the	average	area	of	the	blood	cells	in	the	image,	we	could

divide	that	into	the	total	area	occupied	by	all	blood	cells	to	arrive	at	an
estimate	of	the	number	of	cells.	The	cells	appear	to	be	approximately
elliptical	(in	this	two-dimensional	image).

Using	the	GUI	in	the	imshow()	window,	I	used	the	pixel	readout	to
measure	the	major	and	minor	axis	lengths	of	four	typical	cells	at	26.8	pixels
and	a	typical	minor	axis	at	24.5	pixels.	Using	A	=	πr1r2	for	the	area	of	an
ellipse	with	radii	r1	and	r2,	the	average	of	the	four	areas	was	511.3	square



pixels.
Finding	the	total	blood	fraction	is	simple	using	the	binarized	image.	In

frog_blood_b1,	the	cells	are	black,	with	a	pixel	value	of	0,	and	the	background	is
white,	with	a	value	of	1.	The	total	cell	count	is	therefore	sum(1 .-
frog_blood_b1),	which	evaluates	to	255,029.0.	Dividing	this	result	by	the
average	cell	area	yields	499	cells.

Counting	Cells	by	Recognizing	Features
We	can	improve	on	the	estimate	in	the	previous	section	by	exploiting
algorithms	that	search	for	features	with	particular	shapes	in	the	image.	The
Hough	transform	(see	“Further	Reading”	on	page	465	for	background)	is
one	such	class	of	algorithms	that	can	be	specialized	to	various	shapes.	The
ImageFeatures	package,	which	we’ll	assume	is	imported	in	the	following
examples,	offers	implementations	for	detecting	lines	and	circles.	As	the
features	we	need	to	detect	resemble	circles,	we’ll	use	the
hough_circle_gradient()	function,	an	implementation	of	the	Hough	transform
for	circles.

Before	applying	the	algorithm,	we’ll	process	the	image	to	make	its	task
easier	and	produce	a	more	accurate	result.	One	problem	with	the	image	is
that	the	cells	we	want	to	count	are	not	circles,	but	elongated.	Hough
transforms	for	ellipses	do	exist,	but	are	not	yet	available	in	the	ImageFeatures
package.	Another	problem	is	that	many	cells	are	touching,	and	a	few	are
overlapping.	The	Hough	transform	can	deal	with	touching	and	overlapping
circles,	but	it	has	a	better	time	with	cleanly	separated	shapes.

Nature	has	provided	some	assistance	with	the	second	problem:	each	cell
has	a	nucleus,	clearly	delineated	in	the	picture.	Even	when	blood	cells	are	in
contact	or	overlapping,	their	nuclei	are	separated.	If	we	could	eliminate	most
of	everything	except	the	nuclei	from	the	image,	we	could	simply	count	those
to	get	the	blood	count.

Here	we	are	fortunate:	the	color	of	the	nuclei	makes	them	easy	to
distinguish	from	everything	else	in	the	image.	This	may	not	be	apparent	to
the	eye,	but	by	placing	the	mouse	cursor	on	the	nuclei	in	the	imshow()
window,	and	comparing	with	other	locations,	we	can	see	that	the	nuclei	are
unique	in	having	a	green	value	close	to	0	while	having	a	red	value	>	0.2.	We
can	confirm	this	in	other	ways—for	example,	by	plotting	the	three	color
components	along	lines	through	the	image.



The	following	array	comprehension	creates	a	new	image	from	the
original	pixel	by	pixel,	by	leaving	the	pixels	within	the	nucleus	color	range
unchanged,	while	turning	the	others	white:

julia> nuclei = Gray.([(green(e) < 0.1) & (red(e) > 0.2) ? e :
                RGB{N0f8}(1.0, 1.0, 1.0) for e in frog_blood]);

We	also	transform	the	result	into	a	grayscale	image	for	further	processing
and	printing.	Figure	14-15	shows	the	result.

Figure	14-15:	Frog	blood	nuclei	isolated	by	color

We’ve	managed	to	isolate	the	nuclei	pretty	well	and	eliminate	some	of



the	particles	that	are	something	other	than	blood	cells.
Figure	14-15	is	a	good	candidate	for	the	circle-finding	algorithm,	but	we

must	complete	two	preliminary	steps	first.	The	hough_circle_gradient()
function	doesn’t	operate	on	actual	images,	but	on	maps	of	edges	and	phases.
The	edge	map	is	the	output	of	an	edge-detection	algorithm,	transforming
the	image	into,	essentially,	a	line	drawing	tracing	its	shapes.	The	map	of
phases	is	a	matrix	of	angles	calculated	from	the	edge	map,	giving	the
direction	at	every	point	of	its	gradient,	as	an	angle	from	–π	to	π.

The	canny()	function	is	an	excellent	edge	detector:

julia> edges = canny(nuclei, (0.15, 0.0))

Its	second	argument	is	a	tuple	of	thresholds	used	for	defining	an	edge
from	the	input	image	(which	must	be	grayscale).	I	arrived	at	the	values	it
contains	through	trial	and	error,	aiming	for	a	set	of	edges	that	captured	the
nuclei	while	ignoring	most	of	the	scattering	of	white	blood	cells	and	other
particles.	Figure	14-16	shows	the	output	of	the	canny()	function.



Figure	14-16:	Edge	detection	of	the	nuclei	image

This	is	a	pretty	clean	result,	and	is	what	we	were	aiming	for.
The	phase	calculation	itself	requires	two	steps—first	the	gradient	map

itself	and	then	the	phases	derived	from	it:

julia> dx, dy = imgradients(edges, KernelFactors.ando5);

julia> phases = phase(dx, dy);

With	the	edges	and	phases	computed,	we	can	run	the	Hough	transform:

julia> centers, radii = hough_circle_gradient(edges, phases, 1:5; min_dist=20);



After	this	call,	centers	contains	a	vector	of	indices	giving	the	locations	of
each	circle	and	radii	a	vector	of	their	corresponding	radii.	The	length	of
either	vector	gives	the	number	of	circles	found.	In	this	case,	the	length	is
534,	which	is	in	reasonable	agreement	with	the	estimate	of	499	we	arrived	at
earlier.

The	third	argument	to	hough_circle_gradient()	gives	the	allowed	range	for
the	circle	radii,	in	pixels.	The	min_dist	keyword	argument	is	the	minimum
allowed	distance	between	circle	centers.

To	see	how	well	the	circle	fitting	did,	and	how	much	confidence	we
should	lend	to	the	estimate	of	534	blood	cells,	we	can	use	the	centers	array	to
draw	circles	directly	on	the	original	image	where	the	hough_circle_gradient()
function	says	they	should	be:

julia> using ImageDraw

julia> for p in centers
           draw!(frog_blood, CirclePointRadius(p, 15; thickness=8, fill=false))
       end

The	draw!()	function,	provided	by	ImageDraw,	mutates	its	first	argument	by
drawing	shapes	on	it,	in	white	by	default.	The	CirclePointRadius()	in	the
second	argument	creates	a	circle	at	point	p	with	radius	15;	the	fill=false
creates	an	open	circle	with	perimeter	thickness	controlled	by	the	thickness
keyword.

Figure	14-17	shows	the	result	of	drawing	the	circles	on	top	of	the
(grayscale	version	of)	the	original	image.



Figure	14-17:	Circles	detected	by	a	Hough	transform

Figure	14-17	shows	that	the	Hough	transform	did	an	excellent	job.
Nearly	every	blood	cell	is	marked	with	a	circle,	and	most	of	the	other	objects
are	ignored.	There	are	a	few	misses	and	a	few	false	detections,	but,	on	the
whole,	the	count	of	534	is	quite	accurate.

The	image	processing	pipeline	described	in	this	section	would	be
practical	for	automating	blood	counts,	although	the	specific	parameters
would	need	to	be	adjusted	for	different	types	of	samples,	different	stains,	and
so	on.	The	approach	is	far	faster	and	probably	more	accurate	than	manual
counting.



Applying	Advanced	Array	Concepts
As	an	image	is	an	array,	various	advanced	array	concepts	available	in	Julia
can	make	their	manipulation	more	convenient	and	concise.	This	section
explores	techniques	for	dealing	with	arrays	that	we	haven’t	used	directly	up
to	now,	although	we’ve	seen	how	they’re	used	in	several	packages.	Placed
within	an	image	processing	context,	their	use	becomes	easier	to	visualize.

Views
A	view	is	a	reference	to	another	array	or	to	a	section	of	another	array.	The
other	array	is	called	the	parent.	A	view	is	a	kind	of	virtual	array,	which
occupies	almost	no	memory:	it	shares	memory	with	the	parent,	so	modifying
one	modifies	the	other.

NOTE

It	is	dangerous	to	alter	the	shape	of	the	parent	array	after	creating	a	view.
Subsequent	operation	on	the	view	may	create	out-of-bounds	memory	accesses	or
segmentation	faults.

To	see	how	views	work,	we’ll	create	a	small	grid	of	middle-gray	values
and	a	view	pointing	to	every	other	element	in	the	grid:

   julia> rgi = rand(Float64, (10, 10)) .* 0.2 .+ 0.4;

   julia> checkers = @view rgi[1:2:end, 1:2:end];

   julia> size(checkers)
   (5, 5)

➊ julia> checkers .= 0.0;

   julia> black_squares = heatmap(rgi; c=:grays, clim=(0.0, 1.0), colorbar=false);

   julia> checkers .= 1.0;

   julia> white_squares = heatmap(rgi; c=:grays, clim=(0.0, 1.0), colorbar=false);

   julia> plot(black_squares, white_squares)

The	second	line	shows	how	to	create	a	view	with	the	@view	macro.	The
checkers	view,	defined	by	selecting	alternate	squares	of	the	parent	array,	forms
a	checkerboard	pattern.	Its	size	is	half	that	of	the	parent.	After	setting	all	its



elements	to	0.0	➊,	the	corresponding	elements	in	the	parent	are	likewise
modified.	We	can	change	the	values	of	elements	in	the	view	repeatedly,	and
these	updates	are	reflected	in	the	parent.	Figure	14-18	shows	the	outcome.

Figure	14-18:	Patterns	created	using	a	view

This	example	shows	how	views	can	simplify	certain	expressions.	They’re
also	useful	as	an	aid	to	memory	parsimony.	If	a	computation	uses	parts	of
arrays	as	intermediate	containers,	which	we	don’t	need	in	the	final	result,	we
can	avoid	allocating	memory	to	hold	these	temporary	structures	by	using
views	instead.

As	an	illustration,	here	are	two	versions	of	a	little	function	that	returns



the	difference	between	the	sums	of	alternate	elements	in	an	array:

function odd_even_difference(a::AbstractArray)
    return sum(a[begin:2:end]) - sum(a[begin+1:2:end])
end

function odd_even_difference2(a::AbstractArray)
 ➊ return @views sum(a[begin:2:end]) - sum(a[begin+1:2:end])
end

julia> using BenchmarkTools

julia> @btime odd_even_difference(rand(Int(1e7)));
  96.716 ms (6 allocations: 152.59 MiB)

julia> @btime odd_even_difference2(rand(Int(1e7)));
  62.116 ms (2 allocations: 76.29 MiB)

The	@views	macro	➊	transforms	all	slice	operations	in	the	expression	to	its
right	into	view	operations.	The	first	version	of	the	program	creates	two
arrays	and	computes	the	sum	of	odd	and	even	indexed	elements.	The	second
performs	the	same	computation,	but	by	creating	views	instead	of	new	arrays.
The	timing	runs	show	that	using	views	cut	the	memory	consumption	in	half
while	also	decreasing	runtime	by	a	third.	Avoiding	unnecessary	array
copying	by	using	views	where	possible	is	an	easy	optimization.

AxisArrays
With	the	AxisArrays	package,	we	can	give	names	to	array	dimensions	and	axes,
give	units	to	arrays,	and	enjoy	more	flexible	indexing.	Dataframes	(see
“Dataframes”	on	page	333)	also	allow	us	to	name	rows	and	columns,	but	are
limited	to	two	dimensions.

The	following	example	shows	how	to	name	the	rows	and	columns	of	a
matrix:

julia> using AxisArrays

julia> ae = AxisArray(reshape(1:100, 10, 10); row='a':'j', col='A':'J')
2-dimensional AxisArray{Int64,2,...} with axes:
    :row, 'a':1:'j'
    :col, 'A':1:'J'
And data, a 10×10 reshape(::UnitRange{Int64}, 10, 10) with eltype Int64:
  1  11  21  31  41  51  61  71  81   91
  2  12  22  32  42  52  62  72  82   92
  3  13  23  33  43  53  63  73  83   93
  4  14  24  34  44  54  64  74  84   94



  5  15  25  35  45  55  65  75  85   95
  6  16  26  36  46  56  66  76  86   96
  7  17  27  37  47  57  67  77  87   97
  8  18  28  38  48  58  68  78  88   98
  9  19  29  39  49  59  69  79  89   99
 10  20  30  40  50  60  70  80  90  100

With	this	definition,	we	can	index	using	the	numbers	that	we’re	used	to
or	the	names	that	we’ve	assigned	to	the	axes,	or	mix	them	up:

   julia> ae['a', 'B']
   11

   julia> ae[1, 2] == ae['a', 2] == ae[1, 'B']
   true

➊ julia> ae['a':'c', 'B':'D']
   2-dimensional AxisArray{Int64,2,...} with axes:
       :row, ['a', 'b', 'c']
       :col, ['B', 'C', 'D']
   And data, a 3×3 Matrix{Int64}:
    11  21  31
    12  22  32
    13  23  33

➋ julia> ae[col=2, row=1]
   11

The	example	shows	that	we	can	slice	with	our	custom	names	➊	as	we	do
with	numerical	indices,	and	that,	if	we	use	the	names	of	the	dimensions,	we
can	supply	indices	in	any	order	➋.	We	can	use	any	names	where	we	use	row
and	col	here.	They’re	defined	only	within	index	expressions;	they	don’t	exist
as	variables	outside	the	brackets.

