Undergraduate Topics in Computer Science

.John Hunt _'

Advanced Guide
to Python 3
Programming

Second Edition

%' & python &\ Springer

UTiCS

Undergraduate Topics in Computer Science

Series Editor

Tan Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky @, Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin@®), Department of Computing, Imperial College London, London,
UK

Mike Hinchey (@, Lero — The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Andrew Pitts ®, Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson (), Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University,
Stony Brook, NY, USA

Tain Stewart(®, Department of Computer Science, Durham University, Durham,
UK

Joseph Migga Kizza, College of Engineering and Computer Science, The
University of Tennessee-Chattanooga, Chattanooga, TN, USA

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instruc-
tional content for undergraduates studying in all areas of computing and information
science. From core foundational and theoretical material to final-year topics and
applications, UTiCS books take a fresh, concise, and modern approach and are ideal
for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and
contain numerous examples and problems, many of which include fully worked
solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275-300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

John Hunt

Advanced Guide to Python 3
Programming

Second Edition

@ Springer

John Hunt
Midmarsh Technology Ltd.
Chippenham, Wiltshire, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-40335-4 ISBN 978-3-031-40336-1 (eBook)

© Springer Nature Switzerland AG 2019, 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-40336-1

For Denise, my wife, my soulmate, my best
friend.

Preface to the Second Edition

This second edition represents a significant expansion of the material in the first
edition, as well as an update of that book from Python 3.7 to 3.12.

This book includes whole new sections on advanced language features, Reactive
Programming in Python and data analysts. New chapters on working with Tkinter,
on event handling with Tkinter and a simple drawing application using Tkinter have
been added. A new chapter on performance monitoring and profiling has also been
added. A chapter on pip and conda is included at the end of the book.

In all there are 18 completely new chapters that take you far further on your Python
journey. Enjoy the book and I hope you find it useful.

Chippenham, UK John Hunt

vii

Preface to the First Edition

Some of the key aspects of this book are

L.

It assumes knowledge of Python 3 and of concepts such as functions, classes,
protocols, abstract base classes, decorators, iterables and collection types (such
as list and tuple).

2. However, the book assumes very little knowledge or experience of the topics
presented.

3. The book is divided into eleven topic areas: advanced language features,
Computer Graphics, games, testing, file input/output, database access, logging,
concurrency and parallelism, Reactive Programming, network programming and
data analytics.

4. Each topic in the book has an introductory chapter followed by chapters that
delve into that topic.

5. The book includes exercises at the end of most chapters.

6. All code examples (and exercise solutions) are provided on line in a GitHub
repository.

What You Need

You can of course just read this book; however following the examples in this book
will ensure that you get as much as possible out of the content. For this you will need
a computer.

Python is a cross-platform programming language, and as such you can use Python

on a Windows PC, a Linux box, an Apple Mac, etc. So you are not tied to a particular
type of operating system; you can use whatever you have available.

However you will need to install some software on that computer. At a minimum

you will need Python. The focus of this book is Python 3 so that is the version that
is assumed for all examples and exercises. As Python is available for a wide range

X Preface to the First Edition
of platforms from Windows, to Mac OS and Linux, you will need to ensure that you
download the version for your operating system.

Python can be downloaded from the main Python website which can be found at
http://www.python.org/.

ene & Welcome to Python.org x o+

€ = C @& pythonor a @« % 0@ (Upaw i)

& python

About Downloads Documentation Community Success Stories News Events

Python is a programming langL

and integrate systems more effectively. >» Learn More

You will also need some form of editor to write your programs. There are numerous
generic programming editors available for different operating systems with VIM on
Linux, Notepad++ on Windows and Sublime Text on windows and Macs being
popular choices.

However, using an Integrated Development Environment (IDE) editor such as
PyCharm, Visual Studio Code or Spyder can make writing and running your programs
much easier.

However, this book does not assume any particular editor, IDE or environment
(other than Python 3 itself).

Conventions

Throughout this book you will find a number of conventions used for text styles.
These text styles distinguish between different kinds of information. Code words,
variable and Python values, used within the main body of the text, are shown using
a Courier font. A block of Python code is set out as shown here:

http://www.python.org/

Preface to the First Edition xi

def draw_koch (size, depth):
if depth > O:
for angle in ANGLES:
draw_koch(size / 3, depth - 1)
turtle.left (angle)
else:
turtle. forward(size)
Draw three sides of snowflake
for inrange(3):
draw_koch (SIZE_OF_SNOWFLAKE, depth)
turtle.right (120)

Note that keywords and points of interest are shown in bold font.
Any command line or user input is shown in standard font as shown below, for
example:

Hello, world
Enter your name: John
Hello John

Example Code and Sample Solutions

The examples used in this book (along with sample solutions for the exercises at the
end of most chapters) are available in a GitHub repository. GitHub provides a web
interface to Git, as well as a server environment hosting Git.

Git is a version control system typically used to manage source code files (such
as those used to create systems in programming languages such as Python but also
Java, C#, C++ and Scala). Systems such as Git are very useful for collaborative
development as they allow multiple people to work on an implementation and to
merge their work together. They also provide a useful historical view of the code
(which also allows developers to roll back changes if modifications prove to be
unsuitable).

The GitHub repository for this book can be found at:

e https://github.com/johnehunt/advancedpython3_2nd

If you already have Git installed on your computer, then you can clone (obtain a
copy of) the repository locally using:

git clone https://github.com/johnehunt/advancedpyth
on3_2nd.git

If you do not have Git, then you can obtain a zip file of the examples using

https://github.com/johnehunt/advancedpython3_2nd/arc
hive/refs/heads/main.zip

https://github.com/johnehunt/advancedpython3_2nd
https://github.com/johnehunt/advancedpython3_2nd.git
https://github.com/johnehunt/advancedpython3_2nd.git
https://github.com/johnehunt/advancedpython3_2nd/archive/refs/heads/main.zip
https://github.com/johnehunt/advancedpython3_2nd/archive/refs/heads/main.zip

xii Preface to the First Edition

You can of course install Git yourself if you wish. To do this, see https://git-scm.
com/downloads. Versions of the Git client for Mac OS, Windows and Linux/Unix
are available here.

However, many IDEs such as PyCharm come with Git support and so offer another
approach to obtaining a Git repository.

For more information on Gitsee http: //git-scm. com/doc. This Git guide
provides a very good primer and is highly recommended.

Acknowledgement I would like to thank Phoebe Hunt for creating the pixel images used for the
Starship Meteors game in Chap. 22.

https://git-scm.com/downloads
https://git-scm.com/downloads
http://git-scm.com/doc

Contents

1

Introduction
1.1 Introduction
1.2 Useful Python Resources

PartI Advanced Language Features

2

Python Type Hints
2.1 Introductiono
2.2 Pythons Type System
23 The Challenge for Python Developers
24 Static Typing ..ottt
2.5 Python Type Hints
2.6 Type Hint Layout oo,
2.7 Type Hints for Multiple Typesiiiiiia..
2.8 The Self Type
29 The Benefits of Type Hints it
210 Summary ...
2.11 Online Resourcesciiiiiiiiiiiiia...
Class SIots
3.1 Introduction i
3.2 The Problem
3.3 Slotstothe Rescuecoiiiiiiiiiiineenn...
34 Performance Benefits i
3.5 Why Not Use SIotS?ooi e
3.6 Online Resource ...,
Weak References
4.1 Introduction
4.2 How Garbage Collection Works: Reference Counting
4.3 Weak Referencesoo i,
4.4 When to Use Weak References

[c RN IEN N

11
12
12
12
13
13

15
15
15
17
19
20
21

23
23
23
25
25

Xiii

Xiv

Contents
4.5 The Weakref Module 26
4.6 Creating Weak References 26
4.7 Retrieving Objects from Weak References 28
4.8 The WeakValueDicitonaryc.cuiiiiiinnnnnn. 28
4.9 WeakKeyDictionaryouuiiiiiiiiiinnnnnn. 30
410 Proxy ObJectS ...ttt 30
411 Online Resourcescoouuiiiiiiiiinneeennnnnn.. 31
Data Classes it 33
5.1 Introduction 33
52 A Traditional Class ...ttt 33
5.3 Defining Data Classescouiiiiiiineeinnnneenn. 35
5.4 Defining Additional Behaviour 36
5.5 The Dataclass Decoratorccooiiiiiiiiinaa.. 37
5.6 Custom Factory for Fields 38
5.7 Immutable Dataclassescciiiiiiiiiinnnnnn. 40
5.8 Data Classes and Inheritance 41
59 Post Initialisation o i 43
5.10 Initialisation Variables 44
5.11 Positional Attributes 45
502 EXEICISE ittt 46
Structural Pattern Matching 49
6.1 Introduction 49
6.2 The Match Statementooiuiiiiiiinneen. 49
6.3 Matching Classes with Positional Attributes 50
6.4 Matching Against Standard Classes 51
6.5 Online Resource ...ttt 52
Working with pprint 53
7.1 Introduction 53
7.2 The pprint Data Printer Module 53
7.3 Basicpprint Usage ...ttt 54
7.4 Changingthe Width i .. 56
7.5 Changingthe Depth i i, 57
7.6 Managing the Indentation Level 58
7.7 Reducing Line Breaks Using Compact 59
7.8 The pformat Function i, 60
7.9 The saferepr () Function 62
7.10 Using the PrettyPrinter Class, 62
7.11 Online Resource, 63
Shallow v Deep Copy i 65
8.1 Introduction 65
8.2 Copying a List of ListSt 65

8.3 The Problem with Copying, 66

Contents

XV
8.4 The Copy Module to the Rescue 68
8.5 Using the deepcopy() Function 69
8.6 Online Resourceccoiiiiiiiiinniiiiinnean, 70
9 The init_ Versus _mew__and _call 71
9.1 Introduction 71
9.2 The __new__and __init_ Methods 71
9.3 The _new__Method 72
94 WhentoUsethe __new__ Method 73
9.5 Using __new__ to Create a Singleton Object 74
9.6 The __init__ Method 75
9.7 Can __new__ and __init__ Be Used Together? 76
9.8 The __call__Method 77
9.9 Summary ... 77
10 Python Metaclasses and Meta Programming 79
10.1 Introductiono ool 79
10.2 Metaprogrammingeeeeuiunneeennineeeeennn. 79
10.3 Decorators as a Form of Metaprogramming 81
10.4 Metaclasses for Metaprogramming 83
10.4.1 Singleton Metaclass, 83
10.5 Exec and Eval for Metaprogramming 85
10.5.1 Theexec() Functionc.coiion.. 85
10.5.2 Theeval() Function 86
10.5.3 eval Versus exXec() ...ovvviveiineinieeenan 86
PartII Computer Graphics and GUIs
11 Introduction to Computer Graphics 91
11.1 Introductionuuuiiiiiiin .. 91
11.2 Background il 92
11.3 The Graphical Computer Era 92
11.4 Interactive and Non Interactive Graphics 93
115 Pixels ... 94
11.6 Bit Map Versus Vector Graphicsccoouun... 96
11.7 Buffering 96
11.8 Python and Computer Graphics 96
11.9 Referencesoo il 97
11.10 Online Resources, 97
12 Python Turtle Graphics 99
12,1 Introductionc.ouuiiiiiiiin i 99
12.2 The Turtle Graphics Library, 99
122.1 The Turtle Module 99
12.2.2 Basic Turtle Graphicsccviiiunn... 100
12.2.3 Drawing Shapesccooiiiiiiiiiinaa.. 103

12.2.4 Filling Shapes i iL. 104

Xvi

13

14

15

Contents

12.3 Other Graphics Librariesccoiiiiiiiiina.. 105
124 3D Graphics ... 106
1241 PyOpenGL i 106

12.5 Online Resourcesiiiiiiiiiiiaa... 107
12.6 EXEICISES ..ottt 107
Computer Generated Art 109
13.1 Creating Computer Art 109
13.2 A Computer Art Generatorc.coeiveeeennnn... 111
13.3 FractalsinPython il 114
13.4 The Koch Snowflake 114
13.5 Mandelbrot Set i 116
13.6 Online Resourcescouiiiiiiiiiinnen... 119
137 EXEICISES oottt ittt e e 119
Introduction to Matplotlib 121
14.1 Introduction ool 121
142 Matplotlib ... 122
143 Plot Componentsooiiiiiiiiiiiiiinnnaan... 123
14.4 Matplotlib Architecture, 125
1441 BackendLayer 125

1442 The ArtistLayerccoiiiiiiiiiiinnan... 126

14.4.3 The Scripting Layeriinn... 127

145 Online Resources i .. 128
Graphing with Matplotlib Pyplot 129
15.1 Introduction il 129
152 Thepyplot APT 129
153 Line Graphs ...t 130
153.1 Coded Format Strings 132

154 Scatter Graph 133
15.4.1 When to Use Scatter Graphs 134

155 PieCharts ... 136
15.5.1 Expanding Segmentsccuuun... 137

1552 WhentoUsePieCharts 138

15,6 BarChartsooiinii 139
15.6.1 Horizontal Bar Charts 140

1562 ColouredBars o il 141

15.6.3 Stacked BarCharts 141

15.6.4 Grouped BarCharts, 143

15.7 Figuresand Subplots i i il 144
15.8 3D Graphs ...t 146
159 EXEICISES .ttt e 148

Contents xvii
16 Graphical User Interfaces 151
16.1 Introductionciuniniiniiiiii . 151
16.2 GUIsand WIMPS 151
16.3 Windowing Frameworks for Python 153
16.3.1 Platform-Independent GUI Libraries 154

16.3.2 Platform-Specific GUI Libraries 154

16.4 Online Resourcesoiiiiiiiiiiananaon. 154
17 Tkinter GUI Library 155
17.1 Introductionc.. it 155
17.2 TKINtEr ..o e e 155
173 Windows as Objectsuuiiiiiiiineeiiiineeennnnn. 156
174 Key Conceptsooviiiiiiiiiiiiiiiiiiiiiiiiii .. 156
1741 TheTKkClasscooiii . 157