The	next	example	shows	how	to	incorporate	units	into	the	definition	of
an	array:

julia> using Unitful

julia> mm = u"mm";

julia> cm = u"cm";

julia> rgin = AxisArray(rand(Float64, (10, 10)) .* 0.2 .+ 0.4,
                 Axis{:y}(0mm:1mm:9mm), Axis{:x}(0cm:1cm:9cm));

julia> rgin[x=3, y=2] == rgin[1mm, 2cm] == rgin[2, 3] == rgin[x=2cm, y=1mm] ==
       rgin[2, 2cm]
true



This	shows	the	use	of	the	Axis{}()	constructor,	and,	in	the	final	line,	various
ways	we	can	index	into	the	array,	including	mixing	numerical	and	unit
indices.

We	can	use	an	ellipsis,	from	the	automatically	imported	EllipsisNotation
package,	to	represent	ranges	of	units:

julia> rgin[1mm .. 2mm, 1cm .. 3cm] == rgin[1mm .. 2.3mm, 10mm .. 30mm]
true

This	illustrates	two	properties	of	dimension	ranges.	We	can	use
equivalent	units,	here	using	10	mm	=	1	cm,	and	the	endpoints	of	the
intervals	need	not	lie	exactly	on	an	element	of	the	array.	Beware	that	the
indexing	rounds	down	and	not	to	the	nearest	element.

Let’s	define	a	rectangle	using	ranges	of	lengths,	paint	it	white,	and	plot
the	resulting	array:

julia> rgin[2mm .. 7.2mm, 3cm .. 4.9cm] .= 1.0;

julia> heatmap(rgin; c=:grays, clim=(0.0, 1.0), colorbar=false, ratio=1,
        xticks=(1:10, ["$(i)mm" for i in 0:9]),
        yticks=(1:10, ["$(i)cm" for i in 0:9]),
        xrange=(0, 11))

The	plotting	command	is	an	example	of	custom	labeled	ticks.	Figure	14-
19	shows	the	new	state	of	rgin.



Figure	14-19:	We	paint	this	white	rectangle	by	specifying	physical	lengths.

The	direct	use	of	physical	dimensions	to	index	arrays	frees	us	from	the
mental	or	programmatic	labor	of	constantly	translating	between	integer
indices	and	the	quantities	that	they	represent	in	our	models.

OffsetArrays
Those	with	experience	in	Python	or	C,	when	encountering	Julia	for	the	first



time,	sometimes	complain	about	its	1-based	indexing,	whereas	old	Fortran
hands	know	that	it’s	a	better	choice.	The	former	group	may	be	pleased	to
know	that	in	Julia,	as	in	Fortran,	we	can	make	arrays	that	start	anywhere.

DON’T	ASSUME	1-BASED	INDEXING

Assuming	that	an	array	passed	to	a	function	will	be	1-based	is	a	source
of	occasional	bugs	in	public	packages.	The	existence	of	OffsetArrays	is
the	reason	for	our	earlier	warning	not	to	iterate	over	arrays	with:

for i = 1:length(A) # Do not do this.
    # ...expressions with A[i]...

Instead,	use	eachindex(A)	or	another	construction	that	generates	legal
indices.	But	there	is	another	reason:	using	eachindex()	generates	more
efficient	memory	accesses	for	certain	types	of	arrays.

The	OffsetArrays	package	provides	several	ways	to	create	an	OffsetArray.	We
can	call	the	OffsetArray()	function	with	the	source	array	and	each	dimension’s
offset	as	positional	arguments.	A	dimension’s	offset	is	how	far	its	indices	are
shifted	from	their	normal	position.	An	offset	of	0	means	no	shift,	and	an
offset	of	–2	means	that	the	dimension’s	index	runs	from	–1	to	two	less	than
its	length.	To	illustrate	how	an	OffsetArray	works,	we’ll	start	with	our	random
gray	matrix	again:

julia> using OffsetArrays, Random

julia> rgen = MersenneTwister(7654);

julia> rgi = rand(rgen, Float64, (10, 10)) .* 0.2 .+ 0.4;

julia> rgi_offset = OffsetArray(rgi, -3, 2);

julia> rgi[1, 1]
0.5447560977385423

julia> rgi_offset[-2, 3]
0.5447560977385423

In	this	example,	we	use	a	seeded	random	number	generator	(see	“Random



Numbers	in	Julia”	on	page	307)	so	that	the	results	will	be	identical	for
readers	trying	these	commands.	The	(-2, 3)	position	of	rgi_offset	corresponds
to	the	(1, 1)	position	of	rgi.

This	use	of	OffsetArray()	creates	a	view,	rather	than	a	copy	of	the	original,
as	shown	in	Listing	14-4.

julia> rgi_offset[-2, 3] = 0.0
0.0

julia> rgi[1, 1]
0.0

Listing	14-4:	OffsetArrays	are	views.

Since	the	two	arrays	share	memory,	modifying	rgi_offset	modifies	rgi.	Of
course,	we	can	make	a	new	array	using	copy()	if	needed:

julia> rgi_offset_copy = copy(OffsetArray(rgi, -3, 2));

julia> rgi_offset_copy[-2, 3] = 1.0
1.0

julia> rgi[1, 1]
0.0

Painting	part	of	the	array	white	illustrates	that	ranges	work	as	before,
taking	into	account	the	offsets:

julia> rgi_offset[0:5, 8:11] .= 1.0;

Figure	14-20	shows	the	image	of	the	array,	with	the	black	element	set	in
Listing	14-4	and	the	white	rectangle	set	in	this	example.	The	plotting	grid
for	heatmaps	is	centered	on	the	elements,	so	we	can	examine	which	elements
were	changed	to	verify	that	we	understand	the	indexing	ranges.



Figure	14-20:	The	white	rectangle	was	defined	as	an	OffsetArray.

Plotting	with	heatmap()	doesn’t	work	with	OffsetArrays	unless	we	explicitly
supply	coordinate	vectors.	In	other	words,	we	can	call	heatmap(rgi),	but	must
use	heatmap(1:10, 1:10, rgi_offset)	to	prevent	the	plotting	routine	from	getting
confused.	The	two	calls	produce	the	same	image	in	this	case,	as	the	two
arrays	share	memory.

OffsetArray()	provides	another	syntax,	using	ranges	of	indices	rather	than
single	offsets.	This	method	is	convenient	when	extracting	a	subset	of	an
existing	array:

julia> passage = Float64.(Gray.(load("titanPassage.jpg")));

julia> passage = reverse(passage; dims=1);

julia> middle_passage = OffsetArray(passage[300:600, 400:700], 300:600, 400:700); ➊

julia> passage[300:600, 400:700] .= 0.0;



julia> passage[350:550, 450:650] = middle_passage[350:550, 450:650]; ➋

First	we	load	a	color	photograph,	convert	it	to	grayscale,	and	then	to	a
floating-point	array,	assigning	the	result	to	the	passage.	Since	we	plan	to
inspect	the	images	in	this	example	using	heatmap(),	we	flip	the	image	vertically
for	convenience	to	undo	the	effect	of	the	orientation	of	the	vertical	axis.

Using	OffsetArray(),	we	extract	a	square	portion	of	the	image	and	assign	it
to	middle_passage	➊.	This	line	shows	another	way	to	establish	the	offset
indices:	instead	of	a	single	integer	offset,	we	supply	the	range	of	indices
indexing	the	array.	We	choose	these	to	be	identical	to	the	indices	used	to
extract	the	sub-image,	so	that	a	pixel	addressed	in	the	extracted	part	will
correspond	to	the	pixel	in	the	original	image	with	the	same	indices.	This
technique	greatly	simplifies	programs	where	we	want	to	maintain	a
correspondence	between	an	array	and	a	sub-array,	eliminating	the	need	to
constantly	translate	indices.	The	middle_passage	matrix	is	a	new	array,	not	a
view,	because	the	index	ranges	create	a	copy.

The	next	line	paints	the	square	region,	from	which	we	took	the	extract,
black.

In	the	final	line,	we	replace	a	portion	of	the	black	square	with	a	portion	of
the	extracted	part	of	the	image	➋.	Since	the	index	ranges	in	both	arrays	are
identical,	the	replaced	part	of	the	image	will	exactly	correspond	to	what	was
there	originally.	The	result	is	a	black	frame	around	a	part	of	the	image,	with
nothing	else	altered,	as	Figure	14-21	shows.



Figure	14-21:	OffsetArrays	make	many	image	manipulations	easier.	Original	photograph	taken
inside	a	Titan	missile	facility	by	Lee	Phillips	(CC	BY-ND	2.0).

The	use	of	offset	indices	makes	this	code	easier	to	write	and	read,	and	less
prone	to	errors.	With	conventional	arrays	we	would	have	been	forced	to	add
lines	performing	array	arithmetic	to	translate	between	pixel	ranges	in	the
large	and	extracted	images,	or	construct	the	frame	from	pieces.

The	OffsetArrays	package	proves	two	additional	ways	to	construct	array
offsets	automatically,	both	of	which	can	be	convenient	in	image	processing.
We	can	order	up	an	OffsetArray	centered	on	an	array:



   julia> passage = Float64.(Gray.(load("titanPassage.jpg")));

➊ julia> OffsetArrays.center(passage)
   (375, 500)

   julia> passage[375, 500]
   0.25098039215686274

➋ julia> passage_centered = OffsetArrays.centered(passage);

   julia> passage_centered[0, 0]
   0.25098039215686274

The	center()	function	➊	from	OffsetArrays	returns	the	index	of	the	center
of	an	array	(if	the	array	has	an	odd	number	of	elements	along	some
dimension,	it	rounds	down).	The	package’s	centered()	function	➋	creates	an
OffsetArray	with	the	index	[0, 0]	at	its	center.	We	usually	need	to	qualify	these
function	names	with	the	package	name	because	of	collisions.

Having	the	center	of	index	space	at	the	center	of	an	array	is	helpful	in	the
common	situation	where	the	array	represents	a	quantity	in	physical	space,	or
in	space	and	time,	where	we	often	use	a	coordinate	system	with	the	origin	at
the	center.	Here’s	another	visual	example,	where	having	the	[0, 0]	point	at
the	center	of	an	image	simplifies	calculations:

julia> dmax = minimum(size(passage_centered))/2

julia> for j in eachindex(passage_centered[1, :]),
           i in eachindex(passage_centered[:, 1])
           passage_centered[i, j] *= max(0.0, 1.0 - sqrt(i^2 + j^2)/dmax)
       end

We’ve	set	dmax	to	the	distance	from	the	center	to	end	along	the	shorter
dimension.	Then	we	multiply	each	pixel	by	a	decreasing	function	of	distance
from	the	center.	Figure	14-22	shows	the	result,	a	centered	circular	frame
darkening	toward	the	edges.



Figure	14-22:	OffsetArrays	make	it	easy	to	reference	the	center	of	an	array.

Using	a	centered	OffsetArray	simplifies	the	code,	allowing	us	to	dispense
with	the	index	arithmetic	usually	needed	to	reference	the	center	of	an	array.

Cartesian	Indices
Julia’s	cartesian	indices	are	a	powerful	tool	that	can	greatly	simplify	all	kinds	of
computations	with	arrays.	The	two	relevant	types	built	into	Julia	are	the
CartesianIndex	and	CartesianIndices.	A	CartesianIndex	represents	an	address	of	an



element	in	an	array	of	any	size.	CartesianIndices	are	iterators	that	span	a
rectangular	region,	of	any	dimensionality,	within	an	array.