1742 TKWidgets ... 157

17.43 The TopLevel Classooiiiiiiia... 158

1744 TheFrame Classc.ccouiiiiinnn.... 159

1745 Dialogs .ovvvit i e 160

174.6 TheCanvasClassccoiiiiiiinain .. 161

17.5 The Class Inheritance Hierarchy 162
17.5.1 Layout Management 163

176 ASimple Example i 163
17.7 Tkinter Installationcciiiiiiinernnnnnn.. 164
17.7.1 MacInstallationcciuniin... 164

17.7.2 Windows Installation 165

17.8 GUI Builders for Tkinter iiiiinn... 166
17.9 Online Resourcesciiiiiiiiiniinennnannn.. 166
17.10 EXCICISES ittt ettt et e 167
18 Events in Tkinter User Interfaces 169
18.1 Introductiont 169
182 EventHandling i L. 169
18.3 Whatis Event Handling? 170
18.4 What Are Event Handlers? 170
185 EventBinders 172
18.6 Virtual Events 173
18.7 EventDefinitions i, 173
18.8 What Types of Event Are There? 174
18.9 Binding an Eventtoan EventHandler 175
18.10 Implementing Event Handling 175
18.11 An Interactive GUI Application 178
18.12 Online ReSOUICesuuiiuiiiiiiie .. 181
18.13 EXEICISES .ottt e e 181

XViii Contents

19 PyDraw Tkinter Example Application 185
19.1 Introductionuuuiiiiinine .. 185
19.2 The PyDraw Applicationccooiiiiieiennnn, 185
19.3 The Structure of the Application 186

19.3.1 Model, View and Controller Architecture 188
19.3.2 PyDraw MVC Architecture 189
19.3.3 Additional Classesc.c.cuiiiiiinnnnneann. 190
19.3.4 Object Relationships 190
19.4 The Interactions Between Objects 191
19.4.1 ThePyDrawApp ...t 192
19.5 The PyDrawView Constructorc.ccovveeeenn.. 192
19.5.1 Changing the Application Mode 193
19.5.2 Adding a Graphic Object 193
19.6 The Classesoiiiiiiiiii i 194
19.6.1 The PyDrawConstants Class 194
19.6.2 The PyDrawView Classc..... 195
19.6.3 The PyDrawMenuBar Class 196
19.6.4 The PyDrawController Class 196
19.6.5 The DrawingModel Class 197
19.6.6 The DrawingView Class 198
19.6.7 The DrawingController Class 198
19.6.8 TheFigure Classccoiiiiiiiinnnnn... 199
19.6.9 The Square Classccouiiiiiiininneann. 200
19.6.10 The Circle Classooiiiiiiiiiinnean. 200
19.6.11 TheLineClassciiiiiiiiaa... 200
19.6.12 TheTextClass 201
19.7 Reference i 201
19.8 EXEICISES ...ttt 201

Part II Computer Games

20 Introduction to Games Programming 205
20.1 INtroduCtionoeuiuiieeiiie i 205

20.2 Games Frameworks and Libraries 205

20.3 Python Games Development 206

204 UsingPygame 207

20.5 Online Resourcesooiiiiiiiiiiaa... 207

21 Building Games with Pygame 209
21,1 IntroduCtion ...t 209

21.2 The Display Surface i iiiiiL. 210

213 BEVeNLS ottt 211
21.3.1 EventTypesooiiiiiiiiiiiiiiiiii.. 211

21.3.2 EventInformation 212

21.33 TheEventQueuecccviiiniiinnnnnn.. 213

Contents Xix
21.4 A First pygame Applicationcoiiiieeinnnn... 214
21.5 Further Conceptsooiiiiiiiiiiiiiiiiii ... 217
21.6 A More Interactive pygame Application 219
21.7 Alternative Approach to Processing Input Devices 221
21.8 pygameModules 222
21.9 Online Resources o i, 223

22 StarshipMeteors Pygame 225
22,1 Introductioniiiiiii 225
222 Creating a SpaceshipGame 225
223 TheMainGame Classciiiiiiiiiaa... 226
22.4 The GameObject Classouuriineiiiinnnenn.. 228
22.5 Displaying the Starship L. 229
22.6 Moving the Spaceship i 230
2277 AddingaMeteor Class ..., 233
22.8 Moving the Meteorsiiiiiiiiiiiii... 235
22.9 Identifyinga Collisionccoviiiiiinneeinnnn... 236
22.10 Identifyinga Win i 237
22.11 Increasing the Number of Meteors 238
2212 PausingtheGame 238
22.13 Displaying the Game Over Message 239
22.14 The StarshipMeteors Gamec.coovvveeennnn... 240
22.15 Online Resources o i, 244
22160 EXEICISES vttt ettt e e 244

Part IV Testing

23 Introductionto Testing, 247
23.1 Introductionl i 247
232 Typesof Testing i .. 247
23.3 What Should Be Tested? 248
234 Typesof Testingooiiiiiiiiiiiiiiiaa... 249

23.4.1 Unit Testing ...t 250
23.4.2 Integration Testingccciviieeinnnn... 251
23.43 System Testing ... 251
23.4.4 Installation/Upgrade Testing 252
23.45 Smoke Testsoiiiiiiiii 252
23.5 Automating Testing i, 252
23.6 Test-Driven Developmentcccoovviiiinnn... 253
23.6.1 TheTDDCyclecoiiiiiiiiiiiiiiinan. 253
23.6.2 TestComplexityoviiiiiiinniunnnnnn. 254
23.6.3 Refactoring i 255
2377 Design for Testability L. 255
23.7.1 Testability Rules of Thumb 255
23.8 Online Resourceso i i .. 255
239 BOOKRESOUICEScouuiiiiii i 256

XX Contents
24 PyTest Testing Framework 257
24. 1 IntrodUCtion ...ttt 257
242 WhatisPyTest? 257
243 Settingup PyTest i 258
244 A Simple PyTest Example 258
245 Working with PyTest 261
24.6 Parameterised Testsoviiiiiini i 265
247 Online Resourcescouuuiiiiiiiinneennnnnn.. 267
24.8 EXCICISES .+ttt ettt 267
25 Mocking for Testing it 269
25.1 Introductionl 269
252 WhyMock? 271
253 Whatis Mocking? 272
25.4 Common Mocking Framework Concepts 273
25.5 Mocking Frameworks for Python 274
25.6 The Unittest. Mock Librarycooiun... 274
25.6.1 Mock and Magic Mock Classes 275

25.6.2 ThePatchers i 276

25.6.3 Mocking Returned Objects 277

25.6.4 Validating Mocks Have Been Called 278

257 Mock and MagicMock Usageooiiiinn... 279
25.7.1 Naming Your Mocks, 279

25.7.2 MOCKk CIassesuuuiuiiiuiieeeiiinneenn. 279

25.7.3 Attributes on Mock Classes 279

25.7.4 Mocking Constantseeeiiinnnnn. 280

25.7.5 Mocking Properties o oL 280

25.7.6 Raising Exceptions with Mocks 281

2577 Applying Patch to Every Test Method 281

25.7.8 Using Patch as a Context Manager 281

258 Mock Where You Use It 282
259 PatchOrderIssues o i i i i, 282
25.10 How Many Mocks? oottt 283
25.11 Mocking Considerationsoeeeiuinneeeennnnn.. 283
25.12 Online ReSOUIrcesooiiiiiiniiiiiiinenn.. 284
2513 EXCICISES oottt ettt 284

Part V File Input/Output

26 Introduction to Files, Pathsand IO 289
26.1 Introductionciiiiriiii 289
26.2 File Attributes 292
263 Paths 293
26.4 File Input/Outputttt 295

Contents

27

28

29

XX1

26.5 Sequential Access versus Random Access 296
26.6 FilesandI/OinPython 297
26.7 Online ReSOUrcescouiiiiineiiiiinneennnn.. 297
Reading and Writing Files 299
27.1 INtroduCtionoeuuieeeiee i 299
27.2 Obtaining Referencesto Files 299
273 ReadingFiles il 301
27.4 File Contents Iterationccuuiiiiinneeennnnn... 302
27.5 WritingDatatoFiles il 302
27.6 Using Files and with Statements 303
277 TheFileinput Module 303
27.8 Renaming Files i iiiiiiiiL. 304
279 DeletingFiles il 304
27.10 Random AccessFiles, 305
27. 11 DITECOTIES oo vttt ettt et e e e e e e e e e 306
27.12 Temporary Fileso oo, 307
27.13 Working withPaths 309
27.14 Online Resourcesouiiiiieiiineinennnnnnn. 312
2715 EXCICISE . vtttite ettt et 313
Stream IO 315
28.1 INtroductionouuuiiet it 315
28.2 Whatisa Stream?ooiiiiiiniii 315
283 PythonStreams i il 316
284 TOBASE ..t 317
28.5 Raw IO/UnBuffered IO Classesccovviiinnn... 318
28.6 Binary IO/Buffered IO Classescovviiinnn... 318
28.7 Text Stream Classesuvetiiiiin e, 320
28.8 Stream Properties o il 321
28.9 Closing Streamsoeeeinuiueeeeennnieeennnns 322
28.10 Returning to the Open() Function 322
28.11 Online RESOUICeuuuiiiiiin i, 323
2812 EXEICISE ..ttt ettt e e e 323
Working with CSV Files, 325
29.1 INtroductionuuuieeiiiiie i 325
202 CSVEFiles ... 325
29.2.1 TheCSV WriterClIassccoviiveeinnnnn... 326

29022 TheCSV Reader Classcccuiivaann. 327

29.2.3 The CSV DictWriter Class 328

29.2.4 The CSV DictReader Class 329

29.3 Online RESOUICeSiiiiiiiiee i, 330
294 EXEICISES vttt ettt et e e 330

XXii Contents
30 Working with Excel Files 333
30.1 IntroduCtioniiiieiin i 333
30.2 ExcelFiles ... 333
30.3 The Openpyxl. Workbook Class 334
30.4 The Openpyxl. WorkSheet Objects 334
30.5 Workingwith Cells 334
30.6 Sample Excel File Creation Application 335
30.7 Loading a Workbook from an Excel File 336
30.8 Online ResoUrcesooiiiiineiiiiinnneennnnnn.. 338
309 EXEICISES vttt ettt 338
31 Regular Expressionsin Python 341
31.1 IntroduCtioniiiiein i 341
31.2 What Are Regular Expressions? 341
31.3 Regular Expression Patterns, 342
31.3.1 Pattern Metacharacters 342
31.3.2 Special Sequencesciiiiiiiiiiin... 343
31,33 SelS o 344
314 ThePythonre Module 345
31.5 Working with Python Regular Expressions 345
31.5.1 UsingRaw Strings 345
31.52 SimpleExample 346
31.5.3 TheMatch Objectccoiiiiiiiiinnn... 346
31.54 Thesearch() Function 347
31.5.5 The match() Function 348
31.5.6 The Difference Between Matching
and Searching i, 349
31.5.7 The finadall() Function 349
31.5.8 The finditer() Function 349
31.5.9 Thesplit() Function 350
31.5.10 Thesub() Function 350
31.5.11 The compile() Function 351
31.6 Online RESOUICES ...t 353
317 EXETCISES vttt ettt e e e 354
Part VI Database Access
32 Introduction to Databases, 359
32,1 INtroduCtionoiouuine i 359
32.2 WhatIsaDatabase?ciiiiiiiii i 359
32.2.1 DataRelationships L. 360
32.2.2 The Database Schema 361
323 SQLand Databasesc.c.coiiniiiiniiinannnannn.. 363
32.4 Data Manipulation Language 364
32.5 Transactions in Databases, 365
32.6 FurtherReading il 366

Contents Xxiil

33 Python DB-API 369

33.1 Accessing a Database from Python 369

332 TheDB-API ... 369

33.2.1 The Connect Function 370

33.2.2 The Connection Object 370

33.2.3 The Cursor Objectoviiiinneeinnnnn... 371

33.2.4 Mappings from Database Types to Python Types 372

33.2.5 GeneratingErrors o ool 372

33.2.6 Row Descriptionsooiii... 373

33.3 Transactions in PyMySQL oL 374

33.4 Online Resources o i, 375

34 PyMySQL Module i 377

34.1 The PyMySQL Modulecoiiiiiiiiiiaann, 377

342 Working with the PyMySQL Module 377

342.1 Importingthe Module 378

3422 Connect to the Database 378

34.2.3 Obtaining the Cursor Object 379

34.2.4 Using the Cursor Object 379

34.2.5 Obtaining Information About the Results 380

342.6 FetchingResults, 380

34277 Close the Connection 381

343 Complete PyMySQL Query Example 381

344 Inserting Data to the Database 382

345 Updating Data in the Database 384

34.6 Deleting Data in the Database 385

347 CreatingTables i i i 386

34.8 Online Resources o i i .. 386

349 EXEICISES .ttt 387
Part VII Logging

35 Introduction to Logging 391

35.1 Introduction il 391

352 Why Log? oo 391

35.3 What s the Purpose of Logging? 392

354 What Should You Log? i 392

355 WhatnottoLog 393

35,6 WhynotJustUsePrint?, 394

35.7 Online Resources i i .. 395

36 LogginginPython 397

36.1 The LoggingModule i 397

362 TheLoggero 398

36.3 Controlling the Amount of Information Logged 399

36.4 LoggerMethods il 401

XX1V Contents

36.5 Default Loggeriiiiiiiinii i 402

36.6 Module Level Loggers o .. 403

36.7 LoggerHierarchy, 404

36.8 Formattersoiiiiiiii 405

36.8.1 Formatting Log Messages 406

36.8.2 Formatting Log Output 406

36.9 Online ResOUrcesooiiiuiiniiiiinnneenn.. 408

36.10 EXEICISES ..ttt ettt e 408

37 Advanced Logging, 409

37.1 Introduction i 409

372 Handlers 409

37.2.1 Setting the Root Output Handler 411

37.2.2 Programmatically Setting the Handler 412

37.2.3 Multiple Handlers 413

373 Filters ... 415

37.4 Logger Configurationcouviiiiinnneennnnnn.. 416

37.5 Performance Considerations 418

37.6 EXEICISES .ttt ettt e e e 419
Part VIIT Concurrency and Parallelism

38 Introduction to Concurrency and Parallelism 423

38.1 Introduction, 423

382 CONCUITENCY . ..ottt ittt 423

383 Parallelism 425

38.4 Distribution 426

38.5 Grid Computingovvure et 427

38.6 Concurrency and Synchronisation 428

38.7 Object Orientation and Concurrency 428

38.8 Threads V Processes 429

38.9 Some Terminologyooiiiiiiiiiiiiii... 430

38.10 Online Resources 430

39 Threadinguuuniiiiiiii e 433

39.1 IntroduCtionceuuuiiiiiii 433

392 Threadst 433

39.2.1 Thread States 433

39.22 CreatingaThread, 434

39.2.3 Instantiating the Thread Class 435

393 TheThread Classc.oiiiiiiniiniiiiii ... 436

39.4 The Threading Module Functions 438

39.5 Passing Argumentstoa Thread 438

39.6 Extending the Thread Class 440

39.7 DaemonThreads L. 441

Contents

40

41

42

XXV

39.8 Naming Threads, 442
399 Thread Local Data, 442
3910 TIMELS ..ttt 444
39.11 The Global Interpreter Lock 445
39.12 Online Resources 446
3913 EXEICISE ittt 446
MultiProcessing i 449
40.1 Introduction 449
40.2 TheProcess Classcoiiiiiiiiiiiiiiiiia... 449
40.3 Working with the Process Class 451
40.4 Alternative Ways to Start a Process 453
405 UsingaPool i 454
40.6 Exchanging Data Between Processes 458
40.7 Sharing State Between Processes 460
40.7.1 Process Shared Memorycccouuuunn. 460