For	concreteness,	and	so	that	we	can	look	at	pictures,	we’ll	concentrate
on	two-dimensional	arrays,	as	shown	in	Listing	14-5.

julia> ci = CartesianIndex(1, 1)
CartesianIndex(1, 1)

julia> collect(5ci:8ci)
4×4 Matrix{CartesianIndex{2}}:
 CartesianIndex(5, 5)  CartesianIndex(5, 6)  CartesianIndex(5, 7)  CartesianIndex(5, 8)
 CartesianIndex(6, 5)  CartesianIndex(6, 6)  CartesianIndex(6, 7)  CartesianIndex(6, 8)
 CartesianIndex(7, 5)  CartesianIndex(7, 6)  CartesianIndex(7, 7)  CartesianIndex(7, 8)
 CartesianIndex(8, 5)  CartesianIndex(8, 6)  CartesianIndex(8, 7)  CartesianIndex(8, 8)

Listing	14-5:	Iterating	over	CartesianIndices

This	example	shows	how	using	CartesianIndices	simplifies	iterating	over	a
rectangular	region.	First	we	assign	the	CartesianIndex	corresponding	to	the
index	[1, 1]	to	ci.	Then	we	iterate	from	CartesianIndex(5, 5),	represented	as	5ci,
to	8ci,	using	collect()	to	instantiate	the	iteration	so	we	can	inspect	it.	The
power	is	in	how	a	linear	iteration	is	expanded	into	a	nested	iteration	over
both	dimensions,	spanning	the	rectangle	between	the	two	corners	[5, 5]	and
[8, 8].	We	can	use	this	type	of	iteration	in	any	number	of	dimensions:

julia> collect(CartesianIndex(1, 1, 1):CartesianIndex(3, 3, 3))
3×3×3 Array{CartesianIndex{3}, 3}:
[:, :, 1] =
 CartesianIndex(1, 1, 1)  CartesianIndex(1, 2, 1)  CartesianIndex(1, 3, 1)
 CartesianIndex(2, 1, 1)  CartesianIndex(2, 2, 1)  CartesianIndex(2, 3, 1)
 CartesianIndex(3, 1, 1)  CartesianIndex(3, 2, 1)  CartesianIndex(3, 3, 1)

[:, :, 2] =
 CartesianIndex(1, 1, 2)  CartesianIndex(1, 2, 2)  CartesianIndex(1, 3, 2)
 CartesianIndex(2, 1, 2)  CartesianIndex(2, 2, 2)  CartesianIndex(2, 3, 2)
 CartesianIndex(3, 1, 2)  CartesianIndex(3, 2, 2)  CartesianIndex(3, 3, 2)

[:, :, 3] =
 CartesianIndex(1, 1, 3)  CartesianIndex(1, 2, 3)  CartesianIndex(1, 3, 3)
 CartesianIndex(2, 1, 3)  CartesianIndex(2, 2, 3)  CartesianIndex(2, 3, 3)
 CartesianIndex(3, 1, 3)  CartesianIndex(3, 2, 3)  CartesianIndex(3, 3, 3)

Here	the	iteration	represents	a	cube.	Without	CartesianIndices,	we	would
have	to	write	it	as	three	nested	loops,	but	here	it’s	a	simple	range	expression.

In	fact,	CartesianIndices	are	more	general	than	what’s	shown	in	these
examples.	They	need	not	represent	contiguous	rectangular	regions:



julia> collect(CartesianIndex(1, 1):CartesianIndex(2, 2):CartesianIndex(5, 5))
3×3 Matrix{CartesianIndex{2}}:
 CartesianIndex(1, 1)  CartesianIndex(1, 3)  CartesianIndex(1, 5)
 CartesianIndex(3, 1)  CartesianIndex(3, 3)  CartesianIndex(3, 5)
 CartesianIndex(5, 1)  CartesianIndex(5, 3)  CartesianIndex(5, 5)

Their	utility	is	in	compactly	representing	nested	iterations,	and	in
constructing	“portable”	ranges	of	indices	we	can	use	in	different	arrays.
Listing	14-6	illustrates	this	idea.

julia> by2 = CartesianIndex(1, 1):CartesianIndex(2, 2):CartesianIndex(5, 5)
CartesianIndices((1:2:5, 1:2:5))

julia> reshape(1:100, 10, 10)[by2]
3×3 Matrix{Int64}:
 1  21  41
 3  23  43
 5  25  45

Listing	14-6:	Using	CartesianIndices	to	construct	"portable"	ranges	of	indices

Here	we’ve	assigned	a	CartesianIndices	iterator	to	by2,	which	we	then	used
to	extract	nine	noncontiguous	elements	from	a	10×10	matrix.	This	example
also	shows	a	more	compact	way	to	define	the	iterators,	suggested	to	us	by
the	form	of	the	result	returned	on	the	first	line:

julia> CartesianIndices((1:3, 1:3, 1:3)) ==
       CartesianIndex(1, 1, 1):CartesianIndex(3, 3, 3)
true

To	help	visualize	CartesianIndices,	we’ll	start	with	a	100×100	version	of	our
random	gray	matrix	and	select	a	rectangle	within	it	by	iterating	over
multiples	of	ci,	defined	in	Listing	14-6:

julia> rgi = rand(rgen, Float64, (100, 100)) .* 0.2 .+ 0.4;

julia> rgi[5ci:20ci] .= 0.0;

Figure	14-23	shows	what	this	does	to	rgi.



Figure	14-23:	Defining	a	rectangular	region	with	CartesianIndices

Julia’s	CartesianIndices	equip	us	with	a	way	to	define	a	rectangular	region
that	we	can	perform	direct	arithmetic	on,	to,	for	example,	shift	it	to	various
locations	around	an	array.	This	kind	of	“moving	window”	operates	behind
the	scenes	in	the	fast	Fourier	transform	and	spectrogram	functions	that	we
used	earlier	in	this	chapter.	It’s	also	a	big	part	of	solving	partial	differential
equations	on	a	grid,	a	major	enterprise	in	computational	science.	Those	with



experience	programming	such	stencil	operations	in	a	traditional	language
such	as	Fortran	know	how	tricky	the	process	can	be.	Here	we’ll	apply	the
idea	to	a	photograph,	by	sliding	a	square	window	around	the	image	to	create
a	blurred,	pixel-averaged	version:

   julia> monk = Float64.(load("monk-mintons-1947.jpg"));

➊ julia> average_monk = similar(monk);

   julia> cim = CartesianIndices(monk);

   julia> ws = 1; # Window size

➋ julia> c1 = CartesianIndex(ws, ws);

   julia> for i in cim
              n = s = 0.0
              for j in max(first(cim), i - c1):min(last(cim), i + c1)
                  n += 1
                  s += monk[j]
              end
          average_monk[i] = s/n
          end

After	loading	the	image,	we	initialize	an	array	to	hold	the	averaged
version	using	similar()	➊,	which	makes	a	copy	of	an	array	with	the	same	size
and	types.	We’ll	use	the	cim	variable	to	iterate	over	the	entire	original	image.
The	size	of	the	moving	square	window	is	assigned	to	ws,	which	is	used	to
define	its	extent	➋.	The	for	loop	visits	each	point	in	the	original,	replacing	it
with	the	average	of	all	the	pixels	in	the	square	window	centered	on	that
point.

The	purpose	of	the	max()	and	min()	calls	is	to	handle	the	border	regions,
where	the	moving	window	would	extend	beyond	the	edge	of	the	matrix.
This	works	because	of	how	max()	and	min()	treat	CartesianIndex	types:

julia> max(CartesianIndex(3, 4), CartesianIndex(-2, 9))
CartesianIndex(3, 9)

julia> min(CartesianIndex(3, 4), CartesianIndex(-2, 9))
CartesianIndex(-2, 4)

The	functions	return	a	new	CartesianIndex	where	each	dimensional	index	is
individually	maximized	or	minimized;	therefore,	we	need	only	refer	to	the
corners	of	the	original	array	to	ensure	that	no	index	component	is	too	large
or	too	small.



The	functions	act	differently	on	tuples:

julia> max((3, 4), (-2, 9))
(3, 4)

Here	the	tuples	(or	vectors)	are	ordered	by	their	first	elements,	and	the
return	value	is	always	one	of	the	arguments.

Figure	14-24	shows	the	original	image	and	the	results	of	averaging	over
1,	4,	and	8	pixels.





Figure	14-24:	Thelonious	Monk,	1947.	Original	and	with	averaging	over	1,	4,	and	8	pixels,	left	to
right	and	top	to	bottom.	Photo	by	William	Gottlieb	(public	domain,
http://hdl.loc.gov/loc.music/gottlieb.06191).

The	result	is	an	increasing	softening	of	the	original	image,	the	result	of	a
simple	form	of	low-pass	filtering.

We	can	use	a	similar	technique	to	create	a	reduced	image—for	example,
by	a	factor	of	two	in	each	dimension:

julia> smaller_monk = zeros(size(monk) .÷ 2);
julia> cism = CartesianIndices(smaller_monk);
julia> c1 = CartesianIndex(1, 1)
julia> for i in cism
           n = s = 0.0
        ➊ for j in max(first(cim), 2i - c1):min(last(cim), 2i + c1)
               n += 1
               s += monk[j]
           end
       smaller_monk[i] = s/n
       end

After	initializing	an	array	half	the	size	of	the	original	to	hold	the	reduced
image,	we	create	a	CartesianIndices	iterator	spanning	it,	assigned	to	cism.	The
outer	loop	iterates	over	the	smaller	array	and	sets	each	of	its	elements	to	the
average	of	the	pixels	surrounding	the	corresponding	pixel	in	the	original.
The	indexing	➊	is	due	to	the	fact	that	for	location	[i, j]	in	the	reduced
image,	the	corresponding	location	in	the	original	is	[2i, 2j].

Figure	14-25	shows	the	original	alongside	the	reduced	version.

http://hdl.loc.gov/loc.music/gottlieb.06191


Figure	14-25:	Piano	four	hands:	reducing	an	image	with	pixel	averaging

Of	course,	we	could	also	create	a	quick	reduced	image	with	original[1:2:dy,
1:2:dx],	but	averaging	pixels	leads	to	a	better	outcome,	especially	in	the
appearance	of	diagonal	lines.	Professional	image	reduction	algorithms
usually	employ	a	larger	window	with	a	sampling	method	more	elaborate
than	the	simple	arithmetic	mean	in	this	example.

Conclusion
In	this	chapter,	we’ve	analyzed	and	manipulated	artifacts	from	the	physical



world	of	sounds	and	images.	We’ve	explored	a	variety	of	tools	from	packages
for	signal	and	image	processing,	but	also	found	that	the	power	of	Julia’s
facilities	for	array	manipulation	make	difficult	jobs	easy,	allowing	us	to	write
short	and	simple	programs	that	perform	complex	tasks.

FURTHER	READING

Documentation	for	SignalAnalysis.jl	is	available	at	https://org-
arl.github.io/SignalAnalysis.jl/stable/.
For	details	about	the	WAV	file	format,	visit
https://docs.fileformat.com/audio/wav/.
JuliaImages	is	a	starting	place	to	find	various	image	processing
packages	for	Julia	and	their	documentation:
https://juliaimages.org/stable.
For	some	background	about	the	Hough	transform,	start	with
https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm.
Cartesian	indices	.	.	.	what	are	they	good	for?	Tim	Holy	explains:
https://julialang.org/blog/2016/02/iteration/.	This	article	inspired
the	image	reduction	used	in	this	chapter.

https://org-arl.github.io/SignalAnalysis.jl/stable/
https://docs.fileformat.com/audio/wav/
https://juliaimages.org/stable
https://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
https://julialang.org/blog/2016/02/iteration/


15
PARALLEL	PROCESSING

If	one	ox	could	not	do	the	job	they	did	not	try	to	grow	a	bigger	ox,	but	used
two	oxen.

—Grace	Hopper

Parallel	processing	is	a	class	of	strategies	for	computation	where	we	divide	a
problem	into	pieces	and	tackle	each	piece	with	a	different	computer	or
different	processing	units	on	a	single	computer—or	a	combination	of	both
approaches.	This	chapter	treats	true	parallel	processing,	where	different
computations	occur	simultaneously,	and	concurrent	processing,	where	we	ask
the	computer	to	do	several	things	at	once,	but	it	may	have	to	alternate
among	them.

While	writing	effective	parallel	programs	can	be	tricky,	Julia	goes	a	long
way	toward	making	parallel	and	concurrent	processing	as	easy	as	possible.
The	same	program	may	run	in	parallel	or	merely	concurrently,	depending
on	machine	resources,	but	Julia’s	abstractions	free	us	to	write	one	version	of
the	program	that	can	take	advantage	of	varying	runtime	environments.

This	chapter	will	provide	an	overview	of	how	to	implement	the	major
concurrency	paradigms	using	facilities	built	into	Julia	and	several	convenient
packages.



Concurrency	Paradigms
A	natural	distinction	from	the	programmer’s	point	of	view	is	between
multithreading	and	multiprocessing,	and	that’s	the	major	divide	that	organizes
this	chapter.	This	area	suffers	from	some	terminological	inconsistency.	We
use	multithreading	to	mean	programming	aimed	at	parallel	execution	on
multiple	CPU	cores	on	a	single	machine.	A	core	is	a	processing	unit	within	a
CPU	chip.	Each	one	is	equipped	with	its	own	resources,	such	as	caches	and
arithmetic	logic	units,	and	can	execute	instructions	independently,	although
it	may	share	some	resources	with	other	cores.	If	someone	happens	to	run	a
multithreaded	program	on	a	computer	with	only	one	core,	there	won’t	be
any	parallelism	happening,	but	that	need	not	concern	us	when	we’re	writing
the	program.	The	same	code	will	run	faster	on	a	multicore	machine	if	we’ve
written	it	correctly.

We	use	multiprocessing	to	refer	to	a	style	of	programming	where	we
launch	tasks	that	can	be	executed	by	different	processes	on	a	single	machine
or	by	multiple	machines	(or	both).

The	most	important	distinction	between	the	two	styles	of	programming
has	to	do	with	access	to	memory:	all	of	the	threads	in	a	multithreaded
program	have	access	to	the	same	pool	of	memory,	while	the	processes	in	a
multiprocessing	program	have	separate	memory	areas.

Multithreading
This	section	deals	with	speeding	up	the	work	within	a	single	process	by
dividing	it	among	a	number	of	tasks.	Since	all	these	tasks	exist	within	the
same	process,	they	all	have	access	to	the	same	memory	space.	The	task	is	the
basic	concept	upon	which	Julia’s	parallel	and	concurrent	processing	is	built.
It’s	a	discrete	unit	of	work,	usually	a	function	call,	that’s	assigned	to	a
particular	thread	by	the	scheduler.	Tasks	are	inherently	asynchronous;	once
launched,	they	continue	on	their	assigned	thread	until	they’re	done	or
suspend	themselves	by	yielding	to	the	scheduler.	However,	we	can
synchronize	and	orchestrate	the	tasks’	life	cycles	in	various	ways.

NOTE

You	may	have	done	parallel	computing	with	Julia	without	knowing	it.	Many



linear	algebra	routines,	including	the	matrix	multiplication	dispatched	by	*,	run
multithreaded	BLAS	(Basic	Linear	Algebra	Subprograms)	routines	that
automatically	take	advantage	of	all	CPU	cores,	transparently	to	the	user.	You
can	verify	this	by	executing	a	matrix	multiply	in	the	REPL	and	keeping	an	eye
on	your	CPU	meters.

When	we	enter	the	Julia	REPL	or	use	the	julia	command	to	run	a
program	stored	on	the	disk,	we	have	several	available	command	line	options.
Unless	we	use	the	-t	option,	Julia	uses	exactly	one	thread	(and,	consequently,
one	CPU	core),	no	matter	the	hardware	configuration	on	which	it’s	running.

To	allow	Julia	to	use	all	the	available	threads,	use	the	-t auto	argument.	In
that	case,	all	of	the	“available”	threads	will	be	all	of	the	logical	threads	on	the
machine.	This	is	often	not	optimal.	A	better	choice	can	be	-t	n,	where	n	is	the
number	of	physical	cores.	For	example,	the	popular	Intel	Core	processors
provide	two	logical	cores	for	each	physical	core	using	a	technique	called
hyperthreading.	Hyperthreading	can	yield	anything	from	a	modest	speedup	to
an	actual	slowdown,	depending	on	the	type	of	calculation.

On	Linux	we	can	use	the	lscpu	command	at	the	system	shell	to	get
information	about	the	CPU.	For	example,	if	the	output	contains	the	lines

Thread(s) per core:              2
Core(s) per socket:              2
Socket(s):                       1

then	the	machine	has	a	total	of	two	physical	compute	cores	and	four	logical
threads	provided	by	hyperthreading.	We	usually	need	to	experiment	to
discover	whether	-t	n	(in	this	case,	-t 2)	or	-t auto	leads	to	a	better	outcome.

Within	a	program,	or	in	the	REPL,	we	can	check	for	the	number	of
available	threads	with

Threads.nthreads()

which	reports	the	total	number	in	use	and	is	blind	to	how	many	of	them
represent	real	cores.

With	multiple	threads,	we	can	speed	up	our	programs	by	assigning	tasks
to	run	on	more	than	one	CPU	core	simultaneously,	either	automatically	or
by	applying	various	levels	of	control.



Easy	Multithreading	with	Folds
One	automatic	way	of	launching	tasks	is	with	the	Folds	package,	which
provides	multithreaded	versions	of	map(),	sum(),	maximum(),	minimum(),	reduce(),
collect(),	and	a	handful	of	other	functions	over	collections.	Its	use	is	as	easy
as	replacing,	for	example,	sum()	with	Folds.sum().	The	parallelized	function
takes	care	of	dividing	the	work	among	all	the	available	threads.

As	an	example,	Listing	15-1	shows	the	parallelized	map	of	an	expensive
function	over	an	array.

julia> using BenchmarkTools, Folds

julia> f(x) = sum([exp(1/i^2) for i in 1:x]);

julia> time_serial = @belapsed map(f, 100_000:105_000)
13.989536582

julia> time_parallel = @belapsed Folds.map(f, 100_000:105_000)
7.606663313

julia> time_parallel / time_serial
0.5437394776026614

julia> Threads.nthreads()
2

Listing	15-1:	Easy	parallelism	with	Folds.jl

The	@belapsed	macro	is	part	of	BenchmarkTools.	Like	the	@btime	macro	that
we’ve	used	before,	it	runs	the	job	repeatedly	and	reports	an	average	of
resource	utilizations.	This	version	is	convenient	when	we	just	want	the	CPU
time	consumed.

The	parallelized	version	of	map()	gives	each	thread	an	approximately	equal
portion	of	the	loop	over	5,001	numbers.	Ideally,	the	total	compute	time
should	be	1/N,	where	N	is	the	number	of	threads.	Behind	the	scenes,	it’s
creating	tasks,	each	with	some	portion	of	the	loop,	and	assigning	them	to
available	threads;	it	may	use	two	tasks,	or	more.	It	also	synchronizes	the
computation,	waiting	for	all	the	tasks	to	complete	before	returning.

This	REPL	session	was	started	using	the	-t 2	flag.	The	results	show	that
the	parallel	version	used	just	slightly	more	than	half	the	time	of	the	serial
computation.	Since	we	are	running	on	two	(physical)	threads,	the	result
indicates	an	almost	ideal	parallel	speedup.

However,	we’re	not	always	so	lucky.	Whether	parallelizing	a	computation



helps,	hinders,	or	has	no	effect	is	the	result	of	the	trade-off	between	the
overhead	of	setting	up	and	managing	a	set	of	tasks	and	the	benefits	of
dividing	up	the	work.	It’s	sensitive	to	the	cost	of	the	calculation	per	array
element,	the	size	of	the	array,	and	the	patterns	of	memory	access.	The	same
calculation	on	a	smaller	array	has	a	better	outcome	using	the	serial	map():

julia> time_serial = @belapsed map(f, 1:41)
2.4464e-5

julia> time_parallel = @belapsed Folds.map(f, 1:41)
2.5466e-5

Here,	working	on	a	single	processor	is	actually	faster	than	trying	to
parallelize	the	short	computation.	Successful	parallel	computing	requires	a
good	deal	of	testing.	We	need	to	ensure	that	we’re	taking	good	advantage	of
the	hardware	and	that	the	results	running	on	multiple	cores	are	identical	to
the	results	run	serially,	aside	from	small	numerical	differences	that
reordering	of	floating-point	calculations	can	cause	in	some	programs.

Manual	Multithreading	with	@threads
The	Folds	package	is	a	higher-level	interface	to	the	manual	multithreading
that’s	the	subject	of	this	section.	Going	manual	requires	more	care,	but	it	can
provide	an	extra	degree	of	control	that	we	sometimes	need.

Threads.@threads
The	main	facility	for	multithreading	in	Julia	is	the	Threads.@threads	macro,
which	is	part	of	Base,	so	it’s	always	available.	To	run	a	loop	in	parallel,	we
preface	it	with	the	macro.	As	an	introduction,	Listing	15-2	tackles	the	same
problem	as	in	the	previous	section.

julia> f(x) = sum([exp(1/i^2) for i in 1:x]);

julia> time_serial = @belapsed for x in 100_000:105_000
           r = f(x)
       end
13.933373843

julia> time_parallel = @belapsed Threads.@threads for x in 100_000:105_000
           r = f(x)
       end
7.507556971



Listing	15-2:	Timing	a	threaded	loop

Apparently,	the	@threads	version	performs	similarly	to	the	wrapper	from
the	Folds	package.

The	@threads	macro	works	by	dividing	the	loop	into	N	segments	and
assigning	each	segment	to	a	separate	task.	The	scheduler	apportions	these
tasks	among	the	available	threads.	Normally	N	is	a	small	multiple	of	the
number	of	threads,	so	if	we	have	two	cores	and	have	used	the	-t 2	flag,
@threads	will	probably	divide	the	loop	over	5,001	elements	into	two	or	four
loops	of	approximately	equal	length.

The	@threads	loop	is	synchronized	in	the	sense	that	computation	does	not
continue	past	the	end	of	the	loop	until	all	tasks	are	complete.	Different	parts
of	the	loop,	hence	different	tasks,	may	take	different	amounts	of	time.	If	this
difference	is	large,	some	threads	will	be	idle	waiting	for	the	others	to	catch
up.	This	is	why,	as	mentioned	previously,	this	style	of	multithreading	works
best	when	all	iterations	take	roughly	the	same	computing	time.

Instead	of	throwing	out	the	result,	let’s	try	adding	together	all	the	f(x)s:

function sumf_serial(n)
    s = 0.0
    for x in 1:n
        s += f(x)
    end
    s
end

function sumf_parallel(n)
    s = 0.0
    Threads.@threads for x in 1:n
        s += f(x)
    end
    s
end

julia> sumf_serial(1000)
502900.5422006599

julia> sumf_parallel(1000)
376606.37463883933

julia> sumf_parallel(1000)
376453.03112871706

The	parallel	results	not	only	differ	from	the	serial	result,	but	it	seems	that
we	can	get	different	answers	for	different	runs	of	the	parallel	program.	What



did	we	do	wrong?

Atomic	Theory
The	problem	arises	when	we	update	s	within	the	parallel	loop.	Multiple
independent	threads	trying	to	access	and	write	to	the	same	scalar	variable
creates	a	race	condition,	a	conflict	where	the	result	depends	on	an	order	of
operations	which	the	program	does	not	control.	We	can	get	different	results
from	different	runs	because	the	timings	will	differ,	based	on	unknown
influences	such	as	the	other	tasks	that	the	operating	system	happens	to	be
performing	during	the	run.	There’s	no	problem	when	updating	array
locations	because	in	the	threaded	loop,	arrays	will	be	divided	among	the
threads	and	no	thread	will	step	on	another	thread’s	data.

Julia	provides	several	strategies	for	protecting	a	scalar	during
multithreaded	execution.	One	way	is	to	use	atomic	variables,	as	Listing	15-3
shows.

function sumf_parallel_locked(n)
    s = Threads.Atomic{Float64}(0);
    Threads.@threads for x in 1:n
        Threads.atomic_add!(s, f(x))
    end
    s[]
end

julia> sumf_parallel_locked(1000)
502900.5422006605

Listing	15-3:	Using	an	atomic	variable

We’ve	initialized	s	as	an	atomic	variable	using	the	built-in	Threads.Atomic
declaration.	It	allows	only	simple	types:	the	various	floats,	integers,	and	the
Bool	type.	We	update	atomic	variables	using	a	small	collection	of	functions
for	the	purpose,	all	namespaced	with	Threads.	In	addition	to	Threads.atomic_add!
(),	we	have	atomic_sub!()	for	subtraction,	several	logical	operators,	atomic_xchg!
()	for	setting	the	variable	to	a	new	value,	and	a	few	more.	We	access	the
value	of	an	atomic	variable	with	the	odd-looking	syntax	in	the	last	line	of	the
program.

The	result	is	close	to	the	serial	result,	so	the	atomic	variable	fixed	the
problem.	The	results	are	close,	but	not	equal:	they	vary	in	the	last	few
decimal	places.	The	result	of	a	series	of	floating-point	operations	can	depend



on	their	order,	and	the	order	varies	between	serial	and	parallel	runs	and
among	parallel	runs	with	different	numbers	of	threads.	We’ll	also	get	a
minutely	different	result	if	we	run	the	serial	code	counting	backward	in	the
loop:

function sumf_serial_reversed(n)
    s = 0.0
    for x in n:-1:1
        s += f(x)
    end
    s
end

julia> sumf_serial_reversed(1000)
502900.5422006606

These	small	variations	in	the	least	significant	parts	of	the	answers	are
normal	and	expected,	and	are	something	that	the	numericist	must	be	alert	to
when	comparing	the	results	from	a	parallelized	program	when	run	on
different	computers	with	possibly	different	numbers	of	cores.

We	can	also	get	a	correct	summation	using	a	different	strategy:

function sumf_parallel2(n)
    s = zeros(Threads.nthreads())
    Threads.@threads for x in 1:n
     ➊ s[Threads.threadid()] += f(x)
    end
    sum(s)
end

julia> sumf_parallel2(1000)
502900.5422006605

We’ve	essentially	given	each	thread	its	private	copy	of	the	summation
variable	and	added	all	the	copies	together	at	the	end.	We	use
Threads.nthreads()	to	create	a	vector	the	same	length	as	the	number	of	threads.
Within	each	thread,	Threads.threadid()	returns	that	thread’s	unique	integer
identifier.	We	use	this	identifier	to	index	into	the	array	of	summations	➊,
ensuring	that	each	thread	updates	only	the	element	that	belongs	to	it.	The
sum	of	sums	in	the	last	line	should	be	the	same	as	the	scalar	s	in	the	other
versions	of	the	program.

The	technique	of	using	an	array	instead	of	an	atomic	variable	can	be
faster,	because	before	a	thread	is	allowed	to	read	or	update	an	atomic
variable,	it	must	wait	until	it’s	released	by	any	other	thread	that’s	using	it.



The	use	of	arrays	eliminates	this	locking	and	the	consequent	waiting	time.
However,	it	uses	a	bit	more	memory	for	the	new	arrays.