40.8 Online Resourcesiiiiiiiiiiiiiaa.. 461
40.9 EXEICISES .+ttt 462
Inter Thread/Process Synchronisation 463
41.1 Introduction 463
412 UsingaBarrier i i 463
41.3 EventSignalling 467
41.4 Synchronising Concurrent Code 469
415 PythonLocks i il 470
41.6 Python Conditions 472
41.7 Python Semaphores i i, 475
41.8 The Concurrent Queue Classc.oviiinnennn... 476
419 Online Resources i ... 478
4110 EXEICISES oottt ettt e et 478
Futures 481
42.1 Introductionl i 481
422 TheNeedforaFuture 481
423 FuturesinPython 482
42.3.1 Future Creationooiiiiuninnaann. 483

42.3.2 Simple Example Future 483

42.4 Running Multiple Futures 485
42.4.1 Waiting for All Futures to Complete 486

42.4.2 Processing Results as Completed 488

425 Processing Future Results Using a Callback 489
42.6 Online Resourcesiiiiiiiiiiiiinna... 490
427 EXEICISES .« vttt 490

XXVi Contents

43 Concurrency with AsynclO 493
43.1 Introductioniiiiii 493
43.2 Asynchronous IO o ool 493
433 AsyncIOEventLoopc..ooiiiiiiiiiiiiiii 494
43.4 The Async and Await Keywords 495

43.4.1 Using Asyncand Awaitccouuinnean.. 496
435 AsyncIOTasks i i 498
43.6 Running Multiple Tasks L. 500
43.6.1 Collating Results from Multiple Tasks 500

43.6.2 Handling Task Results as They Are Made
Available o o i il 501
437 Online Resources i .. 502
43.8 EXEICISES ittt 502

44 Performance Monitoring and Profiling 505
44.1 Introductionl i 505
44.2 Why Monitor Performance and Memory? 505
44.3 Performance Monitoring and Profiling 506
44.4 Performance Monitoringo o oL 507

4441 TheTimeModule, 507
4442 The Timeit Module, 508
4443 ThePsutilModule, 510
44.5 Python Profiling i 511
44.5.1 ThecProfile Module 511
44.5.2 The Line_Profiler Module 511
4453 The Memory_Profiler Module 512
44.5.4 Additional Third-Party Libraries 512
44.6 Profiling with cProfile 512
4477 Memory Profiling i il 515
44.8 Online Resourcescuiiiiiiiiiinnn... 517

Part IX Reactive Programming

45 Reactive Programming Introduction 521
45.1 Introductioniiiiiii 521
45.2 What Is a Reactive Application? 521
45.3 The ReactiveX Project il 522
454 The Observer Pattern i, 522
45.5 Hotand Cold Observablesoo.. 523
45.6 Differences Between Event Driven Programming

and Reactive Programming L. 524
45.7 Advantages of Reactive Programming 525
45.8 Disadvantages of Reactive Programming 525
45.9 The RxPy Reactive Programming Framework 526

45.10 Online Resourcescouiiiiiiiiniennan. 526

Contents XXVil
46 RxPy Observables, Observers and Subjects 527
46.1 Introductioniiiiiii 527
46.2 RxPyLibrary 527
46.3 ObservablesinRxPy L. 527
46.4 ObserversinRxPy i 528
46.5 Multiple Subscribers/Observerscccooun... 530
46.6 SubjectsinRxPy il 531
46.7 Observer CONCUITENCYoiiiiiiiiiiiieannnaa... 534
46.7.1 Available Schedulers 535
46.8 Online Resourcesiiiiiiiiiiiia... 536
46.9 EXEICISES .ttt 536
47 RXPy Operatorscouuuiiiiimniie i, 537
47.1 Introductioniiiii i 537
47.2 Reactive Programming Operators 537
473 Piping Operatorsouiiiiiiiiiinaniiieaeannenn.. 538
47.4 Creational Operatorsuuuiieeeeiiinneeennnnnn.. 539
47.5 Transformational Operatorsccouuiveeeennnn... 539
47.6 Combinatorial Operators 541
47.7 Filtering Operatorsouuiieieinieanienanenann.. 542
47.8 Mathematical Operators, 543
47.9 Chaining Operatorseeeuiineeeeminneeennnnnn.. 544
47.10 Online Resources i, 546
A7 11 EXEICISES .+ttt ittt e e e e e e e e 546
Part X Network Programming
48 Introduction to Sockets and Web Services 551
48.1 Introduction i il il 551
48.2 SOCKELS ..ttt 551
48.3 Web Servicesoiiiiiiiii 552
48.4 Addressing ServiCesoiiiiiiiiiiiiiiia.. 552
48.5 Localhost 553
48.6 PortNumbers i 554
48.7 IPv4A VersusIPvO 555
48.8 Sockets and Web Services in Python 555
48.9 Online Resourcesooiiiiiiiiiiinna... 556
49 SocketsinPython 557
49.1 Introduction il il 557
49.2 Socket to Socket Communication 557
49.3 Settingup a CoNNECLioncuuuiiiiiniiieeeennnn. 558
49.4 An Example Client Server Application 558
49.4.1 The System Structurec.oueiiiinann. 558

49.4.2 Implementing the Server Application 559

XXViii

50

51

52

Part
53

Contents
49.4.3 Socket Types and Domains 560
49.4.4 Implementing the Client Application 561
49.5 The Socketserver Module, 562
49.6 HttpServero 565
49.7 Online Resourcesiiiiiiiiiiiiiiaa... 567
49.8 EXEICISES vttt 568
Web Servicesin Python, 571
50.1 Introductionuuiiiiiiiii e 571
50.2 RESTful Servicesooiiiiiiiiiiiiiiia... 571
503 ARESTful API 572
50.4 Python Web Frameworks 573
50.5 Online Resourcescoiiiiiiiiiniinennnnnnnn. 574
Flask Web Services 575
51.1 Introductioncoiiiiiiiiiiiiiiiiiii, 575
512 Flask ..o 575
51.3 HelloWorldinFlask i ... 576
513.1 UsingJSON ... 576
51.4 Implementing a Flask Web Service 577
51.4.1 ASimple Service ... 577
51.4.2 Providing Routing Information 577
51.5 Runningthe Servicecciiiiiiiiiiiiiiiin... 578
51.6 Invoking the RESTFul Service 579
51.6.1 The Final Solution 580
51.7 Online ReSOUICescoiiiiiiiineiiinneenn.. 580
Flask Bookshop Web Service 583
52.1 Introduction il 583
52.2 Building a Flask Bookshop Service 583
523 TheDesignooiiiinni 583
524 TheDomainModel, 585
52.5 Encoding Books into JSON, 586
52.6 Setting Up the GET Servicesccooiiiiieiinnn... 588
5277 DeletingaBook 589
52.8 AddingaNew Book i il 590
529 UpdatingaBook i 592
52.10 What Happens if We Get It Wrong? 593
52.11 Bookshop Services Listingcccoiviiiiinnn... 594
5212 EXEICISES ittt 596
XI Data Science: Data Analytics and Machine Learning
Introduction to Data Science L. 601
53.1 Introductionl i i 601
532 DataSCIenceiiiiiiiiiiiii 601

53.3 Data Science Tools and Techniques 602

Contents

54

55

56

57

XXiX

53.4 Data Analytics Processcooiiiiiiiiiinn ... 604
53.5 Pythonand Data Science i, 606
53.6 Machine Learning for Data Science 607
537 Online Resources 608
Pandas and Data Analytics 611
54.1 Introduction il 611
542 TheData 611
54.2.1 The UK Government COVID Data Set 611

54.2.2 The Google Mobility Data Set 613

543 PythonPandas i il 614
54.3.1 Pandas Series and DataFrames 615

54.4 Loading and Analysing UK COVID DataSet 616
54.5 Loading the Google Mobility Data Set 621
54.6 Merging Two DataFrames 622
547 Analysing the Combined Data 623
54.8 SUMMATY ..ottt 627
AlternativestoPandas 629
55.1 Introduction 629
55.2 Comparing Pandas 2.0.0o 629
553 Pandas L.XV2.X ... 629
55.4 Pandas Versus Other Libraries and Tools 630
55.5 Online Resources i i .. 632
Machine Learning in Python 633
56.1 Introduction 633
562 TheData 633
563 SciKitLearn i 634
564 TheProblem i 635
56.5 Using Regression Supervised Learning Systems 636
56.6 K-Nearest Neighbour Regressor 636
56.7 Decision Tree Regressor 638
56.8 Random Forest Regressorcccovviiiiinn... 639
56.9 Summary of Metrics Obtained 640
56.10 Creating the Regressor Object 640
56.11 Online Resources i, 642
Pip and Conda Virtual Environments 643
57.1 Introductionl il 643
57.2 Virtual Environments oo ool 643
573 Working withPip o i il 644
57.3.1 Activating a Pip Environment 644

57.3.2 Installing Modules Using Pip 645

57.3.3 Deactivating a Pip Environment 646

57.3.4 Check Versionof Pip 646

57.3.5 Installing Modules into a Pip Environment 646

XXX

57.4
57.5

57.6

57.7
57.8

Contents

57.3.6 FreezingModules 647
Conda ..o 648
Anaconda 649
57.5.1 Installing Anaconda 649
Working with Anacondao, 651
57.6.1 Checking the Conda Version 651
57.6.2 UpdatingCondacoiiiiiiinnnnnn. 651
57.6.3 Creating a Conda Environment 652
57.6.4 Listing Available Conda Environments 653
57.6.5 Activating a Conda Environment 654
57.6.6 Deactivating a Conda Environment 655
57.6.7 Listing the Modules Loaded into a Conda

Environment i i 655
57.6.8 Removing an Anaconda Environment 656
57.6.9 Installing a Module into a Conda Environment 656
AnacondainPyCharm 658

Online Resourcescoiiiniiiiniiiinen... 658

Chapter 1 ®)
Introduction Check for

1.1 Introduction

I have heard many people over the years say that Python is an easy language to learn
and that Python is also a simple language.

To some extent both of these statements are true; but only to some extent.

While the core of the Python language is easy to lean and relatively simple (in
part thanks to its consistency), the sheer richness of the language constructs and
flexibility available can be overwhelming. In addition the Python environment, its
eco system, the range of libraries available, the often competing options available,
etc., can make moving to the next-level daunting.

Once you have learned the core elements of the language such as how classes
and inheritance work, how functions work, what are protocols and Abstract Base
Classes, etc. where do you go next?

The aim of this book is to delve into those next steps. The book is organised into
eleven different topics:

1. Advanced Language Features. The first section in the book covers topics
that are often missed out from introductory Python books such as slots, weak
references __init__ () versus __new__() and metaclasses.

2. Computer Graphics. The book covers Computer Graphics and Computer

Generated Art in Python as well as graphical user interfaces and graphing/

charting via Matplotlib.

Games Programming. This topic is covered using the pygame library.

4. Testing and Mocking. Testing is an important aspect of any software develop-
ment; this book introduces testing in general and the PyTest module in detail.
It also considers mocking within testing including what and when to mock.

b

© Springer Nature Switzerland AG 2023 1
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_1

2 1 Introduction

5. File Input/Output. The book covers text file reading and writing as well as
reading and writing CSV and Excel files. Although not strictly related to file
input, regulator expressions are included in this section as they can be used to
process textual data held in files.

6. Database Access. The book introduces databases and relational database in
particular. It then presents the Python DB-API database access standard and
one implementation of this standard, the PyMySQL module used to access a
MySQL database.

7. Logging. An often missed topic is that of logging. The book therefore introduces
logging the need for logging, what to log and what not to log as well as the Python
logging module.

8. Concurrency and Parallelism. The book provides extensive coverage of
concurrency topics including threads, processes and inter-thread or process
synchronisation. It also presents futures and AsynclO.

9. Reactive Programming. This section of the book introduces Reactive Program-
ming using the PyRx Reactive Programming library.

10. Network Programming. The book introduces socket and web service commu-
nications in Python. It looks at both the Flask and the Django web service
libraries.

11. Data Analytics. A very hot topic for any potential Python programmer is data
analytics (and the related use of machine learning). The book concludes by
introducing these topics and there Pandas and scikit-learn (or SK-learn as it is
sometimes known) libraries.

Each section is introduced by a chapter providing the background and key concepts
of that topic. Subsequent chapters then cover various aspects of the topic.

For example, the second topic covered is on Computer Graphics. This section
has an introductory chapter on Computer Graphics in general. It then introduces the
Turtle Graphics Python library which can be used to generate a graphical display.

The following chapter considers the subject of Computer Generated Art and
uses the Turtle Graphics library to illustrate these ideas. Thus several examples
are presented that might be considered art. The chapter concludes by presenting the
well-known Koch Snowflake and the Mandelbrot Fractal set.

This is followed by a chapter presenting the Matplotlib library used for generating
2D and 3D charts and graphs (such as a line chart, bar chart or scatter graph).

The section concludes with a chapter on graphical user interfaces (or GUIs) using
the wxpython library. This chapter explores what we mean by a GUI and some of
the alternatives available in Python for creating a GUIL.

Other topics follow a similar pattern.

Each programming or library-oriented chapter also includes numerous sample
programs that can be downloaded from the GitHub repository and executed. These
chapters also include one or more end of chapter exercises (with sample solutions
also in the GitHub repository).

1.2 Useful Python Resources 3

The topics within the book can be read mostly independently of each other. This
allows the reader to dip into subject areas as and when required. For example, the
File Input/Output section and the Database Access section can read independently
of each other (although in this case assessing both technologies may be useful in
selecting an appropriate approach to adopt for the long-term persistent storage of
data in a particular system).

Within each section there are usually dependencies; for example, it is neces-
sary to understand pygame library from the ‘Building Games with pygame’ intro-
ductory chapter, before exploring the worked case study presented by the chapter
on the StarshipMeteors game. Similarly it is necessary to have read the threading
and multiprocessing chapters before reading the inter-thread/process synchronisation
chapter.