Spawning	and	Synchronizing	Tasks
The	techniques	we’ve	described	in	the	previous	two	sections	implement
parallelism	by	dividing	the	work	among	tasks	and	launching	them	behind	the
scenes.	Here	we’ll	learn	how	to	take	control	of	spawning	and	synchronizing
tasks.

Launching	Tasks	with	Threads.@spawn
We	can	also	launch	tasks	manually	with	the	Threads.@spawn	macro,	as	shown	in
Listing	15-4.

function sumf_atomic(f)
    s = Threads.Atomic{Float64}(0.0);
 ➊ @sync for x in 100_000:105_000
        Threads.@spawn Threads.atomic_add!(s, f(x))
    end
return s
end

julia> @belapsed s = sumf_atomic(f)
8.101242794

julia> s = sumf_atomic(f);

julia> s[]
5.126145395914207e8

Listing	15-4:	Introducing	task	spawning

Since	@belapsed	and	the	other	benchmarking	tools	in	BenchmarkTools	run	code
multiple	times,	we	place	the	timed	code	within	a	function	to	force	the	atomic
variable	to	be	initialized	in	each	trial	run.

The	@sync	macro	➊	works	for	any	block,	not	just	for	loops.	It	synchronizes
all	tasks	launched	within	the	lexical	scope	of	the	block,	which	means	that	the
statement	following	its	end	statement	will	wait	until	they’re	all	done.	In
Listing	15-4,	@sync	ensures	that	when	we	access	s[],	it	will	have	its	final	value,
and	that	the	timings	include	the	time	for	completion	of	all	tasks.

The	block	in	Listing	15-4	is	a	version	of	the	function	in	Listing	15-3,
with	manually	spawned	tasks.	In	general,	the	loop



Threads.@threads for i in 1:N
    something
end

is	semantically	equivalent	to

@sync for i in 1:N
    Threads.@spawn something
end

but	their	implementations	are	different,	in	that,	as	mentioned	earlier,	Threads
.@threads	is	coarse-grained,	dividing	the	loop	into	a	small	number	of	tasks.	The
manually	spawned	version	creates	a	new	task	for	every	loop	iteration.

The	fact	that	the	timings	in	these	two	examples	are	almost	the	same
demonstrates	that	spawning	a	task	in	Julia	has	almost	no	overhead;	we	can
spawn	thousands	of	tasks	with	little	performance	penalty.	If	we	move	a
program	using	tasks	to	a	different	machine	with	more	cores,	it	should	run
faster	with	no	changes	required	on	our	part.

NOTE

In	this	chapter	we	perform	many	timings	on	bare	loops	at	the	top	level	in	order
to	compare	the	effects	of	different	approaches	to	concurrency	and	parallelism	in	as
few	lines	of	code	as	possible.	In	developing	a	real	program,	all	timing	studies
should	be	on	functions,	preferably	in	modules.	Many	compiler	optimizations	are
available	only	for	code	in	functions.

Synchronizing
Using	Folds.map()	or	@threads	synchronizes	tasks	for	us.	However,	if	we	launch
tasks	with	Threads.@spawn	manually,	we	can’t	know	which	have	completed	their
work	at	any	particular	point	in	the	program.	That’s	why	the	program	in
Listing	15-4	needs	a	@sync	macro.

The	following	example	illustrates	what	can	happen	if	we	neglect
synchronization:

W = zeros(5);

for i in 1:5
    Threads.@spawn (sleep(1); W[i] = i)
end



println(W)

If	we	run	this	program,	we’ll	see	the	following	output:

[0.0, 0.0, 0.0, 0.0, 0.0]

Each	loop	iteration	launches	a	task	that	mutates	the	global	array,	writing
to	one	of	its	locations.	However,	at	the	end	of	the	loop,	the	array	W	doesn’t
seem	to	have	changed.

Each	@spawn	sends	off	a	task	to	do	its	work,	and	the	loop	continues	to	the
next	iteration	immediately.	Although	each	spawned	job	has	a	built-in	delay
created	by	the	sleep()	call,	the	loop	itself	is	complete	almost	instantaneously.
We	then	execute	the	statement	following	the	loop,	printing	the	value	of	W,
which	hasn’t	yet	been	written	to.

If	we	want	to	wait	at	the	end	of	the	loop	for	all	tasks	spawned	within	it	to
complete,	so	that	W	is	up	to	date,	we	use	the	@sync	macro:

W = zeros(5);

@sync for i in 1:5
    Threads.@spawn (sleep(1); W[i] = i)
end
println(W)

When	we	run	this	program,	we	see:

[1.0, 2.0, 3.0, 4.0, 5.0]

Instead	of	synchronizing	all	the	tasks	within	a	block,	we	can	wait	for	some
of	them	to	complete,	letting	the	others	run	their	courses:

W = zeros(5);

jobs = Vector{Any}(undef, 5);

for i in 1:5
    jobs[i] = Threads.@spawn (sleep(i); W[i] = i)
end
wait(jobs[2])
println(W)

We	initialize	a	jobs	vector	to	hold	the	return	values	of	each	call	to	@spawn.
These	are	Tasks,	a	data	type	that	holds	information	about	an	asynchronous
task.	The	wait()	function	pauses	execution	until	its	argument	is	ready.	We



change	the	loop	a	bit	to	wait	on	each	iteration	for	i	seconds,	so	each	task	will
take	longer	than	the	preceding	one.	As	soon	as	the	second	job	is	complete,
the	next	instruction,	printing	W,	is	run.

The	program	produces	this	output:

[1.0, 2.0, 0.0, 0.0, 0.0]

We	can	see	that	when	the	println()	statement	is	reached,	the	first	two
elements	of	W	are	modified,	but	the	remaining	tasks	are	still	running
(sleeping).

Another	useful	synchronization	function	is	fetch().	Like	wait(),	it	receives
a	Task	as	an	argument	and	waits	for	the	task	to	finish:

W = zeros(5);

jobs = Vector{Any}(undef, 5);

for i in 1:5
    jobs[i] = Threads.@spawn (sleep(i); W[i] = i)
end
job2 = fetch(jobs[2])
println(W)
println(job2)

That	function	prints	this	output:

[1.0, 2.0, 0.0, 0.0, 0.0]
2

Since	the	result	returned	by	an	assignment	is	the	value	assigned,	the	task
that	executes	W[2] = 2	returns	2,	and	this	gets	assigned	to	job2	by	the	call	to
fetch().	The	condition	of	W	at	this	point	is	its	state	immediately	after	the
second	task	is	complete.

Yielding
After	the	scheduler	places	tasks	on	all	available	threads,	any	remaining
spawned	tasks	are	on	the	queue,	waiting	for	their	turn	to	run.	They	will	have
to	wait	until	one	of	the	running	tasks	finishes	or	yields	its	place.	This	system
is	called	cooperative	multitasking,	and	it’s	the	model	Julia	usually	applies	to
task	scheduling.	Some	operations	cause	a	task	to	yield	automatically.	The
more	important	ones	are	waiting	for	I/O	and	sleeping.	But	if	a	program



involves	multiple	tasks	that	perform	long	calculations,	it’s	our	job	to	break
up	the	calculations	manually	and	insert	yield()s	in	order	to	provide
opportunities	for	other	tasks	to	run,	unless	we	don’t	mind	each	thread
waiting	for	each	expensive	task	on	it	to	finish	(which	may	indeed	be
acceptable).

Listing	15-5	contains	two	functions	that	each	do	the	identical	piece	of
busywork,	applying	f(x),	which	was	defined	in	Listing	15-1,	to	a	range	of
numbers.	The	difference	between	the	two	functions	is	that	the	first	does	the
job	in	one	lump,	while	the	second	divides	the	range	into	two	halves,	calling
yield()	between	them.	The	yield()	function	tells	the	scheduler	that	it	may
suspend	the	task	and	run	the	next	task	from	the	queue,	if	there	is	one
waiting.	After	that	task	is	complete,	the	suspended	task	will	resume.

function task_timer(n)
    push!(times, (n, time()))
    map(f, 100_000:102_000)
    push!(times, (n, time()))
end

function task_yield_timer(n)
    push!(times, (n, time()))
    map(f, 100_000:101_000)
    yield()
    map(f, 101_000:102_000)
    push!(times, (n, time()))
end

Listing	15-5:	Inserting	an	opportunity	to	yield

The	functions	assume	the	existence	of	a	global	array	named	times.	They
place	the	result	of	calling	time(),	within	a	tuple	with	the	integer	n	identifying
the	task,	onto	the	end	of	this	array	as	soon	as	they	begin	and	just	before	they
return.	The	time()	function	returns	the	system	time	in	seconds	to
approximately	microsecond	precision.	Its	value	is	uninteresting,	but	we	can
use	the	difference	between	two	calls	to	time()	to	find	out	how	much	time
passed	between	two	code	locations,	which	is	a	pretty	accurate	measure	of
how	long	the	intervening	calculation	took.

Listing	15-6	spawns	three	tasks	using	the	first	function,	recording	the
saved	times,	and	then	does	the	same	using	the	modified	function	with	the
yield()	call.

times = []
@sync for n in 1:3



    Threads.@spawn task_timer(n)
end
times_noyield = times[:]

times = []
@sync for n in 1:3
    Threads.@spawn task_yield_timer(n)
end
times_yield = times[:]

Listing	15-6:	Testing	the	effects	of	yielding

Figure	15-1	plots	the	task	numbers	versus	the	elapsed	times	from	the	start
of	each	thread-spawning	loop,	for	experiments	on	a	single	thread.

Figure	15-1:	Timings	for	cooperative	and	selfish	tasks



We	can	see	from	Figure	15-1	that	each	complete	loop	takes	about	5.5
seconds.	The	experiment	with	yielding	(circles)	shows	that	each	task	does	its
half	loop	and	then	allows	the	next	task	in	the	queue	to	run.	It	doesn’t	resume
until	all	subsequent	tasks	have	completed	their	first	halves	and	yielded.	In
the	experiment	without	yielding	(hexagons),	each	task	monopolizes	the
thread	until	it’s	finished.

With	only	one	thread	active,	the	order	of	task	operations	is	predictable.
Also,	when	using	one	thread	it’s	impossible	for	yielding	or	any
rearrangement	of	tasks	to	decrease	the	time	to	completion	of	all	the
calculations;	we	can’t	get	something	for	nothing.	However,	in	cases	where
lighter	tasks	are	mixed	with	more	time-consuming	ones,	allowing	the	latter
to	yield	will	get	us	access	to	the	results	of	the	lighter	tasks	sooner,	which	can
be	desirable	in	some	programs.	When	multiple	threads	are	available,
yielding	gives	the	scheduler	a	chance	to	migrate	tasks	among	threads,
keeping	them	all	occupied	and	potentially	increasing	the	total	throughput.
This	rearrangement	of	tasks	is	called	load	balancing.

Multiprocessing
If	we	decide	to	run	with	Grace	Hopper’s	metaphor	that	starts	this	chapter,
we	might	say	that	the	multithreading	explored	in	the	previous	section
amounts	to	yoking	together	a	team	of	oxen	to	pull	a	big	load,	while	we	can
compare	the	multiprocessing	explored	in	this	section	to	dividing	the	load
into	separate	carts	and	letting	each	ox	pull	its	cart	at	its	own	pace.

Multiprocessing	and	distributed	computing	are	closely	related	concepts,
and	the	two	terms	are	often	used	interchangeably.	This	style	of	computation
divides	the	work	into	multiple	processes	that	have	their	own	memory	spaces.
The	processes	may	share	resources	on	a	single	computer	or	on	multiple
networked	computers.	Julia’s	abstractions	make	it	possible	to	write	the
multiprocessed	program	once	and	run	it	in	a	variety	of	environments.

Because	the	various	processes	don’t	have	access	to	the	same	memory,	any
data	that	they	need	must	be	copied	and	sent	to	them,	possibly	over	a
network.	Because	of	this,	distributed	computing	is	most	suited	to	handling
time-consuming	tasks	on	small	data,	especially	if	computing	resources	are
communicating	over	a	slow	network	such	as	the	internet.

Running	on	a	cluster	uses	multiprocessing	to	distribute	the	work	to	an



array	of	processors	usually	communicating	over	a	higher-bandwidth
network,	combined	with	the	multithreading	of	the	previous	section	to	make
the	best	use	of	each	node.

Multiprocessing	is	based	on	the	same	concept	of	an	asynchronous	task
that	forms	the	basis	of	the	multithreading	described	previously.	It	adds	the
concept	of	the	process	and	the	possibility	of	spawning	tasks	on	more	than
one	process.	It	allows	us	to	do	this	automatically	or	with	control	of
individual	tasks,	with	program	interfaces	similar	to	the	ones	we	explored
with	multithreading.

Easy	Multiprocessing	with	pmap
To	start	the	Julia	REPL	or	runtime	in	multiprocessor	mode,	use	the	-p	flag.
As	with	the	-t	flag,	it	usually	makes	the	most	sense	to	ask	for	a	number	of
processes	equal	to	the	number	of	hardware	threads	available.	On	a	machine
with	two	cores,	start	Julia	using	julia -p2.	This	creates	two	worker	processes
that	can	accept	tasks.	We’ll	have	(in	this	case)	a	total	of	three	processes:	the
two	workers	and	the	executive	process,	in	which	the	REPL	runs	if	we’re
working	interactively.	We	can	assign	tasks	to	workers	automatically	or	by
specifying	the	process	number.

With	the	-p2	flag,	each	process	will	be	single-threaded,	and	each	will	run
on	its	own	thread	on	the	two-core	machine.	We	can	also	use	the	flags	-p2 -t2,
which	creates	two	worker	processes,	each	with	access	to	two	threads.	Then
we	have	the	option	of	spawning	tasks	on	either	process,	and,	within	each
task,	running	multithreaded	or	multiprocessing	loops.	At	this	point	it	may
seem	as	if	we	have	too	many	options,	and	that	it	would	be	difficult	to	decide
on	a	strategy.	One	rational	approach	that	takes	good	advantage	of	all
available	computing	resources	is	to	launch	one	worker	process	on	each
remote	machine,	using	the	mechanism	described	in	the	next	section,	and	use
the	-t auto	flag.	This	strategy	allows	each	networked	machine	to	use	all	its
available	threads	for	shared-memory	parallel	computing	and	helps	to	avoid
unnecessary	data	movement.

Starting	Julia	with	the	-p	flag	automatically	performs	the	equivalent	of
using Distributed,	loading	the	standard	library	package	that	provides	utilities
for	multiprocessing.	We	can	retrieve	the	number	of	available	processes	with
nworkers(),	provided	by	Distributed.	One	of	the	useful	utilities	from	Distributed
is	pmap(),	a	distributed	version	of	map(),	as	shown	in	Listing	15-7.



➊ julia> @everywhere f(x) = sum([exp(1/i^2) for i in 1:x]);

   julia> time_serial = @belapsed map(f, 100_000:105_000)
   13.934491874

   julia> time_mp = @belapsed pmap(f, 100_000:105_000)
   7.944081133

Listing	15-7:	The	distributed	map

Since	each	process	has	its	own	memory,	we	have	to	give	copies	of	all
function	definitions	to	the	workers.	That’s	what	the	@everywhere	macro	does
➊.	We	also	need	to	decorate	module	imports,	constant	definitions,	and
everything	else	that	the	workers	need	to	use	with	@everywhere.

Once	all	the	workers	have	copies	of	the	f()	function,	we	can	repeat	our
timing	tests	from	Listing	15-1	using	pmap().	This	works	similarly	to
Folds.map(),	but	instead	of	orchestrating	a	synchronized	computation	by
spawning	tasks	to	multiple	threads	in	the	current	process,	it	spawns	tasks	in
multiple	processes.	If	we’ve	launched	Julia	with	the	worker	process	number
equal	to	the	number	of	physical	cores,	as	suggested	earlier,	normally	each	of
the	processes	launched	by	pmap()	will	occupy	its	own	hardware	thread,	and
pmap()	will	assign	tasks	to	processes,	and	hence	to	threads,	in	a	way	that
attempts	to	balance	the	load.

Networking	with	Machine	Files
Julia	makes	multiprocessing	on	a	collection	of	networked	computers	almost
as	easy	as	on	a	single	computer.	The	first	step	is	to	create	a	text	file	that
contains	the	network	addresses	of	the	machines	that	we	want	to	enlist	in
helping	with	the	calculation,	along	with	some	other	details.	The	machines	in
question	must	have	Julia	installed,	and	should	contain	a	directory	path
identical	to	the	path	from	which	we’re	running	the	controlling	program.	We
need	to	have	passwordless	ssh	access	to	each	machine.	Leaving	out	some
optional	details,	the	machine	file	contains	one	line	per	machine,	in	the
following	form:

n*host:port

Here	n	is	the	number	of	workers	to	start	on	the	machine	at	host,	which
can	be	an	IP	address	or	a	hostname	that	the	controlling	computer	can
resolve.	The	:port	part	is	optional	and	only	needed	for	nonstandard	ssh	ports



(ports	other	than	22).
For	this	example,	I	put	two	computers	into	a	machine	file	named

machines.	Here’s	the	entire	file:

2*tc
2*pluton:86

Both	hostnames	are	resolved	into	their	IP	addresses	by	entries	in	my
/etc/hosts	file.	I	could	have	used	the	IP	numbers	directly	as	well.	The
computer	called	tc	is	in	my	house,	and	pluton,	a	server	I	maintain	mostly	for
serving	Pluto	notebooks	that	I	drafted	for	this	exercise,	is	about	1,200	miles
away.	It	listens	on	port	86	for	ssh	connections,	whereas	tc	uses	the	standard
port.	The	machine	file	specifies	that	each	machine	will	use	two	worker
processes.

To	start	a	REPL	that	will	use	these	remote	resources	as	well	as	two
worker	processes	on	the	machine	where	the	REPL	is	running,	we	execute

julia -p2 --machine-file=machines

omitting	other	options,	such	as	specifying	a	project	directory.
After	a	modest	delay,	we	get	a	REPL	prompt.	At	this	point	the	Julia

workers	on	both	remote	computers	are	running	and	waiting	to	receive	tasks.
Let’s	check	that	everyone’s	listening:

julia> pmap(_ -> run(`hostname`), 1:6)
      From worker 4:    tc
      From worker 3:    sp3
      From worker 2:    sp3
      From worker 5:    pluton
      From worker 6:    pluton
      From worker 7:    tc
6-element Vector{Base.Process}:
 Process(`hostname`, ProcessExited(0))
 Process(`hostname`, ProcessExited(0))
 Process(`hostname`, ProcessExited(0))
 Process(`hostname`, ProcessExited(0))
 Process(`hostname`, ProcessExited(0))
 Process(`hostname`, ProcessExited(0))

The	host	sp3	is	the	laptop	where	the	REPL	is	running.	We	use	pmap()	to
launch	six	processes,	asking	each	one	to	run	the	system	command	hostname.
There’s	no	guarantee	that	they’ll	be	equally	divided,	as	it	turns	out	in	this
example,	or	that	every	machine	receives	a	job—but	in	this	case	it	turns	out



that	six	tasks	was	enough.	Using	run()	provides	a	report	identifying	which
worker	ID	is	assigned	to	which	machine.	If	we	need	merely	the	output	from
the	shell	command,	we	can	use	readchomp()	instead	of	run().

The	worker	numbers	range	from	2	to	7	because	process	1	is	the	REPL
process.	We	can	get	a	list	of	workers	anytime	with:

julia> workers()
6-element Vector{Int64}:
 2
 3
 4
 5
 6
 7

Let’s	repeat	the	timing	in	Listing	15-7	on	our	three-machine	network,	as
shown	in	Listing	15-8.

julia> @belapsed pmap(f, 100_000:105_000)
5.255985404

Listing	15-8:	A	distributed	map	over	a	network	of	computers

The	machines	pluton	and	tc	each	have	two	CPU	cores,	so	we	have	tripled
the	number	of	cores	available	for	the	calculation.	We	did	observe	a	speedup,
but	only	by	about	50	percent	over	performing	the	calculation	confined	to	the
local	machine.	Computing	over	the	internet	incurs	significant	overhead.
Monitoring	the	remote	machine’s	CPU	usage	shows	that	both	of	tc’s	CPU
cores	were	active	during	the	calculation,	at	about	70	percent	utilization,
while	pluton’s	two	cores	were	nearly	quiescent.	The	ping	time	to	pluton	during
the	experiment	was	about	50	times	longer	than	to	tc,	as	we	might	expect
from	their	relative	distances.	Clearly	Julia’s	scheduler	sent	more	units	of
work	to	the	closer	computer	while	waiting	to	receive	responses	from	the
distant	machine.

Going	Manual	with	@spawnat
The	@spawnat	macro	spawns	an	asynchronous	task,	just	as	@spawn	does,	but	on	a
worker	process.	We	can	leave	the	decision	about	which	process	is	to	receive
the	task	by	using	@spawnat :any,	or	pick	one	with	@spawnat	n.	The	macro	is	part
of	Distributed,	so	it	is	always	available	if	we’ve	started	Julia	with	the	-p	flag.

Let’s	check	that	the	macro	does	what	we	expect	by	using	it	to	ask	each



machine	to	report	its	hostname:

for p in 2:7
    @spawnat p @info "Process $(myid()) is running on $(readchomp(`hostname`))"
end

The	myid()	function	returns	the	process	number	of	the	process	where	it	is
called.	The	program	prints	this	message	when	run:

From worker 3:    [ Info: Process 3 is running on sp3
From worker 2:    [ Info: Process 2 is running on sp3
From worker 4:    [ Info: Process 4 is running on tc
From worker 7:    [ Info: Process 7 is running on tc
From worker 5:    [ Info: Process 5 is running on pluton
From worker 6:    [ Info: Process 6 is running on pluton

We	observed	a	modest	speedup	when	running	a	pmap()	over	a	network	of
three	computers	in	Listing	15-8.	Listing	15-9	shows	what	happens	if	we	try	a
version	of	the	loop	with	manual	spawning.

@sync for x in 100_000:105_000
    @spawnat :any r = f(x)
end

Listing	15-9:	Spawning	too	many	distributed	processes

We	would	observe	terrible	performance,	worse	than	performing	the
calculation	on	a	single	thread.	This	is	because,	unlike	the	coarse-grained
concurrency	that	pmap()	transforms	the	loop	into,	the	manual	multiprocessing
in	this	loop	launches	thousands	of	tasks	on	a	handful	of	processes.	Each	one
requires	interprocess	communication	to	manage,	which	far	outweighs	any
gains	from	concurrency.	The	situation	is	different	from	the	version	in
Listing	15-4,	where	the	fine-grained	loop	performs	as	well	as	the	coarse-
grained	loop,	because	in	that	case,	all	computation	takes	place	on	one
process.	Creating	tasks	within	a	process	is	very	cheap,	but	interprocess
communication	is	not;	therefore,	@spawnat	is	best	used	for	small	numbers	of
expensive	tasks	that	don’t	require	massive	copying	of	data.

Multiprocessing	Threads	with	@distributed
The	multiprocessed	analogy	to	the	Threads.@threads	macro	is	the	@distributed
macro.	While	the	former	divides	a	loop	into	a	coarse-grained	set	of	tasks	on
the	available	threads	of	the	local	machine	or	process,	the	latter	divides	a	loop



into	a	coarse-grained	set	of	tasks	spawned	across	processes,	which	may	be
across	machines	on	a	network.

Listing	15-10	shows	the	@distributed	version	of	the	threaded	loop	in
Listing	15-2.

julia> @belapsed @sync @distributed for x in 100_000:105_000
           r = f(x)
       end
3.668112229

Listing	15-10:	Using	@distributed

I	performed	this	timing	test	on	my	little	network	of	three	machines,	each
with	two	CPU	cores.	It’s	the	best	time	we’ve	achieved	for	this	loop	so	far.
We	need	to	use	the	@sync	macro	with	this	use	of	@distributed,	unlike	with
Threads.@threads,	which	always	synchronizes.	(Even	though	we’re	not	using	the
results	of	the	calculations,	leaving	off	the	@sync	renders	the	timing
meaningless,	as	in	that	case	the	loop	will	return	immediately	after	spawning
its	tasks.)

A	common	pattern	is	to	combine	the	results	from	each	iteration	of	a	loop,
as	we	did	in	Listing	15-4,	using	an	atomic	variable.	If	we	insert	a	function
between	the	@distributed	macro	and	the	for	keyword,	the	macro	will	gather
the	results	from	each	iteration,	reduce	them	using	the	function,	and	return
the	result	of	combining	the	reductions	from	each	process.	Since	returning
this	final	result	implies	synchronization,	we	can	leave	off	the	@sync	when
supplying	a	reduction	function:

julia> @distributed (+) for x in 100_000:105_000
           r = f(x)
       end
 5.126145395914206e8

The	loop	is	equivalent	to

sum(pmap(f, 100_000:105_000))

which	also	automatically	performs	a	reduction	across	multiple	processes.
Why	is	the	loop	in	Listing	15-10	faster	than	the	pmap()	version	shown	in

Listing	15-8?	Both	approaches	perform	the	same	calculation	distributed	over
the	same	machines.	As	always,	when	setting	out	to	increase	performance
through	concurrency,	we’re	obligated	to	analyze	the	workloads	in	our



programs.	The	loop	in	this	case	is	over	5,001	function	evaluations	that	are
nontrivial,	but	also	not	very	expensive	(on	the	local	machine	f(105_000)	takes
2.77	ms	to	evaluate).	The	pmap()	function,	by	default,	spawns	a	new	task	for
each	iteration	of	the	loop.	The	scheduler	will	attempt	load	balancing	by
apportioning	these	tasks	to	various	processes	as	they’re	spawned.	The
speedup	through	concurrency	is	partially	offset	by	the	overhead	of
scheduling	and	interprocess	communication.	Due	to	these	considerations,
pmap(),	with	no	additional	tuning	parameters,	works	best	with	a	small	number
of	expensive	tasks,	which	doesn’t	describe	the	situation	in	this	example.