1.2 Useful Python Resources

There are a wide range of resources on the web for Python; we will highlight a few
here that you should bookmark. We will not keep referring to these to avoid repetition
but you can refer back to this section whenever you need to:

e https://en.wikipedia.org/wiki/Python_Software_Foundation Python Software
Foundation.

e https://docs.python.org/3/ The main Python 3 documentation site. It contains
tutorials, library references, set up and installation guides as well as Python
how-tos.

e https://docs.python.org/3/library/index.html A list of all the built-in features for
the Python language—this is where you can find online documentation for the
various class and functions that we will be using throughout this book.

e https://pymotw.com/3/ the Python 3 Module of the week site. This site contains
many, many Python modules with short examples and explanations of what the
modules do. A Python module is a library of features that build on and expand
the core Python language. For example, if you are interested in building games
using Python then pygame is a module specifically designed to make this easier.

e https://www.fullstackpython.com/email.html is a monthly newsletter that
focusses on a single Python topic each month, such as a new library or module.

e http://www.pythonweekly.com/ is a free weekly summary of the latest Python
articles, projects, videos and upcoming events.

Each section of the book will provide additional online references relevant to the
topic being discussed.

https://en.wikipedia.org/wiki/Python_Software_Foundation
https://docs.python.org/3/
https://docs.python.org/3/library/index.html
https://pymotw.com/3/
https://www.fullstackpython.com/email.html
http://www.pythonweekly.com/

Part I
Advanced Language Features

Chapter 2 ®)
Python Type Hints e

2.1 Introduction

Python is a dynamically typed language right—well yes it is however there is a
feature known as Type Hints that allows typing information to be provided when
functions and methods are defined. These Type Hints are extremely useful and can
help a developer understand what types are expected by a function or a method and
indeed what types are likely to be returned.

Recent versions of Python, including 3.10 and 3.11, have increased the support
for Type Hints so that they are now quite usable. These can be used by analysis tools
and IDEs to help developers create more stable and reliable applications.

2.2 Pythons Type System

Many people consider Python to be an untyped programming language. However,
that is not quite true. The type system in Python can be referred to as representing
a dynamically typed programming language. That is a variable holds a value and
the type of that value is known and understood by the language. At runtime Python
checks that what you are trying to do is valid given the types involved. For example,
you can use the type () function to find out what type of thing a variable holds at
any point in time:

a_variable = 42

print (f'a_variable type
a_variable = 1.345
print (f'a_variable type = {type(a_variable)} = {a_variable}"')
a_variable = "Hello"

print (f'a_variable type = {type(a_variable)} = {a_variable}"')
a_variable = True

print (f'a_variable type = {type(a_variable)} = {a_variable}"')

{type(a_variable)} = {a_variable}')

© Springer Nature Switzerland AG 2023 7
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_2

8 2 Python Type Hints

This produces as output:

a_variable type = <class 'int'> = 42
a_variable type = <class 'float'> = 1.345
a_variable type = <class 'str'> = Hello
a_variable type = <class 'bool'> = True

Of course, as the above shows, a variable in Python can hold different types of
things at different types, hence the term dynamically typed.

As Python knows what types variables hold it can check at runtime that your
programs are valid/correct given the types involved for example in a particular oper-
ation. Thus, it is valid to add two integers together and indeed two strings together
(as this is string concatenation) but attempting to add an integer to a string will result
in a TypeError:

print
print
print
print

1+1)

1.2+ 3.4)

"Hello" + "world")
"Hello" + 1)

This code produced the following output including the TypeError:

2
4.6
Helloworld
Traceback (most recent call last):

File "/Users/jeh/temp/pythonProjects/course/main.py", line 15,
in <module>

print ("Hello" + 1)

TypeError: can only concatenate str (not "int") to str

2.3 The Challenge for Python Developers

The challenge for Python developers comes when they need to understand what types
are required by, or work with, some API. As a very simple example, consider the
following function:

def add(x, y):
returnx + vy

What types can be used with this function?

In essence any type can be used for the parameter x that supports the p/us operator
(+) with the type in y. From the above we know that integers and strings can be used,
but we can also use floating point numbers, for example:

print(add(1, 2))
print(add(1.2, 3.4))

2.4 Static Typing 9

print(add(1l, 3.4))
print(add (5.5, 1))
print (add("Hi", "There"))

All of the above are valid parameters, and the output produced from the above
code is:

.6
.4
.5
HiThere

o W

Even custom types can be used if they implement the special __add__ (self,
other) operator method, for example:

class Quantity:
def init_ (self, amount):
self.amount = amount

def _ add__ (self, other):
return Quantity (self.amount + other.amount)

def _ str__ (self):
return f"Quantity({self.amount})"

gl = Quantity(5)
g2 = Quantity (4)
print (add(gl, g2))

The __add___ () method allows the custom type (class) being defined to be used
with the add operator (‘+’). Thus this program generates the following output:

Quantity(9)

However, what was the intent of the designer of this add () function? What did
they expect you to add together? The only option in traditional Python code is for
the developer to provide some form of documentation, for example in the form of a
docstring:

def add(x, y):
"""adds two integers together and
returns the resulting integer."""
return x + y

2.4 Static Typing

Languages such as Java, C# and C are statically typed languages. That is when a
variable, object attribute, parameter or return type is defined then the type of that
element is specified statically a compile time.

10 2 Python Type Hints

Thus, an add () method on a Java class Calculator might be written as
follows:

package com.jjh;
public class Calculator {

public int add(int x, int y) {
return x + v;

}
}

This makes it clear to a Java programmer and to the Java compiler that the add ()
method will only handle integers and will return as a result an integer type. Thus,
there is no possibility that a developer might try to add a number to a Boolean value,
etc. In fact the compiler will not even allow it!

The Java Calculator class can be used as shown below, note that this code
will not even compile if the developer tries to add two strings together. In this case
we are adding two integers together, so all is fine:

package com.jjh;

public class App {
public static void main(String[] args) {
System.out.println("Starting");
Calculator calc = new Calculator () ;
System.out.println(calc.add (4, 5));
System.out.println ("Done") ;

}

As the above program uses valid integer types with the add () method, the output
from the compiled and executed program is:

Starting
9
Done

2.5 Python Type Hints

Python’s Type Hints are more like a half-way house between traditional Python’s
lack of typing information at all and the very strict string static typing approach of
languages such as Java.

A Type Hint is additional type information that can be used with a function
definition to indicate what types parameters should be and what type is returned.
This is illustrated below:

def add(x: int, y: int) -> int:

2.6 Type Hint Layout 11

return x + vy

In this case it makes it clear that both x and y should be of type int (integer
types) and the returned result will be an int. However, adding Type Hints as shown
above has no effect on the runtime execution of the program; they are only hints and
are not enforced by Python per se. For example, it is still possible to pass a string
into the add () function as far as Python is concerned.

However, static analysis tools (such as MyPy) can be applied to the code to check
for such misuse. Some editors, such as the widely used PyCharm, already have such
tools integrated into their code checking behaviour.

If you want to use a tool such as mypy instead, or in addition to that available in
your IDE, then you can install it using

pip install mypy
Or if you want to use conda/Anaconda by using

conda install mypy
You can now analyse your code by applying MyPy to a Python file, for example:

% mypy main.py

main.py:3: error: Incompatible types in assignment (expression has
type "float", variable has type "int")

main.py:5: error: Incompatible types in assignment (expression has
type "str", variable has type "int")

main.py:24: error: Argument 1 to "add" has incompatible type "str";
expected "int"

main.py:24: error: Argument 2 to "add" has incompatible type "str";
expected "int"

main.py:44: error: Argument 1 to "add" has incompatible type
"Quantity"; expected "int"

main.py:44: error: Argument 2 to "add" has incompatible type
"Quantity"; expected "int"

Found 6 errors in 1 file (checked 1 source file)

2.6 Type Hint Layout

The Python Style Guide defined by Python Enhancement Proposal 8 (PEP 8) provides
some guidance for using Type Hints, for example:

e Use normal rules for colons, that is, no space before and one space after a colon:
text: str.

e Use spaces around the = sign when combining an argument annotation with a
default value: align: bool = True.

e Use spaces around the -> arrow: def headline(...) -> str.

12 2 Python Type Hints

2.7 Type Hints for Multiple Types

Of course our add () function could work with floating point numbers as well as it
works with integers. It would therefore be useful to be able to state this in terms of the
Type Hints. Prior to Python 3.10 this could be done using a Union type, for example
Union[int, float] which while it worked was a little unwieldy. Since Python
3.10 we can use the style syntax bar ‘I’ for example int | f£loat as shown below:

def add(x: int | float, y: int | float) -> int:
return x + vy

2.8 The Self Type

Python 3.11 introduced the Self type which is defined in PEP 673. This can be used
to indicate that a method returns a reference to itself, for example:

from typing import Self
class Shape:

def _ _init__ (self):
self.scale=10.0

def set_scale(self, scale: float) -> Self:
self.scale = scale
return self

2.9 The Benefits of Type Hints

There are a range of benefits to using Type Hints in Python, for example:

e They help catch some errors within programs. Obviously, the biggest benefit
is that Type Hints can help developers catch certain types of problems in their
code (assuming that some form of type checker is used).

e They provide documentation. Type Hints can also act as a level of document
that editors such as IDEs can pick up and display to other developers.

e They can be work with IDEs. They can help with code generation and IDE
auto-complete functionality.

e They can make developers stop and think. They can help ensure that developers
think about their code and what types should be supported.

e They can improve understanding of libraries. Although Type Hints may offer
little advantage in a single use script, or throw away program, they can be of
significant benefit when a library is being created. Such libraries will be used

2.11 Online Resources 13

by a range of different developers, and some may be released into the wild, for
example via PyPI, the Python Package Index. The use of Type Hints can greatly
enhance others understanding of the APIs provided by these libraries.

2.10 Summary

If you are just starting out with Python, or you are writing scripts that will only be used
once, then Type Hints may not be particularly useful. However, if you are creating
libraries or developing larger more complex applications with teams of developers,
then they can be very useful indeed.

2.11 Online Resources

https://docs.python.org/3.10/ Python 3.10 documentation.
https://docs.python.org/3.11/ Python 3.11 documentation.
https://en.wikipedia.org/wiki/Type_system Wikipedia Type System page.
https://en.wikipedia.org/wiki/Dynamic_programming_language = Dynamically
typed languages.

https://docs.python.org/3/library/exceptions.html Exception handling in Python.
https://www.pythontutorial.net/python-basics/python-type-hints/ Tutorial on
Python Type Hints.

https://pypi.org/project/mypy/ MyPy static type hint analysis tool.
https://mypy.readthedocs.io/en/stable/ MyPy documentation.
https://www.jetbrains.com/pycharm/ PyCharm IDE tool.
https://peps.python.org/pep-0008/ Python (PEP 8) Style Guide including guid-
ance of how to layout Type Hints.

https://peps.python.org/pep-0673/ Information on the Self type.

https://pypi.org/ The Python package Index PyPi.

https://docs.python.org/3.10/
https://docs.python.org/3.11/
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://docs.python.org/3/library/exceptions.html
https://www.pythontutorial.net/python-basics/python-type-hints/
https://pypi.org/project/mypy/
https://mypy.readthedocs.io/en/stable/
https://www.jetbrains.com/pycharm/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0673/
https://pypi.org/

Chapter 3 ®)
Class Slots Chack or

3.1 Introduction

Python classes are very flexible, they allow data and behaviour to be defined when
the class is created, but also dynamically at any point in the lifetime of the class and
its instances. This technique is known as Monkey Patching and can be extremely
useful. However, in other situations, allowing the data or behaviour of a class to
change dynamically after the class has been defined, might be very confusing and
make the system harder to maintain. The issue is that a class’s attributes can be added
at any time, and there is no formal specification of the attributes—that is until we
look at slots. Slots allow us to specify what attributes a class will have and to ensure
that those attributes and only those attributes are used with the class and its instances.
This chapter introduces Python class slots.

3.2 The Problem

In many object-oriented languages it is necessary to define the attributes or fields
that a class will have explicitly within the class definition. For example, in Java we
might write the following:

public class Person {
private int age = 0;
private String name = "";

public Person (name String, int age) {
this.name = name;
this.age = age;
}
public int getAge () {
return age;

© Springer Nature Switzerland AG 2023 15
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_3

3 Class Slots

}
public void setAge (int newAge) {

age = newAge;

}

public String getName () {
return name;

}
public void birthday () {

int oldAge, newAge;

oldAge = getAge() ;

System.out.println ("Happy birthday " + getName()) ;
System.out.print ("You were " + oldAge) ;
System.out.print (" but now you are ") ;

this.age = this.age + 1;

System.out.println (age) ;

}
In the above class the two lines:

private int age = 0;
private String name = "";

declare that the Java class Person will have two attributes (also known as instance
variables in Java) called name and age. It cannot have any dynamically added
additional attributes, and it is not possible to create on the fly within a method.

The equivalent class definition in Python might look like:

class Person:
def _ init_ (self, name, age):
self.name = name
self.age = age

def birthday(self):
print (f'Happy birthday {self.name}',
f', you were {self.age}"',
end ="")
self.age = self.age + 1
print (f' but now you are {self.age}')

This does essentially the same thing (although in a more concise format). Using
this class we can create instances of the class and print out the details associated with

the object, for example:

pl = Person('Phoebe', 25)

print (f'pl: {pl.name} {pl.age}')
which produces:

pl: Phoebe 25

3.3 Slots to the Rescue 17

However there is nothing to stop us adding a new attribute address to the class,
for example:

pl.address = '10 High Street'
print (f'pl.address: {pl.address}')

When we run this we get:

pl.address: 10 High Street

This is not possible in Java as address was not defined within the scope of
the class and thus objects of class Person in Java can never have any additional
attributes such as address.

In Python not only is this legal, it is also sometimes quite useful.

However, how do you know that there is an attribute address on the object in
p1? Only be reading through the code using p1, you cannot see it by looking at the
Python class definition for Person.

Perhaps even more confusingly if we write:

p2 = Person('Gryff', 24)
print (f'p2: {p2.name} {p2.age}')
print (f'p2.address: {p2.address}')

That is we create a new instance of the class Person and try to access the
attributes name, age and address (which apparently all work for the instance in
pl), and we will raise a runtime AttributeError, for example:

p2: Gryff 24
Traceback (most recent call last):
File "/person.py", line 19, in <module>
print (f'p2.address: {p2.address}')

AAAAAANAANAAN

AttributeError: 'Person' object has no attribute 'address'

This indicates that the Person object in p2 does not possess an attribute
address yet pl did! Of course this is because we added the attribute only to
the object in p1 not to the class in general.