In	contrast,	the	coarse-grained	concurrency	of	the	@distributed	loop	works
well	in	this	case,	with	a	large	number	of	relatively	light	tasks.	Far	fewer	tasks
are	spawned,	and	more	computer	time	is	devoted	to	calculation,	with	less
interprocess	communication	and	scheduling	overhead.

In	the	multithreaded	examples,	there’s	little	difference	in	performance
between	the	coarse-grained	Threads.@threads	version	and	the	fine-grained
Folds.map()	version.	This	is	because	there’s	no	interprocess	communication	in
that	case	and	spawning	tasks	is	very	fast.

We	can	tell	pmap()	to	break	up	the	loop	into	larger	chunks	using	the
batch_size	keyword	argument:

julia> @belapsed pmap(f, 100_000:105_000; batch_size=1000)
4.370967232

julia> @belapsed pmap(f, 100_000:105_000; batch_size=2501)
3.746921853

The	default	for	batch_size	is	1,	meaning	one	task	spawned	for	each
iteration.	A	batch_size	of	n	divides	the	loop	into	segments	of	length	up	to	n,
sending	each	loop	segment	off	to	a	worker	process	as	a	separate	task.	The
example	shows	that	we	can	get	performance	similar	to	the	@distributed	loop
from	pmap()	by	dividing	the	work	into	halves.

Summary	of	Concurrency	in	Julia
It’s	likely	that	any	program	intended	for	large-scale,	high-performance
computing	will	take	advantage	of	a	combination	of	multiprocessing	and
multithreading.	The	former	allows	the	program	to	distribute	its	work	over
the	nodes	of	a	supercomputing	cluster,	while	the	latter	exploits	multiple



cores	on	each	node.	Therefore,	Julia	programs	are	often	run	using
combinations	of	startup	flags	such	as	-p,	-t,	and	a	reference	to	a	--machine-file.

Julia’s	abstractions	go	far	in	allowing	us	to	write	one	version	of	our
program	that	will	run	fast	on	a	single	thread,	faster	on	multicore	hardware,
and	even	faster	on	a	network	of	computers.	Nevertheless,	for	the	best
performance,	we	can’t	escape	the	need	to	carefully	consider	the	patterns	of
computation	in	our	programs	and	make	it	possible	for	Julia’s	scheduler	and
the	operating	system	to	take	the	best	advantage	of	the	hardware.

Table	15-1	is	a	highly	simplified	summary	of	the	main	utilities	for	parallel
and	distributed	processing	that	we’ve	explored	throughout	this	chapter.

Table	15-1:	Multithreaded	and	Distributed	Processing

Model Threaded	(shared	memory) Distributed	(private
memory)

Startup julia -t n julia -p n

Loops Threads.@threads for @distributed for

Maps Folds.map() pmap()

Launch	task Threads.@spawn @spawnat (p	or	:any)

Before	tuning	the	parallelization	of	a	program,	we	should	strive	to
achieve	the	best	single-thread	performance	possible,	by	applying	the
optimization	principles	discussed	in	previous	chapters.	The	most	important
of	these	are	type	stability,	correct	order	of	memory	accesses,	and	caution
around	globals.	However,	even	more	important	than	these	common	pitfalls
is	the	choice	of	an	appropriate	algorithm,	a	subject	largely	beyond	the	scope
of	this	book.

Conclusion
The	subject	of	concurrency	in	Julia	is	large	and	complicated,	and	could
consume	a	book	of	this	size	on	its	own.	The	next	topics	of	interest	after
mastering	the	material	in	this	chapter	might	be	using	shared	arrays,	which
allow	multiprocessing-style	programming	using	shared	memory;	GPU



programming,	which	uses	a	graphical	processing	unit	as	an	array	processor;
and	using	the	message	passing	interface	(MPI)	library,	which	is	popular	in
Fortran	programs	for	high-performance	scientific	computing,	from	within
Julia.	“Further	Reading”	contains	links	to	starting	points	for	all	of	these
topics.

FURTHER	READING

The	Folds	package	resides	at	https://github.com/JuliaFolds/Folds.jl.
“A	quick	introduction	to	data	parallelism	in	Julia”	by	Takafumi
Arakaki,	the	author	of	Folds.jl,	is	especially	welcome,	as	Folds	has
little	documentation:	https://juliafolds.github.io/data-
parallelism/tutorials/quick-introduction/.
General	Julia	performance	tips	are	available	at
https://docs.julialang.org/en/v1/manual/performance-tips/.
For	documentation	on	shared	arrays,	visit
https://docs.julialang.org/en/v1/stdlib/SharedArrays/.
The	GitHub	organization	JuliaGPU	(https://juliagpu.org)	serves	as
an	umbrella	for	Julia	packages	that	implement	or	can	exploit
graphics	processing	units	for	parallelization.
Examples	of	GPU	programming	with	Julia	are	available	at
https://enccs.se/news/2022/07/julia-for-hpc.
The	JuliaParallel	GitHub	organization	is	home	to	a	number	of
packages	for	parallel	computing	in	Julia,	including	the	MPI	package
(https://github.com/JuliaParallel/MPI.jl	and	the	ClusterManagers
package	(https://github.com/JuliaParallel/ClusterManagers.jl)	for
managing	job	schedulers	like	Slurm	on	high-performance
computing	clusters.

https://github.com/JuliaFolds/Folds.jl
https://juliafolds.github.io/data-parallelism/tutorials/quick-introduction/
https://docs.julialang.org/en/v1/manual/performance-tips/
https://docs.julialang.org/en/v1/stdlib/SharedArrays/
https://juliagpu.org
https://enccs.se/news/2022/07/julia-for-hpc
https://github.com/JuliaParallel/MPI.jl
https://github.com/JuliaParallel/ClusterManagers.jl
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error	propagation,	280–284
errors,	178–186

combining	with	units,	283
Euler’s	number,	219
@everywhere	macro,	480
evolution,	simulated,	362–379
EvolutionaryModelingTools	package,	362
exceptions,	178–186

types	of,	178–179
executive	process,	480



expand_derivatives()	function,	387
expint()	function,	264
exponential	integral,	264
expression,	26

from	string,	168
expression	objects,	168–170

interpolation	of	values,	169–170
expression	quotation	(:),	168
Expr	type,	168
:extra_kwargs	entry,	257

F

f0	numerical	suffix,	281
factorial,	216
factorial()	function,	217,	313
factorization,	matrix,	402–403
factorize()	function,	402–403
factor	trees,	197–198
@fastmath	performance	macro,	176–177
FedEx,	61
fetch()	function,	476
fill()	function,	139
fillrange	plotting	attribute,	257
filter()	function,	163–164
finally	keyword,	186
findfirst()	function,	131–132
findlast()	function,	131–132
findnext()	function,	132
fir()	function,	435–437
fish,	193
flattening	a	collection,	369
Float16	type,	215



Float32	type,	215,	281
Float64	type,	27,	214
floatmax()	function,	216
floatmin()	function,	216
fluid	dynamics,	284–294
foldl()	function,	164
foldr()	function,	164
Folds	package,	469–470
football	fields,	270
force	from	potential	energy,	408–413
Fortran,	xxi–xxii,	404,	454
ForwardDiff	package,	406–413
Fourier	transform,	433
Fox,	Professor	L.,	395
framerate()	function,	432
France,	350
FreeUnits Unitful	type,	272
frequency	analysis,	433–441
frequency	filtering,	435–441
function,	48–51

anonymous,	51
composing,	50
difference	from	macros,	172
extending,	232
higher-order,	161
keyword	arguments

concise	syntax,	154
return	value,	50

functional	languages,	229
fundraising,	269

G



gas,	306
Gaston	plotting	backend,	116,	278
Gaussian	distribution,	109,	324–326,	392–393
generator	expression,	127–128
generic	equality	operator	(==),	31
gingerbread	man,	95–96
Glaucidium	brasilianum	cactorum,	430
GLMakie	package,	376
global	keyword,	226–227
global	variables,	52
gnuplot,	116,	278
goats,	310
gradient,	406
graphplot() Luxor	function,	195–198
GraphRecipes	package,	193
graphs	(node-edge	diagrams),	192–199
Graphs	package,	193–198

layout	methods
:buchheim,	198
:tree,	198

layout	quality,	195
Gray()	function,	443
greater-than	operator	(>),	31
greater-than-or-equal-to	operator	(>=),	31
Greek	letters,	13
green()	function,	443
grid()	function,	118
GroupedDataFrame	type,	349–350
GR	plotting	backend,	115,	277–278
gui()	function,	86

H



hardware	requirements,	4
HDF5	plotting	back	end,	116
heatmaps,	110
Hermitian	adjoint,	145
higher-order	functions,	161
high-performance	computing,	485–486
high	school,	bad	memories,	197
histogram2d()	function,	355
histograms,	322,	353

bins,	323
2D,	355
using	:scatterhist,	325

Hopper,	Grace,	467
hough_circle_gradient()	function,	446
Hough	transform,	446–449
hyperthreading,	469
hypothesis	testing,	358
HypothesisTests	package,	358

I

identity	matrix,	399
identity	operator	(===),	31
IDEs,	20–22
idxs	plotting	keyword,	297
if	blocks,	33
ImageBinarization	package,	444
image	blurring,	463
ImageFeatures	package,	446–449
image	processing,	442–464
image	reduction,	463
Images	package,	442–449

RGB	type,	442



ImageView	package,	442
import	statement,	63–64
imshow()	function,	442
@inbounds	performance	macro,	176
indexing	of	arrays,	34,	38–39

with	arrays,	39–41
InexactError,	179
Inf	type,	215
Inf16	type,	215
Inf64	type,	215
infinity,	28,	215
infinity	(oo),	393
infix	operators,	159

defining	custom,	159–161
in	membership	operator,	43
inner	constructors,	240
instability,	288
installation,	3–5

on	BSD,	6–7
on	Docker,	9
on	Linux,	6–7
on	macOS,	7–8
on	Windows,	8–9

Int16	type,	226
Int32	type,	27,	247
Int64	type,	27,	215,	247
Int128	type,	216
Integral() SymPy	function,	393
InteractiveDynamics	package,	373
interprocess	communication,	483
Int	type,	247
inverse,	matrix,	398



inv()	function,	398
irrational	numbers,	218–219
Irrational	type,	218–219,	233
isa()	function,	216
isascii()	function,	163
ishermitian()	function,	400
issubset()	function,	136
issubset	operator	(⊆),	136
issuperset	operator	(⊇),	136
issymmetric()	function,	400
iterated	map,	95–96

J

Java,	20
JavaScript,	25,	211
Javis	package,	198–205

motions,	205
Johns	Hopkins,	334
join()	function,	58

optional	delimiter,	132
Julia,	features	of

big,	151
composability,	303,	383–385,	388
introduction,	xxi
no	classes,	241
not	functional,	229
not	object	oriented,	229
unusual,	213

JuliaDB	package,	358
julia-emacs,	15
julia-repl,	15
Julia	versions,	5



julia-vim,	14–15
Jupyter,	16,	17

plotting	with,	17

K

keyword	arguments,	96–97
kill_agent()	function,	372
@kwdef	macro,	241–242

L

LAPACK,	404
LaTeX,	13,	274

strings,	129
latexify()	function,	274
Latexify	package,	274–276,	385
LaTeXStrings	package,	104–105
lava	lamps,	307
Lederman,	Leon	M.,	269
left	division	operator	(\),	398
Leibniz,	245
lens()	function,	106–107
less-than	operator	(<),	31
less-than-or-equal-to	operator	(<=),	31
Let’s	Make	a	Deal,	310
libblastrampoline	package,	404
linear	algebra,	233,	395–403
LinearAlgebra	package,	399–400
linear	equations,	system,	397–399
linear	regression,	105
LinearSolve	package,	404
line	plot,	86



Linux,	5,	404
Lisp,	25,	169
load	balancing,	479
local	keyword,	226–227
logic,	31

three-valued,	331
logical	AND	(&&),	31
logical	indexing,	143–144
logical	OR	(||),	31
looping,	46–47

over	strings,	48
lowered	form,	243
lscpu	command,	469
LuaLaTeX,	274,	279
Luxor	package,	190–192,	239,	251,	285,	294

coordinate	system,	192
defaults,	191
fonts,	192
scale	factor,	191

M

machine	file,	481
macOS,	4–5
@macroexpand	macro,	177
macros,	170–177

adding	syntax	to	Julia,	171–173
for	broadcasting,	173–174
for	chaining	functions,	174–175
collision	avoidance,	171
creating,	171
difference	from	functions,	171
for	information,	177



invocation	syntax,	171
for	performance,	175–177
for	string	formatting,	177
for	timing,	175

map()	operator,	161–163
and	broadcasting,	162–163

mapreduce()	operator,	166
marginalhist()	plotting	function,	356
Marx,	Groucho,	123
MathJax,	274–275,	389
math	symbols,	13
MATLAB,	xxii
matrix,	37

identity,	399
special	types,	400–402
triangular,	401

matrix	factorization,	402–403
matrix	inverse,	147
matrix	multiplication,	146–147
maximum()	function,	166
mean()	function,	319–321
measurement()	function,	282
Measurements	package,	280–284

combining	with
DifferentialEquations,	302–303

median()	function,	319
membership,	43
membership	operator	(∈),	43
Meta.parse()	function,	168
metaprogramming,	167–177
MethodError,	179
methods,	229–233



methods()	function,	231
minimum()	function,	166
missing()	function,	330
Missings	package,	331
missing	type,	328–330

and	logic,	331
and	Plots,	329

MIT,	xxi
mode()	function,	320
modular	arithmetic	operator	(%),	29
module	paths,	66
modules

creating,	65–67
current,	66
exported	names,	63
naming,	63
paths	and	dots,	66–67
renaming	imported,	65