This can be very confusing and make maintaining code much more difficult!

3.3 Slots to the Rescue

There is a special class attribute called ___slots___ which can be used to provide a
sequence of strings that define or specify the attributes that the class will hold. It is
a class attribute as it is part of the class not part of an instance of object of the class.
However, it defines the attributes any instance of the class can use.

Thus if an attribute is not included in the slots sequence then it cannot be defined
within the class. This means that to find out what attributes a class defines for its
objects all you have to do is look at the slots attribute and they will be listed there.

18 3 Class Slots

It also means that it is not possible to dynamically monkey patch a class with
additional attributes at runtime.
As an example, see the modified definition for the class Person below:

class Person:
__slots___ = ['name', 'age']

def _ init_ (self, name, age):
self.name = name
self.age = age

def _ repr_ (self):
return f'Person({self.name} is {self.age})"'

This version of the class Person lists the attributes name and age in the _
_slots__ class attribute. Note that the names of the attributes are defined as
strings—so don’t forget the quotes around each attribute.

Then within the class an initialiser sets up the values for the attributes
self .name, self.age, etc.

We can now create an instance of this class and for example print out the age, the
name and use the __repr__ () method to convert the object to a string for printing
purposes:

pl = Person ('Phoebe', 25)
print (pl)
print (f'pl: {pl.name} {pl.age}')

The output from this is:

Person (Phoebe is 25)
pl: Phoebe 25

So far so good, but what has this given us over the original version?
If we now try to dynamically add an attribute such as address to this version
of Person, for example:

pl.address = '10 High Street'

We will now generate a runtime AttributeError indicating that the object
does not have an attribute address, for example:

Traceback (most recent call last):
File "main.py", line 16, in <module>
pl.address = '10 High Street'

AAAAAAAAAAN

AttributeError: 'Person' object has no attribute 'address'

‘We have now fixed the attributes defined within the class to be name and age
and only ever name and age.

3.4 Performance Benefits 19

This is actually true even if we tried to define an additional attribute within the
initialiser method, for example, in the following version of the Person class has
added the self.address attribute withinthe __init_ () method:

class Person:
__slots___ = ['name', 'age']

def _ init_ (self, name, age):
self.name = name
self.age = age
self.address = None

def _ _repr_ (self):
return f'Person({self.name} is {self.age})

When we try and use this class to create a new instance of the class Person we
again get an AttributeError raised:

Traceback (most recent call last):
File "main.py", line 13, in <module>
pl = Person/('Phoebe', 25)

AAAAAAAAAAAAAAAAAAAN

File "main.py", line 7, in _ _init_
self.address = None

AAAAAAAAAAAA

AttributeError: 'Person' object has no attribute 'address'

Thus we are guaranteed that the class Person and all instances of the class
Person, all work with just the name and age specified in the __slots__ class
attribute.

3.4 Performance Benefits

There are in fact additional benefits to be had from using the __slots__ class
attribute. These benefits relate to performance. This is because attributes defined
using slots are more efficient in terms of memory space and speed of access and a
bit safer than the default Python method of data access.

By default, when Python creates a new instance of a class, it creates a
__dict__ attribute for the class. The __dict___ attribute is a dictionary whose
keys are the variable names and whose values are the variable values. This allows
for dynamic variable creation but can also lead to uncaught errors.

The fact that under the hood a simple dict is used for attribute storage and lookup
as a few implications:

¢ Dictionaries are memory expensive objects. While this may not be a problem for
a small class or for a class with only a few instances it can become far more
significant with millions of objects as they will use a lot of memory.

20 3 Class Slots

e Dictionaries are based on a hash map. In the worst-case scenarios the time
complexity of the get and set options on a hash map is of O(n) that is of Order(n).
This means that when the time taken to access a value is measured as the number
of elements in the dictionary increases so does the access time and that it increases
linearly.

When using slots the attributes are created directly as properties of the class and
by pass the default dict-based implementation. This is both more efficient in terms
of access times and in terms of memory usage.

To illustrate this we can compare the size of the object created for the first version
and the second version of the Person class.

The size of the object created without using slots is:

print (f'sys.getsizeof (pl) noslots - {sys.getsizeof (pl)}"')

which generates:

sys.getsizeof (pl) noslots - 56

And if we run the version using slots:

print (f'sys.getsizeof (pl) slots - {sys.getsizeof(pl)}")

This produces:

sys.getsizeof (pl) slots - 48

which is 8 bytes less. This may not sound like much but multiple this by a million
times and it starts becoming significant!

3.5 Why Not Use Slots?

Soifslots are so good why doesn’t everyone use them for all classes? In short although
many people consider them a very useful features there as many who consider them
poorly understood, difficult to get right and restrictive.

The main issue comes down to flexibility—do you want or need to be able to
dynamically update the attributes in your class? If the answer is yes then slots are
not for you, if you don’t then slots may well be advantageous. Although the counter-
argument is that you are making this design decision which will impact anyone who
uses your class at any time in future!

Additionally by default slots cannot be used with weak references. Thus if you
want your class to use weak references you can’tuse __slots_ .

Although it should be noted that if you want to use slots with dynamic attributes
or indeed with weak references then you can do so by adding °__dict__ " or°
weakref__ ’ asthe last element inthe __slots__ declaration.

3.6 Online Resource 21
The final issue might be that a library you are using might rely on the pres-

ence of a __dict__ for attributes for it to function correctly. For example, the

functools.cached_property () is an example of a function that requires an
instance __dict__ to function correctly.

3.6 Online Resource

e https://wiki.python.org/moin/UsingSlots Tutorial on using slots.

https://wiki.python.org/moin/UsingSlots

Chapter 4 ®)
Weak References Check for

4.1 Introduction

In this chapter we will look at weak references. Most of the time an object has one or
more strong references associated with it. As long as at least one strong reference is
associated with an object it cannot be automatically garbage collected. However, in
some situations it may be useful to allow an object to be garbage collected (removed
from memory) while a program is still using it, particularly if the available memory
is becoming limited. To allow this to happen we can use weak references; weak
references do not stop an object being removed from memory and can be very useful
when used with a data cache, etc.

4.2 How Garbage Collection Works: Reference Counting

Before we go any further it is worth considering how the traditional Python garbage
collector determines if an object can be removed or not from memory.

To do this the Python runtime keeps a record of the number of references to an
object. If there is at least one (strong) reference to an object, then that object cannot
be garbage collected. However, if an object has no (strong) references to it then the
garbage collector can safely reclaim the memory used by the object.

In fact all Python objects include a reference count, which counts how many
things are referencing it. If an object is referenced by another object, then its counter
is incremented, if a variable references an object then the objects reference counter
will again be incremented. If a variable or another object dereferences the object then
the objects’ reference counter is decremented, etc.

© Springer Nature Switzerland AG 2023 23
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_4

24 4 Weak References

By a reference we mean a variable or an attribute in another object is currently
referencing, pointing at, the object.

As an example, we will define a simple class Data that will hold some sort of
value:

class Data:
def init_ (self, value):
self.value = value

def _ repr_ (self):
return f'Data({self.value}) "

We can create a simple program to create an instance of this class and store it into
a variable called data. Using the id of the object we can then find out how many
references there are to the data object:

import ctypes

print ('Create data item')
data = Data (1)

print ('Obtain the id of list object"')
data_id = id(data)

print ('Find the reference count of data')
ref_count = ctypes.c_long.from address (data_id) .value
print (f"Reference count for data is: {ref_count}")

The above code uses the ctypes.c_long. from_address value attribute
to find the number of (strong) references.
When we run this code we will see:

Create data item

Obtain the id of list object
Find the reference count of data
Reference count for data is: 1

That is, there is one reference to the Data object. This reference is currently held
in the variable data. If we now make another two variables reference the object
held in data we will increment the reference count:

print ('Add some more references')
other_datal = data
other_data2 = data

print ('Find the reference count of data now')
ref_count = ctypes.c_long.from_address (data_id) .value
print (f"Reference count for data is now: {ref_count}")

The output from this is:

Add some more references
Find the reference count of data now
Reference count for data is now: 3

4.4 When to Use Weak References 25

As you can see there are now 3 things referencing the Data object.
And finally if we reset the data variable to None and check the number of
references we will see that there are 2:

print ('Reset data to None')

data = None

print ('Find the reference count of data now')

ref_count = ctypes.c_long.from_address (data_id) .value
print (f"Reference count for data is now: {ref_count}")

The output from this is:

Reset data to None
Find the reference count of data now
Reference count for data is now: 2

Notice that setting the data variable to None has no effect on the other_
datal and other_data? variables, all it does is reduce the number of references
to the Data instance from 3 down to 2.

4.3 Weak References

Unlike strong or normal references, a weak reference is a reference that does not
protect the object from being garbage collected.

A weak reference is not included in the main count for an objects’ reference.
Thus if an object has no (strong) references to it but only weak references, then if the
garbage collector needs to free up memory it can remove a weak reference object
from memory. The result is that the weak reference no long references an object and
any attempt to do so will return None.

That is to say that if the object is available in memory, calling the weak reference
returns it, otherwise if the object has been garbage collected, then None is returned.

In terms of terminology, we say that the object that is the target of a reference is
called the referent. Therefore, we can say that a weak reference does not prevent the
referent from being garbage collected.

4.4 When to Use Weak References

Why do we want weak references as a thing in the first place?
There are two main applications of weak references:

e Implement caches for large objects (weak dictionaries).
e Handling circular references.

To create weak references Python has provided us with a module named
weakref. We will explore the weakref module in the next section.

26 4 Weak References

Note that some of the built-in types do not support weak references such as tuple
and int.

4.5 The Weakref Module

The weakref module is a built-in module, and it is therefore provided as part of
the reference implementation of Python. However, it is not made available to your
code by default, and thus you must import weakref to use the module.

The following classes and methods are provided by the weakref module:

e class weakref.ref(object[, callback])—This returns a weak reference to the
object.

e weakref.proxy(object|, callback])—This returns a proxy to object which uses a
weak reference.

e weakref.getweakrefcount(object)—Return the number of weak references and
proxies which refer to object.

o weakref.getweakrefs(object)—Return a list of all weak reference and proxy
objects which refer to object.

4.6 Creating Weak References

The ref () function, in the weakref module, can be used to create a weak reference
to an object. In turn the weakref . getweakrefcount () function can be used
to obtain the number of weak references associated with an object. Both of these
functions are illustrated below:

import ctypes
import weakref

print ('Create data item')
data = Data (1)

print ('Obtain the id of list object')
data_id = id(data)

print ('Find the reference count of data')
ref_count = ctypes.c_long.from_address (data_id) .value
print (f"Reference count for data is: {ref_count}")

print ('Initial weak ref count')
weak_ref_count = weakref.getweakrefcount (data)
print (f"Number of weak references: {weak_ref_count}")

print ('Add a weakref reference')
weakref_data = weakref.ref (data)

print ('Find the reference count of data now')

4.6 Creating Weak References 27

ref_count = ctypes.c_long.from_address (data_id) .value
print (f"Reference count for data is now: {ref_count}")

print ('Find the weak ref count"')
weak_ref_ count = weakref.getweakrefcount (data)
print (f"Number of weak references: {weak_ref_count}")

In the above code the Data object has a strong reference to it via the data
variable buta weak reference held inthe weakref_data variable. The code uses the
types.c_long. from_address value attribute to find the number of (strong)
references and the weakref . getweakrefcount () tofind the number of weak
references.

The output from this code is:

Create data item

Obtain the id of 1list object

Find the reference count of data
Reference count for data is: 1
Initial weak ref count

Number of weak references: 0

Add a weakref reference

Find the reference count of data now
Reference count for data is now: 1
Find the weak ref count

Number of weak references: 1

This shows that the Da t a object has one (strong) reference and one weak reference
to it.

If we now run the following code (after running the above) we will see that the
data object no longer has a strong reference to it, and thus it can be (and in this
case may have been) garbage collected:

print ('Set data to None')

data = None

print ('Find the reference count of data now')

ref_count = ctypes.c_long.from_address (data_id) .value
print (f"Reference count for data is now: {ref_count}")

print ('Find the weak ref count')
weak_ref_count = weakref.getweakrefcount (data)
print (f"Number of weak references: {weak_ref_count}")

The output is:

Set data to None

Find the reference count of data now
Reference count for data is now: 0
Find the weak ref count

Number of weak references: 0

which shows that the Data object has no strong references and now also does not
have a weak reference either.

If we subsequently try and print out the weakref we will see that the associated
object is dead:

28 4 Weak References

print (weakref_data)

Generates:

<weakref at 0x10c84d2b0; dead>

4.7 Retrieving Objects from Weak References

Once we have created a weak reference, if you print it out, you see the output
indicates that you have a weakref to an object of a specific type. To actually access
the object being referenced, you need to apply the execution operator to invoke
the weak reference (using the call operator ()) and return the actual object being
referenced.

For example the following code creates a weak reference and the accesses that
weak reference directly before invoking it:

print ('Create data item')

data = Data(1l)

print ('Add a weakref reference')
weakref_data = weakref.ref (data)
print (weakref_data)

print (weakref_data())

The output from this code is:

Create data item

Add a weakref reference

<weakref at 0x1020a91c0; to 'Data'at 0x1020b3cl0>
Data (1)

As you can see we only access the Data object via the weakref_data () call,
and the previous print accesses the weak reference wrapper.

4.8 The WeakValueDicitonary

The most common situation in which you might want to use weak references is with a
cache. In such a situation you might want the cache to release cached values when the
applications memory becomes used up. Fortunately, the weakref module provides
a class called WeakValueDictionary which is a dictionary that associates keys
with weak references. It is thus a very good basis for a simple weak reference style
cache.

The WeakValueDictionary canbe used in exactly the same was as a normal
dictionary via the index accessor ([1) and via methods such as get (). For example:

4.8 The WeakValueDicitonary 29

import weakref

print ('Create data item')
data = Data (1)

creates a Weak Value Dictionary
weak_dict = weakref.WeakValueDictionary()

inserting value into the dictionary
weak dict['info'] = data

getting the weak ref count

print (f'Weak reference count is: ',
f'{weakref.getweakrefcount (weak_dict)}"')

print (f'weak_dict: {weak_dict}')

print (f"weak_dict['info']: {weak_dict['info']l}")

In this code a WeakValueDictionary is created and the data object is stored
into the dictionary using the key ‘info’. Various checks are then made to see the
number of weak reference counts it has and what the weak_dict contains. We then
access the dictionary to retrieve the value associated with the key ‘info’.