Monk,	Thelonious,	462
Monty	Hall	problem,	310–311
mosaicview()	function,	443
MP3,	430
multiple	dispatch,	xxii,	229–233,	241
multiplication	by	juxtaposition,	29–30
multiprocessing,	468,	479–485
multithreading,	468–479
mutable	keyword,	236
mutation,	55–59

arrays,	55–56
by	functions,	56–57
strings,	58

mutually	assured	destruction,	457
myid()	function,	483



N

N0f8	type,	442
named	tuples,	138–139
names()	function,	342
namespaces,	62,	66
NASA,	191,	270
native	types,	216
Netflix,	406
networked	computing,	481–482,	484
nframes()	function,	432
Node,	10
nonstandard	string	literals,	128–129
normal	distribution,	324–326
Normal()	function,	324
not-a-member	operator	(∉),	43
notebooks

Jupyter,	16–17
Pluto,	17–20

Not()	function,	339
nouns,	213,	234
nsolve() SymPy	function,	392
nthreads()	function,	469
numbers,	26

complex,	27
irrational,	218–219
rational,	28
types	of,	26–27

Number	type,	222
numerical	precision,	216
numeric-symbolic	modeling,	384
numeric	types,	214
nworkers()	function,	480



O

Object() Javis	function,	204
object-oriented	programming,	213,	229,	240
occursin()	function,	131
Oceananigans,	284–294

boundary	conditions,	286
computational	grid,	285
diffusivities,	286
equation	of	state,	287
initial	conditions,	288
the	model,	287
precompiling,	284
running	a	simulation,	287–290
visualization,	290,	292,	294

Octave,	xxii
ODEProblem()	function,	296
OffsetArrays.center()	function,	458
OffsetArrays	package,	454–459
ones()	function,	141
OpenStreetMap,	363
operating	systems,	4–5
optional	arguments,	96–97
OSCAR,	404
outer	constructors,	240

P
-p	(julia	startup	flag),	480
packages,	69–81

privacy,	9
pairs()	function,	148–150
pandemic



simulation,	313,	316–318
boundary	conditions,	317

parametric	instability,	300–302,	422–426
parametric	plots,	86,	93–94

3D,	112–113
parametric	types,	214,	248–252
PCM,	430
pdf()	function,	325
@pdf Luxor	macro,	192
Pearson	correlation,	354
Peel,	Emma,	189
pendulum,	294–302,	408–409,	422–426

finite	angle,	298–299
parametric	instability,	300–302,	422–426

performance	and	type	stability,	242–247
Perl,	133
permode	keyword	argument,	275–276
permutations,	313
permutedims()	function,	145–146,	343
petaflop	club,	xxii
PGFPlots	plotting	backend,	116
PGFPlotsX	plotting	backend,	116,	279
physics,	269–304
pi,	mathematical	constant	(π),	218–219,	245
PI,	SymPy	constant,	393
pixel	type	from	Images	package,	442
plot

aspect	ratio,	101
attributes,	98–99

fonts,	100
frame	styles,	100

color	palette,	109
components	of,	98



contour,	110–112
filled,	111–112
labeled,	111

current,	91
of	a	damped	oscillator,	91
with	errors,	284
functions,	88–89
gnuplot,	116
inset,	106–107,	121
interactive,	116
label	position,	103–104
labels,	102
layout,	117–121
legend	position,	102–103
mutating,	92
parametric,	93–94

3D,	112–113
polar,	86
polar	coordinates,	86,	94–95
for	publication,	277–280
recipes,	252–264

pipeline,	254–255
plot,	259–260
series,	255–258
type,	260–262
user,	262–263

saving,	106
scatter,	95–96

with	singularities,	89
3D,	114–115

subplot,	100
surface,	108–109

settings,	108
in	the	terminal,	115



vector,	113
for	the	web,	116

plotlyjs	plotting	backend,	116
plot	recipe	assignment	(-->),	256
Plots,	84

backends,	84,	115–116
activation,	84
and	dependencies,	86
Gaston,	116
GR,	115
HDF5,	116
installation,	84
names	of,	85
PGFPlots,	116
PlotlyJS,	116
PyPlot,	116
UnicodePlots,	115

closing	windows,	86
displaying	from	programs,	86

plot	settings,	98
plotting	pipeline,	254–255
plot_title	plotting	argument,	102
plumbing,	406
Pluto,	16–18,	20,	23,	191

dependency	graph,	18–20
interactive	controls,	208–210
interface,	18–20
and	LaTeX	math,	274
and	MathJax,	274–275
module	files,	20
with	SymPy,	388–395

PlutoUI	package,	208–209
pmap()	function,	480–481,	484



@png Luxor	macro,	191
point	(unit),	191
polar	plots,	94–95
power	spectral	density,	433–435
precision()	function,	218
prediction,	322
prerequisites,	xxiii
prime	factorization,	197–198
prime	numbers,	125
@printf	macro,	177,	214
Printf	package,	177,	214
println()	function,	32

multi-argument,	124
privacy	with	the	package	system,	9
probabilistic	programming,	413–426
probabilistic	simulation,	310–313,	316–318
probability,	306

combining,	317
frequency	interpretation,	306
philosophy	of,	414

probability	density	function,	325
probability	theory,	359
prod()	function,	165
psd()	function,	433–435
pseudorandom	numbers,	307

normally	distributed,	326–327
Ptolemy,	201
Pumas	package,	362
p-values,	358
pyplot	plotting	backend,	116
Python,	xxii,	10,	25,	240,	388



Q

Quantity Unitful	type,	272
quiver()	function,	113–114
quote	blocks,	168
quoting	expressions,	169

R

R,	305,	358
rand()	function,	307–309,	323–324
randn()	function,	326–327
random_agent()	function,	372
random	events

disjunction,	317
in	programs,	309

randomness	and	computers,	306
random	number	generators,	359

seeding,	309
random	numbers,	307
range	operator	(:),	35
ranges,	35–36
rational	numbers,	28
rational	operator	(//),	28
raw	strings,	129
RCall	package,	358
readchomp()	function,	482
readline,	11
readline()	function,	124
@recipe	macro,	255–256
RecipesBase	package,	255–256
red()	function,	443
reduce()	function,	164–166



and	non-associative	operators,	164–165
reducing	functions

and	empty	collections,	165
init	argument,	165
neutral	element,	165

Reel	package,	206–208,	292
regression	lines,	357
regular	expressions,	132–133

nonstandard	string	literal,	132
for	selecting	dataframe	columns,	340

religion,	269
reltol	parameter,	301,	412
renaming	imported	modules,	65
render()	function,	and	LaTeX,	274
repeat()	function,	128,	139
REPL

colors,	12–13
command	recall,	11
entering	Unicode	characters,	13
help	mode,	11
initialization,	12–13
introduction,	10
modes,	10,	12
package	mode,	11
paste	mode,	11
and	readline,	11
shell	mode,	11
tab	completion,	12

replace()	function,	131–132
reshape()	function,	141–142
RGB	type	from	Images	package,	442
roll() Reel	function,	206
rotation	matrix,	382–383



run!()	(Agents	function),	373
run()	function,	481

S

saving	signals,	441
scatterplots,	95–96,	354

3D,	114
voluminous,	355

scientific	communication,	210
scientific	machine	learning,	405–427
scientific	notation,	27
scientists,	23
SciML,	405–427
scope,	52

and	begin	blocks,	52
and	if	blocks,	52
and	functions,	52–53
and	loops,	54
modification	in	interactive	contexts,	54

ScreenSend,	15
secrets,	63
semantic	version	strings,	129–130
semicolon	(;),	29
@series	macro,	257
:series_plotindex	attribute,	257
series	recipes,	255–258
setprecision()	function,	218
sets,	135–137

adding	elements,	137
difference,	136
intersection,	136
subset,	136



superset,	136
Set	type,	135–137,	221
sfilt()	function,	438–441
@shorthands	macro,	257
Shostak,	Seth,	429
show()	function	for	dataframes,	335
SignalAnalysis	package,	431–441
signal()	function,	431
signal	processing,	430–441
signals,	saving,	441
significant	digits,	281–282
simulated	evolution,	362–379
simulation,	probabilistic,	310–313,	316–318
SI	units,	271–273
skipmissing()	function,	330
slurping,	156–157
Smith,	Frederick	W.,	61
smooth	plot	setting,	105
Socrates,	405
solar	system,	190
solve()	function

in	DifferentialEquations,	296
in	SymPy,	390

source	code	for	Julia,	6
sparse	array,	196
SparseArrays	package,	196,	233
@spawnat	macro,	483
@spawn	macro,	474–475
SpecialFunctions	package,	207,	264
spectrogram,	433
splatting,	154–155
split()	function,	58



spreadsheet,	19
@sprintf	macro,	177
standard	deviation,	321
standard	library,	62
statistics,	305,	322,	358–359

Julia	packages,	359
standard	library,	319

Statistics	package,	common	functions,	320
StatsBase	package,	320
StatsPlots	package,	335,	356–357
std()	function,	321
Steed,	John,	189
string()	function,	128
string	interpolation,	133–134
string	literals,	nonstandard,	128–129
strings,	raw,	129
strings	and	characters,	44–46
struct,	137–138

constuctor,	137
mutable,	138
properties,	138

struct	keyword,	235
SubDataFrame	type,	349
substitute()	function,	383
subtype,	222
subtype	operator	(<:),	233–234
subtypes()	function,	224
supertype,	222
supertype()	function,	222
supertypes()	function,	224
surface	plots,	108–109
@svg Luxor	macro,	192



symbolic	mathematics,	382–395,	404
Symbolics	package,	382–388

tracing	to	generate	expressions,	386
symbols,	167

defined,	170,	187
Symbol	type,	168
SymPy	package,	388–395

differential	equations,	393–395
evaluating	integrals,	392–393
numerical	root	finding,	391–392
with	Pluto,	388–395

@syms	macro,	389
@sync	macro,	474–475

T

-t	(julia	startup	flag),	469
thermal	convection,	288
thermal	diffusivity,	287
thickness_scaling	plot	setting,	104
@threads	macro,	470–474
3D	plot,	108–112
throw()	function,	183–185
TikZ,	278
time()	function,	478
timing,	475
tracing

to	generate	Symbolics	expression,	386
of	a	matrix,	399

transpose()	function,	145
transposing	dataframes,	342–343
tr()	function,	399
triangular	matrix,	401



trigonometry,	160
try...catch	blocks,	181–182
tuples,	42–43

named,	138–139
turbulent	convection,	292
Turing	package,	413–426
twinx()	function,	300
2D	plot,	86
two	language	problem,	xxii
type	aliases,	247

for	collections,	248
type	assertion,	224–228
type	assertion	or	declaration	operator	(::),	225–229
type	declaration,	224–228

of	global	variables,	226
purpose,	228
and	scope	blocks,	228

typemax()	function,	215
typemin()	function,	215
typeof()	function,	214,	222
type	piracy,	233
type	promotion,	27,	219–220
type	recipes,	260–262
types,	26,	213–265

abstract,	223,	229
creating,	234

concrete,	222
creating	composite,	234–236
irrational,	218–219
native,	216
numeric,	214
parametric,	214,	248–252
user-defined,	234–242



typesetting	units,	274–276
type	stability,	228,	242–247

U

u	(nonstandard	string	literal),	270
uconvert()	function,	273
Ulm,	381
uncertainty()	function,	282
undirected	graph,	193
Unicode	characters,	13

code	point,	130
entering	in	the	REPL,	13

unicodeplots	plotting	backend,	115
uniform	distribution,	309
UnionAll	type,	249
Union	types,	233–234
unitformat	plotting	keyword,	278
UnitfulLatexify	package,
Unitful	package,	270–280
unit()	function,	274,	279
units

combining	with	errors,	283
converting,	272–274
physical,	270–280
in	plots,	276–280
stripping	from	Unitful	expressions,	272–274
typesetting,	274–276

uparse()	function,	271
upreferred()	function,	273
US	Census,	351–353
user-defined	types,	234–242

performance,	242



@userplot	macro,	263–264
user	recipes,	262–263
using	keyword,	63
ustrip()	function,	273,	279

V

value()	function,	282
var()	function,	321
@variables	macro,	382
variance,	321
vector	plots,	113
vectors	of	vectors,	37
verbs,	213,	234
versions	of	Julia,	5–6
@view	macro,	395–396
views,	395–397,	450–452
@views	macro,	395–396
Vim,	14–15,	23

REPL	interaction,	14–15
viscosity,	287
VS	Code,	20–22

W

wait()	function,	476
WAV	file,	430
WAV	package,	441
weather,	253
where	keyword,	249
while	block,	32
whitespace,	33
Windows,	4–5



worker	processes,	480
write()	method	from	Reel,	208

Y

yield()	function,	477–479

Z

zeros()	function,	141
zip()	function,	150–151
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