The output from this program is:

Create data item

Weak reference count is: 1

weak_dict: <WeakValueDictionary at 0x10£f2c5b90>
weak_dict['info']: Data(l)

If the memory used by the program becomes limited, then the garbage collector
could reclaim the memory associated with the Data object. We can simulate
this by setting the original data variable to None and then attempt to access the
WeakValueDictionary for the object:

data = None
if 'info'in weak_dict.keys():
print (f"weak _dict['info']: {weak_dict['info']l}")

However, we have to protect the access to the key behind and i f statement. This
is because if we access the key directly we would generate a KeyError as the entry
would have been removed from the dictionary. For example:

Traceback (most recent call last):
File “main3.py”, line 22, in <module>
print (f"weak_dict[‘'info’]: {weak_dict[‘info’]1}")
File “weakref.py”, line 136, in _ getitem_
o = self.datalkey] ()

KeyError: ‘info’

30 4 Weak References

4.9 WeakKeyDictionary

The WeakKeyDictionary is an alternative to the WeakValueDictionary in
that in this version it is the keys that are weak references. The Python documentation
says that the WeakKeyDictionary can be used to associate additional data with
an object owned by other parts of an application without adding attributes to those
objects. This can be especially useful with objects that override attribute accesses.

4.10 Proxy Objects

A proxy object is another type of weak reference. The difference between a proxy
object and a weak reference is that the proxy object tries to act as a proxy for the
original object as much as it can.

An example of using a proxy object is shown below:

print ('Create data item')
data = Data (1)

print ('Obtain the id of list object"')
data_id = id(data)

print ('Find the reference count of data')
ref_count = ctypes.c_long.from_address (data_id) .value
print (f"Reference count for data is: {ref_count}")

print ('Add a weakref reference')
weakref_data = weakref.ref (data)

print ('Find the weak ref count"')
weak_ref_count = weakref.getweakrefcount (data)
print (f"Number of weak references: {weak_ref_count}")

print ('Create a proxy of original object')
proxy object = weakref.proxy(data)
print (f"This is a proxy object: {proxy_object}”)

print ('Find the weak ref count')
weak_ref_count = weakref.getweakrefcount (data)
print (f"Number of weak references: {weak_ref_count}")

Notice that we have created both a proxy object and a weak reference to the Data
object. When we run this we will see that both the weak reference and the proxy
object are considered weak in terms of the weakrefcount () function. The output
is:

Create data item

Obtain the id of the object

Find the reference count of data
Reference count for data is: 1

4.11 Online Resources 31

Add a weakref reference

Find the weak ref count

Number of weak references: 1
Create a proxy of original object
This is a proxy object: Data (1)
Find the weak ref count

Number of weak references: 2

The advantage in using the Proxy Object is that it tries to look like the original
object as much as possible, thus we don’t need to call the proxy object to return the
Data object being referenced. Instead we can treat the proxy object as if it was the
actual data object, for example:

print (proxy_object)
print (proxy_object.value)

This code prints the proxy object directly and accesses the value attribute
directly—although in actual fact it goes via the proxy to the wrapped Data object.
The output from the code is:

Data (1)
1

4.11 Online Resources

e https://docs.python.org/3/library/weakref.html Python weak reference documen-
tation.

e https://www.educative.io/answers/what-is-weak-reference-in-python Short tuto-
rial on weak references.

https://docs.python.org/3/library/weakref.html
https://www.educative.io/answers/what-is-weak-reference-in-python

Chapter 5 ®)
Data Classes Geda

5.1 Introduction

Python 3.7 introduced a special type of class called a data class. Data classes can
be used to represent data-oriented concepts. That is, concepts that represent data
but tend not to have much related functionality. Such a class might contain several
properties but other than member functions for equality or string conversions they
do not contain any behaviour. They are often used in larger applications as they are a
useful way to group associated attributes together using a named concept and as such
have far more semantic meaning than say a simple dictionary. This chapter presents
such data classes.

5.2 A Traditional Class

We will start off by defining a typical Python class. This class represents a (very
simplified) Equity Trade. That is, one person or organisation wishes to sell some
equity (e.g. shares) to another person or organisation. Those involved in the trade are
referred to as counter parties. The equity or shares in an organisation are represented
by a symbol, and there will be some number of shares involved in the sale.

A simple definition of such as class in Python might look like:

class Trade:
nnnclass for representing Equity Trades"""

def _ init_ (self,
counter_partyl,
counter_party2,
symbol,
amount=0) :
self.counter_partyl = counter_partyl

© Springer Nature Switzerland AG 2023 33
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_5

34

5 Data Classes

self.counter_party2 = counter_party?2
self.symbol = symbol
self.amount = amount

def _ _repr_ (self):
return f'Trade (counter_partyl={self.counter_partyl}, '\
f'counter_party_2={self.counter_party2}, '\
f'symbol={self.symbol}, '\
framount={self.amount})"'

def _ eq (self, other):
if not isinstance (other, Trade) :
return False
return self.counter_partyl == other.counter_partyl and \
self.counter_party2 == other.counter_party2 and \
self.symbol == other.symbol and \
self.amount == other.amount

‘We can use this class as shown below:

tradel = Trade('John', 'Denise', 'IBM', 100)
print (tradel)
trade2 = Trade('John', 'Gryff', 'MSFT', 50)
print (trade2)

print (tradel == trade2)
trade3 = Trade('John', 'Denise', 'IBM', 100)
print (tradel == trade3l)

The output from this code is:

Trade (counter_partyl=John, counter_party 2=Denise, symbol=IBM,
amount=100)

Trade (counter_partyl=John, counter_party_2=Adam, symbol=MSFT,
amount=50)

False

True

If we look at the class definition for the Trade type we can see that:

It defines a new class Trade.

A Trade contains two counter parties, a symbol and an amount attribute. That
we have defined an initialiser to set up these attributes and that the amount has
a default value of zero.

The Trade class defines a __repr___ method that can be used to represent this
type as a string (note we are not defining a __str___ method here as if it is not
present ___repr___ will be used instead).

The Trade class also defines an equals methods (__eq__) toallow two instances
of the Trade class to be compared by value rather than by reference. Thus
above tradel and trade3 are equivalent by value although they are different
instances of the Trade class.

5.3 Defining Data Classes 35

This pattern is actually not that uncommon. Many classes in an application will
start off like this. Some will have significant additional behaviour defined for them
but many others will not.

So is there a problem here? Well from one aspect no; as this is just a Python class
and it does what it sets out to do, it associated a group of attributes together within
a named type (class); that is it represents a Trade.

However, there is a lot of boiler plate code here. If we were to define a Book class
or a Person class or a Temperature class then all those classes might look very
similar to the above and that a lot of very similar repetitive code to write. Indeed if
you look at the initialise (__init__) then that itself is a repetitive structure with a
lot of repeated patterns to take in some parameters and record them as attributes.

As you might suspect, as this is such a common pattern, there is a feature within
Python that allows you to define such data-oriented classes in a much more concise
and simpler way; these are data classes.

5.3 Defining Data Classes

Data classes can be used to represent data-oriented concepts. That is concepts that
represent data, but tend not to have much related functionality (although there is no
reason that they cannot have additional functionality).

Such a class might contain several attributes but other than methods for equality
or string conversions they do not contain any (much) behaviour.

To define a data class, a class is annotated with the @dataclass decorator
followed by a set of attributes (known as fields in a data class) with Type Hints
associated with them. The definitions are thus:

from dataclasses import dataclass

@dataclass

def <classname>:
"""Docstring"""
<fieldname>: type annotation
<fieldname>: type annotation

When a data class is defined it automatically receives:

An initialiser, thatis __init_ (self, ..) method.

A __ _repr__ (self) method that uses the information held in the attributes.
A __eq (self, other) method which compares values held in the
attributes.

This is what we manually wrote in the previous section.

36 5 Data Classes

The Trade class can therefore be rewritten as a data class as shown below:
from dataclasses import dataclass

@dataclass
class Trade:
nmrnCclass for representing Equity Trades"""
counter_partyl: str
counter_party2: str
symbol: str
amount: int = 0

As you can see this is far shorter and much more concise and by default includes
type information. Thus if you use a tool such as mypy it can ensure that you are
using the correct types with the fields in the data class.

Note that the amount field has a default value provided this is used to make
this field an optional field. A Trade can be created with or with the amount being
specified. However any fields defined after the amount field must also have a default
value.

This data class is used in exactly the same way as the original Trade class, and
thus we can run the same application code with it, that is:

tradel = Trade('John', 'Denise', 'IBM', 100)
print (tradel)
trade2 = Trade('John', 'Gryff', 'MSFT', 50)
print (trade2)

print (tradel == trade2)
trade3 = Trade('John', 'Denise', 'IBM', 100)
print (tradel == trade3)

The output from this code is exactly the same as that generated in the previous
section:

Trade (counter_partyl='John', counter_party2='Denise', symbol=
'"IBM', amount=100)

Trade (counter_partyl='John', counter_party2="'Adam', symbol=
'MSFT', amount=50)

False

True

The difference is that we have written far less code, and a developer looking at
our class will immediately see that it is a data class and that it holds a set of fields
and will have a __repr__ and an __eq___ method defined. This means that will
not have to scroll through a lot of code to determine that for themselves.

5.4 Defining Additional Behaviour

As mentioned at the start of this chelater, data classes often only hold data (excluding
methods such as __repr__and __eqg_). However, there is nothing stopping a
data class having additional behaviour defined for them. For example, the following

5.5 The Dataclass Decorator 37

version of Trade has a method defined called calculate_value (of the trade).
This takes a parameter indicating the price of each share and multiples it by the
amount of shares being sold:

from dataclasses import dataclass

@dataclass
class Trade:
nmrCclass for representing Equity Trades"""
counter_partyl: str
counter_party2: str
symbol: str
amount: int = 0

dataclasses can still have methods defined for them
def calculate_value(self, price):
return self.amount * price

We can invoke the calculate_value () method in exactly the same way as
any method on any class:

tradel = Trade('John', 'Denise', 'IBM', 100)
print (tradel)

print (f'The wvalue of this trade at 1.55 per share =
{tradel.calculate_value(1.55)}"')

The output from this code is:

Trade (counter_partyl='John', counter_party2='Denise', symbol=
'"IBM', amount=100)
The value of this trade at 1.55 per share = 155.0

In this case, this method makes perfect sense as we might want to hold the trade
back until the value of the trade meets our objectives, and this might depend on the
current stock market share price.

5.5 The Dataclass Decorator

The data class decorator itself has a set of parameters that can be used to configure
how Python actually creates the data class implementation. There are numerous
parameters as shown below:

@dataclass (init=True, repr=True, eq=True, order=False,
unsafe_hash=False, frozen=False,
match_args=True, kw_only=False, slots=False,
weakref_slot=False)

38 5 Data Classes

The meaning of these parameters is outlined below:

e init:If True (the default), a _ _init__ () method will be generated. If the
class already defines __init__ (), this parameter is ignored.

e repr: If True (the default), a _ _repr__ () method will be generated. The
generated repr string will have the class name and the name and repr of each field,
in the order they are defined in the class. Fields that are marked as being excluded
from the repr are not included. If the class already defines ___repr__ (), this
parameter is ignored.

e cq: If True (thedefault),an __eqg () method will be generated. This method
compares the class as if it were a tuple of its fields, in order. Both instances
in the comparison must be of the identical type. If the class already defines
__edq__ (), this parameter is ignored.

e order: If True (the defaultis False), _ 1t_ (),__le_ (),__gt_ ()
and __ge__ () methods will be generated. If the class already defines any of
_ 1t (), _le_ (), _gt_ () or __ge__ (), then TypeError is
raised.

e unsafe_hash: If False (the default), a _ _hash__ () method is generated
according to how eq and frozen are set.

e frozen: If True (the default is False), assigning to fields will generate an
exception. This emulates read-only immutable instances.

e match_args: If True (the default is True), the __match_args___ tuple will
be created from the list of parameters to the generated ___init__ () method
(evenif __init__ () is not generated, see above). If false, or if __match_
args___ is already defined in the class, then __match_args___ will not be
generated.

e kw_only:If True (the default value is False), then all fields will be marked as
keyword-only. If a field is marked as keyword-only, then the only effect is that the
__init__ () parameter generated from a keyword-only field must be specified
with a keyword when __init__ () is called.

e slots:If True (thedefaultisFalse),_ slots__ attribute will be generated.
If _ _slots__ is already defined in the class, then TypeError is raised.

o weakref_slot: If True (the default is False), add a slot named
“__weakref__ 7, which is required to make an instance weakref-able. It is an
error to specify weakref_slot=True without also specifying slots=True.

Some of the above were added in Python 3.10 and 3.11 so if you are using an
older version of Python not all of the decorator parameters may be available.

5.6 Custom Factory for Fields

Providing a default value for a field using a literal is straightforward, all you need to
do is to provide that value, for example:

5.6 Custom Factory for Fields 39

amount: int = 0

However, if you want to use a function to generate a value for a field, there is a
subtle but important consideration to consider.
If you were to write:

market: StockExchange = make_stock_exchange ()

This will indeed initialise the market field to a new StockExchange. However,
the important point to note is when the make_stock_exchange () function
would run. It would run when the class is first loaded, thus a new stock exchange
instance would be created and used to initialise the definition for the whole class.
This definition would then be shared amongst all instances of the class. That is, all
instances of the trade would share the same StockMarket instance. This is fine
if that is what you want! However, if you wanted different trades to be handled by
different Stock Markets then it would not work.

If you need each instance to have their own StockExchange instance then the
answer is to use a default factory configuration for your field. This allows a function
to be referenced rather than invoked or executed, when the definition of the class is
parsed by the Python runtime. This function reference will actually only be executed
when a new instance of the class is generated. As such each new instance will run
the function and create a new instance of the StockMarket class.

This can be done using the field function and specifying a default_factory
which takes a reference to a named (or indeed a 1ambda) function. For example,
updating the Trade class to have a StockMarket field using the make_stock_
exchange () function can be defined as shown below:

from dataclasses import dataclass, field

class StockExchange:
def init_ (self, name) :
self.name = name

def _ repr_ (self):
return f'StockExchange({self.name}"'

def make_stock_exchange() :
return StockExchange ('London Stock Exchange')

@dataclass
class Trade:
nnnCclass for representing Equity Trades"""
counter_partyl: str
counter_party2: str
symbol: str
amount: int = 0
market: StockExchange =
field(default_factory=make_stock_exchange)

tradel = Trade('John', 'Denise', 'IBM', 100)
print (tradel)

40 5 Data Classes

In this example each Trade instance will have their own instance of the Stock-
Market class held in the market field. Note that the StockMarket class could also
have been a data class but is defined here as a plain old Python class to avoid any
confusion.

Running this code generates the following output:

Trade (counter_partyl='John', counter_party2='Denise', symbol=
'"IBM', amount=100, market=StockExchange (London Stock Exchange)

5.7 Immutable Dataclasses

It is possible to indicate that a data class should be immutable using the frozen
parameter to the @dataclass decorator. This ensures that all the fields within the
data class are treated as read-only, and any attempt at modifying a value will generate
a runtime error.

For example, the following data class Book is marked as frozen and is thus
immutable:

from dataclasses import dataclass

@dataclass (frozen=True)
class Book:

title: str
author: str = 'Anonymous'
bookl = Book ('Python for ever!', 'Gryff Smith')

print (bookl)

Note that from a creation perspective, nothing has changed. The data class instance
is created in exactly the same way as a normal class or indeed data class. Fields can
also be accessed in the normal manner. If we run this code we see:

Book (title='Python for ever!', author='Gryff Smith')

However, if an attempt is made to modify either of the fields in the Book instance
then a runtime error will be generated. For example:

bookl.author = 'Adam Davies'

If we try and run the above line we will generate a
dataclasses.FrozenInstanceError indicating that the author field
cannot be assigned to:

5.8 Data Classes and Inheritance 41

Traceback (most recent call last):
File "/Users/Shared/workspaces/pycharm/advancedpython3_2nd/
chapter2_dataclasses/main5.py", line 14, in <module>
bookl.author = 'Adam Davies'
File "<string>", line 4, in _ setattr_
dataclasses.FrozenInstanceError: cannot assign to field 'author'

5.8 Data Classes and Inheritance

Data classes can extend any other class including other data classes. As usual this
means that they will inherit all the fields and methods defined in the parent class.
They can also override any fields or methods, etc. A simple example is given below:

from dataclasses import dataclass

@dataclass

class Trade:
"mrnCclass for representing Equity Trades"""
counter_partyl: str
counter_party2: str

@dataclass

class EquityTrade (Trade) :
symbol: str
amount: int = 0

tradel = EquityTrade('John', 'Denise', 'IBM', 100)
print (tradel)
trade2 = EquityTrade('JdJohn', 'Gryff', 'MSFT', 50)
print (trade2)

print (tradel == trade2)
trade3 = EquityTrade('John', 'Denise', 'IBM', 100)
print (tradel == trade3)

In this case the EquityTrade data class extends the Trade data class.

This means that the EquityTrade has four fields counter_partyl,
counter_party?2, symbol and amount. The EquityTrade class also has an
__init__ methods that takes four parameters (with amount being an optional
parameter with a default value of zero), a _ _repr__ method that prints an
EquityTrade with all four fields and an __eqg__ method that compares two
instance of EquityTrade base don’t he value of all four fields.

If we run the above code we see:

EquityTrade (counter_partyl='John', counter_party2='Denise’,
symbol= 'IBM', amount=100)

EquityTrade (counter_partyl='John', counter_party2='Adam',
symbol= 'MSFT', amount=50)

False

42 5 Data Classes

True

However, there is one subtlety associated with inheritance that should be noted.
When the hidden methods are created for you by Pythonthe __init__ initialiseris
created by concatenating the definitions for the fields together to create the parameter
list. This means that in the above example, the resulting initialised parameters look
like:

def _ init_ (self,
counter_partyl,
counter_party2,
symbol,
amount = 0)

This may not look like an issue but it becomes an issue if the parent class defines
a default value for any of the fields. All subsequent fields must also have a default
value; otherwise when the initialiser is generated the parameter list would be invalid
(as all parameters to the right of a parameter with a default value must also have a
default value).

This means the following is illegal:

from dataclasses import dataclass

@dataclass

class Location:
name: str
longitude: float = 0.0
latitude: float = 0.0

@dataclass
class City(Location) :
country: str # Does NOT work

city = City('Dublin', country='Ireland')
print (city)

The above is invalid because the resulting initialiser for the City class would be:

def _ init_ (self, name, longitude = 0.0, latitude=0.0, country)

This is illegal because the country parameter comes after the Longitude and
latitude parameters, and these have a default value. It is caused by the simple
listing of the fields in the order they are defined within the class inheritance hierarchy.

Thus if the parent class has a default value for a field, all fields in the subclass
must have default values as well.

If you tried to run the above code you would get a runtime error:

Traceback (most recent call last):
File "main7.py", line 9, in <module>
@dataclass

AAAAANAANAA

File "dataclasses.py", line 1223, in dataclass

5.9 Post Initialisation 43

return wrap (cls)

AAAAAAAAA
File "dataclasses.py", line 1213, in wrap
return _process_class(cls, init, repr, eq, order, unsafe_hash,
AAA

File "dataclasses.py", line 1027, in _process_class
_init_fn(all_init_fields,
File "dataclasses.py", line 545, in _init_fn
raise TypeError (f'non-default argument {f.name!r}
TypeError: non-default argument 'country' follows default argument

The valid definition of the City class should look something like:
from dataclasses import dataclass

@dataclass

class Location:
name: str
longitude: float = 0.0
latitude: float = 0.0

@dataclass
class City(Location) :
country: str = None # Does work

city = City('Dublin', country='Ireland')
print (city)

Now when we run this code we see:

City (name="'Dublin', longitude=0.0, latitude=0.0, country=
'Ireland')

5.9 Post Initialisation

One thing that may be a problem is what happens if you want to perform some
initialisation behaviour of your own. By default a data class generates its own
__init__ initialisation method.

You can of course override this yourself and define yourown __init__ method
as the processor won’t generate an __init__ method if one is manually defined by
the programmer. However, this means that you have to include a lot of boiler plate
code for each of the parameters, which was one of the benefits of having a data class
in the first place!

Another option is to define a __post_init__ (self) method. This method
is run after the __init__ method and can be used to perform any initialisation
that you want to execute after all the fields have been set up—such as logging the
fact, reading a preferences file, accessing a database and setting up further non-field
attributes.

44 5 Data Classes

As a simple example, the following Trade class has had a __post_init___
method added:

from dataclasses import dataclass

@dataclass
class Trade:
"mn"Class for representing Equity Trades"""
counter_partyl: str
counter_party2: str
symbol: str
amount: int = 0

def post_init_ (self):
print ('In _ post_init__ () method')

print ('Starting')

tradel = Trade('John', 'Denise', 'IBM', 100)
print (tradel)

print ('Done")

When this class is run the output is:

Starting

In _ post_init__ () method

Trade (counter_partyl='John', counter_party2='Denise', symbol=
"IBM', amount=100)

Done

Asyoucanseefromthisthe__post_init__ () methodisrunafterthe instance
is created but before the following code can access the trade instance.

5.10 Initialisation Variables

A final option is to mark a field as being something that the _ post_init___
() method should receive. That is a field can effectively be made into a parameter
passed to the __post_init__ () and not be added to the class __repr__ ()
and __eqg () methods. This is done using the InitVar type. This type takes a
parameter to indicate the actual type to be held by the attribute but passes the field
along to the __post_init__ () method to handle.

5.11 Positional Attributes 45

For example:
from dataclasses import dataclass, InitVar

@dataclass
class Trade:
nmnclass for representing Equity Trades"""
counter_partyl: str
counter_party2: str
symbol: str
amount: int = 0
status: InitvVar([str] = 'Live'

def post_init__ (self, status):
print ('In _ post_init_ () method')
print (f'status = {status}')

print ('Starting')

tradel = Trade('John', 'Denise', 'IBM', 100)
print (tradel)

print ('Done"')

When we run this code we can see that the output fromthe __repr__ () method
(when it is connected to a string for printing purposes) does not include the status:

Starting

In _ post_init__ () method

status = Live

Trade (counter_partyl='John', counter_party2='Denise', symbol=
'"IBM', amount=100)

Done

5.11 Positional Attributes

Traditional classes have no concept of a natural or default ordering to the attributes
they hold. However, for data classes, there is a default ordering to the attributes, this
ordering is the order in which they are defined in the data class. Thus for the data
class Book presented below the ordering is title followed by author:

@dataclass
class Book:
title: str
author: str = 'Anonymous'

How important is this? This is mainly of interest for Structural Pattern matching
where the values can be extracted from the data class instance. This is discussed in
the next chapter.

46 5 Data Classes

5.12 Exercise

The aim of this exercise is to create a data class to represent a Customer for a fintech
system.
In this simple example, the Customer data class will have a name, an address and
an email. All three of these properties will be read-only fields and will hold strings.
You should be able to create a Customer using:

customerl = Customer ('John',
'10 High Street',
'john@gmail.com"')

Next create an Account data class and subclasses for CurrentAccount and
DepositAccount. The Account class should have an account number, a customer
and an opening balance.

The CurrentAccout class should additionally have an overdraft_limit
property. This can be set when an instance of a class is created and altered during
the lifetime of the object.

The CurrentAccount withdraw () member function should verify that the
balance never goes below the overdraft limit. If it does then the withdraw ()
member function should not reduce the balance instead it should raise a ValueError.

The DepositAccount should have an interest _rate associated with it
which is included when the account is converted to a string.

You will now need to create a customer for each account instance, for example:

customerl = Customer ('John',
'10 High Street',
'john@gmail.com')

accl = CurrentAccount ("123", customerl, 10.0, -100.00)
print (accl)

accl.withdraw(1l)

print (accl)

customer2 = Customer ('Denise',
'11 Main Street',
'denise@gmail.com')
acc2 = DepositAccount ("345", customer2, 23.55, 0.5)
print (acc2)

try:
accl.withdraw(200)
except ValueError as err:
print (err)

An example of the sort of output this code might generate is given below:

CurrentAccount (number="'123"', customer=Customer (name='John',
address='10 High Street', email="'john@gmail.com'), balance=10.0,
overdraft_1limit=-100.0)

mailto:john@gmail.com
mailto:john@gmail.com
mailto:denise@gmail.com
mailto:john@gmail.com

5.12 Exercise

CurrentAccount (number="'123"', customer=Customer (name='John',
address='10 High Street', email="'john@gmail.com'), balance=9.0,
overdraft_limit=-100.0)

DepositAccount (number='345"', customer=Customer (name='Denise’',
address='11 Main Street', email='denise@gmail.com'),
balance=23.55, interest_rate=0.5)

-191.0 Exceeds Overdraft Limit of -100.0

Note that the overdraft is presented as a negative number in this example.

47

mailto:john@gmail.com
mailto:denise@gmail.com

Chapter 6 ®)
Structural Pattern Matching oo

6.1 Introduction

Structural pattern matching was introduced into Python in version 3.10. Although
the basic form of structural pattern matching looks very much like pattern matching
in other languages, there are some specific features that relate to data classes. In this
chapter we will look at how data classes can be used with structural pattern matching.

6.2 The Match Statement

As a simple example of using the match statement in Python consider the following
code:

def get_status_message(status) :
match status:

case 400:
return 'Bad request'

case 404:
return 'Not found'

case 418:
return "I'm a teapot"

case _
return 'Something is wrong'

print (get_status_message(404))
print (get_status_message (401))

© Springer Nature Switzerland AG 2023 49
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_6

50 6 Structural Pattern Matching

The output from this example is:

Not found
Something is wrong

This illustrates the basic structure and behaviour of the match statement. The
value to be matched against is compared with literal values specified in a series of
case conditions. If the value in status is the same as one of the case statements
then the associated body of the case statement is executed. Thus if the value of status
is 404 then the string ‘Not found” will be returned. The case _ : option is a default
or wild card case statement which will run if none of the others match. It is optional
but is a common feature. Note only one car condition will run and that will be the
first one found that can run.

6.3 Matching Classes with Positional Attributes

Structural pattern matching can also be used with data classes. Such classes provide
the concept of positional attributes. These attributes can be extracted from a data
class instance using the structural pattern matcher and the values used within a case
condition block. For example, given the following simple data class C1ick:

from dataclasses import dataclass

@dataclass

class Click:
x: int
y: int

We can write a function that takes a C1ick as a parameter and then can extract
the values for x and y from the C11ick instance and make them available for use
within the body of the case condition. This is illustrated below:

def handle_click(point) :
match point:
case Click(x, v):
print (f'Click x={x}, y={y}")
case _:
print ('Not a click')

In this example, if the value held in point is a C1ick instance, then it will match
against the first case condition and the positional values x and y will be extracted
from the instance and stored into the local variables x and y which can then be used
within the body of the case condition—that is in the print statement.

If the value held in point is not a Click instance then the wildcard will trigger
and a message that the value is not a click will be printed.

6.4 Matching Against Standard Classes 51

To illustrate this we will use a simple program which will call the handle_
click () function twice, once with a C1ick instance and once with a string:

cursor = Click (10, 5)
handle_click(cursor)
handle_click('john'")

The output from this code snippet is:

Click x=10, y=5
Not a click

6.4 Matching Against Standard Classes

In most user-defined classes there is no natural or default ordering for the attributes
held. However, this issue can be overcome by defining a __match_args__ class
property which contains a tuple with the names of the attributes and their order.

For example, a plain class Person does not have a natural ordering to its prop-
erties; however it does have a name and an age attributes. Thus by adding the ___
match_args__ class property to the definition, it can now be used with a case
condition extraction.

Thus we can define the class Person as:

class Person:
_ _match args. = ("name", "age")

def _ init_ (self, pos, age):
self .name = pos
self.age = age

We can now define a function that takes an instance of the class Person and uses
the structural matcher to extract the values for name and age and print them out. If
the value provided when the function is called is not a Person then an appropriate
message will be printed.

For example:

def print_person (person) :
match person:
case Person(name, age):
print (f'Person name={name}, age={age}"')
case _:
print ('Not a person')

To illustrate the use of the Person class and this function we will use the following
three lines that create a Person and call the print_person () function, once
with the Person instance and once with an integer 42:

52 6 Structural Pattern Matching

p = Person('Adam', 21)
print_person (p)
print_person(42)

The output generated by this code is:

Person name=Adam, age=21
Not a person

6.5 Online Resource

e https://peps.python.org/pep-0636/ Structural Pattern Matching Tutorial.

https://peps.python.org/pep-0636/

Chapter 7 ®)
Working with pprint e

7.1 Introduction

It is common to need to print containers/collections in Python. This is often done to
the standard output stream which in most cases is the terminal window from which
Python is being run. The problem with this is that lists of lists or dictionaries of
key-value pairs can become long and difficult to read if merely printed across the
screen. The built-in pprint module is designed to help with this. The pprint
module provides functions that can be used to print out collections with options to
control how the data contained within the collection should be displayed. It is a very
useful module which is often overlooked when learning Python.

7.2 The pprint Data Printer Module

The pprint module is a built-in in module; it is provided as part of the Python
reference implementation but is not made available by default, and thus it must be
imported.

The module supports pretty-printing lists, tuples and dictionaries recursively. Thus
it can pretty-print a dictionary containing keys and values where the values are
themselves dicts, lists, tuples, etc.

It is a very simple, but useful, module especially when you need to debug
applications with nested (and potentially large) data collections.

It provides three functions:

e pprint () This function will pretty-print a Python object to an output stream
(the default is the standard output).

e pformat () This function formats a Python object into a pretty-printed
representation.

© Springer Nature Switzerland AG 2023 53
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_7

54 7 Working with pprint
e saferepr () This function will create a ‘standard’ __repr__ ()-like value,
but protect against recursive data structures.

The most commonly used of these functions is the pprint () function.

7.3 Basic pprint Usage

To illustrate why we might want to use the pprint module, consider the following
list of list:

data = [[1,
[1
[1
print (data

2,3,4,5,6,7,8,9
. 2,3,4,5,6,7,8, 9]
,2,3,4,5,6,7,8,9
)
This is not a particularly large list, but it contains three inner lists, each of which
is made up of 10 values. In many cases the data structures you might want to create
may be much bigger and more complex. However, this simple example will illustrate
the idea behind the pprint module.
If we run this code we will generate output laid out as shown below:

(1, 2,3, 4,5,6,7,8,9], [1,2,3,4,5,6,7,8,9], [1, 2, 3, 4,
5,6,7,8,91]

This is not too difficult to read but it is laid out across the screen (or page) as one
long line. On the page this becomes distributed across two lines (or more).

However, there is an inherent structure here, as illustrated by the way that the
source code was laid out. Wouldn’t it be nice if the print function understood this
and laid the data out in a similar way?

This is exactly what the pprint () function from the pprint module does. To
use this function we will need to import the built-in module pprint. For example
using:

import pprint

If we now rewrite the earlier code to use the pprint () function we can see how
the output changes:

import pprint

1 1 ’ ’ ’

3
, 3
[1, 2,3
pprint.pprint (data)

4,5,6,7,8,9
,4,5,6,7,8,09]
,4,5,6,7,8,9

7.3 Basic pprint Usage 55

The output generated by this revised code is now:

[

[1,2,3,4,5,6,7,8,9
(1, 2,3,4,5,6,7,8, 91,
(1, 2,3,4,5,6, 7,8, 911

As you can see the list of lists has been printed in a way that makes it much easier
to read as the inner lists are each printed on a separate line down the screen (or page
in this case). The pprint () function determines where to break the lines based on
a default screen width of 80 characters.

To illustrate the idea further we can see how the pprint () function works with
a dictionary (dict) in Python.

The following code creates a structure containing a list of dictionaries, and each
dictionary has three entries called ‘Name’, ‘Grades’ and ‘Course’. The ‘Grades’ key
relates to a value that is itself a list of integer values.

The structure we are using is illustrated below along with the plain old print
function:

grades = [{'Name': 'John',
'Grades': [55, 34, 76],
'Course': 'Csi'},

{'Name': 'Adam',
'Grades': [71, 55, 64],

'Course': 'MedPharm'},
{'Name': 'Natalia',
'Grades': [85, 91, 78],
'Course': 'BioSci'},
{'Name': 'Denise'’,
'Grades': [68, 71, 82],
'Course': 'Chem'}]

print (grades)

Notice the way that we have laid out the code so that it is easy to read for the
programmer. However, the output from this is

[{'Name': 'John', 'Grades': [55, 34, 76], 'Course': 'Csi'},
{'Name': 'Adam', 'Grades': [71, 55, 64], 'Course': 'MedPharm'},
{'Name': 'Natalia', 'Grades': [85, 91, 78], 'Course': 'BioSci'},

{'Name': 'Denise', 'Grades': [68, 71, 82], 'Course': 'Chem'}]

Again it has laid the output out in a single line which has been broken up across
the screen.

Depending on the size of the terminal or the command prompt being used this
may or may not be that readable.

If we now use the pprint () function on the same structure:

pprint.pprint (grades)

56 7 Working with pprint

The output is now:

[{'Course': 'Csi', 'Grades': [55, 34, 76], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [71, 55, 64], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [85, 91, 78], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [68, 71, 82], 'Name': 'Denise'}]

Notice that again the pprint () function tries to lay the data structures out in
a meaningful way based not the contents of the lists and dictionary and the default
line length (which is 80 characters).

7.4 Changing the Width

The pprint () function has numerous parameters available, all of which have
default values provided and all of which can be used to control how pprint ()
generates its output. One of these parameters is the width parameter. This has a
default value of 80 and has been used above to determine where and how to break
each line in the output. We will use the named parameter passing style with the
width parameter as there are several parameters available, and we need to indicate
which the width value relates to. The syntax is thus

pprint.pprint (<data>, width=<an int>)

We can rerun the above grades example using different integer width values. For
example, if we override the default value of 80 with 60 as shown below:

pprint.pprint (grades, width=40)

The output generated from this is changed to:

[{'Course': 'Csi',
'Grades': [55, 34, 761,
'Name': 'John'},

{'Course': 'MedPharm',
'Grades': [71, 55, 647,
'Name': 'Adam'},

{'Course': 'BioSci',
'Grades': [85, 91, 78],
'Name': 'Natalia'},

{'Course': 'Chem',
'Grades': [68, 71, 82],
'Name': 'Denise'}]

As you can see from this the inner dictionary is now laid out down the page as
the maximum width of 60 characters is no longer enough to display the contents.
To illustrate this further we can change the width down to just 20 characters:

pprint.pprint (grades, width=20)

7.5 Changing the Depth

Now the output is further compressed across the page:

[{'Course': 'Csi',
'Grades': [55,
34,
761,
'Name': 'John'},
{'Course': 'MedPharm',
'Grades': [71,
55,
641,
'Name': 'Adam'},
{'Course': 'BioSci',
'Grades': [85,
91,
781,
'Name': 'Natalia'},
{'Course': 'Chem',
'Grades': [68,
71,
821,
'Name': 'Denise'}]

Now the inner list is also displayed down the screen.

7.5 Changing the Depth

57

By defaultthe pprint () function prints out all nested collections down to whatever
depth exists. That is, if a list contains a dictionary that contains a list it will print
all 3 collections (as illustrated for the grades examples above). However, this can be
overridden. There is another parameter to the pprint () function called depth.
By default this parameter is set to the value None which indicates that all nested
sequences should be printed. However, you can set this to an integer to indicate the

depth of nesting to be printed.

In the grades example we could say that we have a depth of nesting of 3, as there
is a list containing a dictionary containing a list. We could thus set to depth to 2 to

see what happens:
pprint.pprint (grades, depth=2)

When this code is run the output generated is:

[{'Course': 'Csi', 'Grades': [...], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [...], 'Name':
{'Course': 'BioSci', 'Grades': [...], 'Name':

{'Course': 'Chem', 'Grades': [...], 'Name':

'Natalia'},

58 7 Working with pprint

As you can see the inner most list (the value element associated with the key
‘Grades’) is shown as a list with three dots inside it. This illustrates that there is a
data present here but we are not displaying the contents of this list. This is useful
if you don’t need to know what the values are just that there is a list here, and the
output takes up less space on the screen, for example during debugging.

It is of course possible to mix the width and the depth parameters in the same
call to control how the data is laid out across the screen, for example:

pprint.pprint (grades, depth=2, width=40)

This will print out the grades to a depth of 2 but within only 40 characters
horizontally across the screen, for example:

[{'Course': 'Csi',
'Grades': [...],
'Name': 'John'},
{'Course': 'MedPharm',
'Grades': [...],
'Name': 'Adam'},
{'Course': 'BioSci',
'Grades': [...],
'Name': 'Natalia'},
{'Course': 'Chem',
'Grades': [...],
'Name': 'Denise'}]

7.6 Managing the Indentation Level

A third parameter for the pprint () functionisthe indent parameter. This param-
eter has a default value of 1. The indent value determines by how much a nested
value is indented in the output relative to the containing collection when printed on
a different line.

For example to change the indentation level from 1 to 6 with the grades example,
we could write:

pprint.pprint (grades, indent=6)

The output from this is now:

[{'Course': 'Csi', 'Grades': [55, 34, 76], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [71, 55, 64], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [85, 91, 78], 'Name': 'Natalia'}

{'Course': 'Chem', 'Grades': [68, 71, 82], 'Name': 'Denise'}]

As you can see there is a big gap between the outer most square brackets and the
inner dictionary.

7.7 Reducing Line Breaks Using Compact 59
It is of course possible to use the indent parameter with both the width and/
or the depth parameters. For example:

pprint.pprint (grades, depth=2, width=40, indent=6)

This line will generate output that is displayed only to depth 2 and is laid out
across 40 characters on the screen with each subsequent line indented by 6 spaces:

[{ 'Course': 'Csi',
'Grades': [...],
'Name': 'John'},

{ 'Course': 'MedPharm',
'Grades': [...],
'Name': 'Adam'},

{ 'Course': 'BioSci',
'Grades': [...],
'Name': 'Natalia'},

{ 'Course': 'Chem',
'Grades': [...],
'Name': 'Denise'}]

7.7 Reducing Line Breaks Using Compact

One problem with using the width parameter is that it looks at the contents of a
collection and tries to determine whether it can print the whole contents out within
the specified width. If not then it defaults to printing each value on a separate line.
This was fine for the grades example as it only held three values, but what about a list
containing say just a collection of integers. For example, the following code creates
a list of 25 integers:

marks_range = list (range (0, 25))
print (marks_range)

The use of the basic print () function prints out the integers across the screen:
The output from this is:

(0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24]

which is probably ok in most situations. However, if we do decide to use the
pprint () function and specify a width of 20 (which is 5 less than the number of
values in the list) something odd happens:

pprint.pprint (marks_range, width=20)

60 7 Working with pprint

This produces an output where each integer is printed down the screen:

[

s W R O

Due to space we are not including all 25 values but hopefully you get the idea.
Note that the two dots here are added by us to indicate that there is more data that
would be displayed if you ran this program yourself.

However, Python 3.4 added another parameter to the pprint () function,
compact (which is set to False) by default. If compact is set to True, then
elements that fit into the width are printed on a single line. It is therefore considered
best practice to use compact=True for lists with many elements.

For example:

pprint.pprint (marks_range, width=20, compact=True)

generates the following output:

[0, 1,2, 3,4,5,

6, 7,8, 9,10, 11,
12, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 24]

which is probably more desirable than the default behaviour.

7.8 The pformat Function

The pprint.pformat () function is used to convert a container such as a list,
dict or tuple into a string. Unlike the str () conversion function, the pformat ()
function uses the same layout options and behaviour as the pprint.pprint ()
function. Thus a string can be generated that is based on the same width, depth
and indent options as pprint () can be generated.

To illustrate this, let us again use the grade structure and convert this into a string
using the basic str () function:

grades = [{'Name': 'John"',
'Grades': [55, 34, 7617,
'"Course': 'Csi'},

{'Name': 'Adam',
'Grades': [71, 55, 64],
'Course': 'MedPharm'},
{'Name': 'Natalia',
'Grades': [85, 91, 78],

7.8 The pformat Function

61

'Course': 'BioSci'},

{'Name': 'Denise',

'Grades': [68, 71, 821,

'Course': 'Chem'}]
data_str = str (grades)
print (data_str)
The output from this is:
[{'Name': 'John', 'Grades': [55, 34, 76], 'Course': 'Csi'},
{'Name': 'Adam', 'Grades': [71, 55, 64], 'Course': 'MedPharm'},
{'Name': 'Natalia', 'Grades': [85, 91, 78], 'Course': 'BioSci'},

{'Name': 'Denise', 'Grades': [68, 71, 82], 'Course': 'Chem'}]

which is a single string representing the contents of the grades structure.
However, using the pprint.pformat () function we can generate a string
which is formatted as it would if we had used the pprint () function, for example:

data_str = pprint.pformat (grades)
print (data_str)

The output from this is:

[{'Course': 'Csi', 'Grades': [55, 34, 76], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [71, 55, 64], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [85, 91, 78], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [68, 71, 82], 'Name': 'Denise'}]

In addition we can use the same options as are available on pprint () to control
the depth, width and indentation, for example:

import pprint

data_str = pprint.pformat (grades, depth=2, width=40, indent=2)
print (data_str)

which produces the following output:

[{ 'Course': 'Csi’',
'Grades': [...],
'Name': 'John'},

{ 'Course': 'MedPharm',
'Grades': [...],
'Name': 'Adam'},

{ 'Course': 'BioSci"',
'Grades': [...],
'Name': 'Natalia'},

{ 'Course': 'Chem',
'Grades': [...],
'Name': 'Denise'}]

Note that this is a single string representing the nested grades data structures.

62 7 Working with pprint

7.9 The saferepr () Function

In some situations a data structure might be recursive; that is a structure may at some
point refer to itself resulting in an endless loop. An example of this sort of structure
is illustrated below where 1ist1 contains three strings and a reference to 1ist3.
However, 1ist3 ismade up of 1istl and 1ist2:

listl [ta', 'b', 'c']

list2 [('a, 'e', 'f'l

list3 = [1listl, list2]

listl.append(list3)
print (listl)

Python handles this normally by just using the three dots to indicate something—
however it is not necessarily obvious that this indicates a recursive structure. For
example, the output of the above is:

['a', 'b', 'c', [[...1, ['d', 'e', "£']1]]
However, the saferepr () function returns a string which will include a
‘<Recursion on list with >’ element when data becomes recursive, for example:

print (pprint.saferepr(listl))

This generates:

['a', 'b', 'c¢', [<Recursion on list with id=4349488128>, ['d', 'e',
"£r111

To help determine if you want to use saferepr () thereisa isrecusrive ()
function in the pprint module that will return True if a structure is recursive. For
example:

print (f'pprint.isrecursive (grades) :
{pprint.isrecursive(grades)} ")
print (f'pprint.isrecursive(listl) : {pprint.isrecursive(listl)}"')

The output from this is:

pprint.isrecursive(grades): False
pprint.isrecursive(listl): True

7.10 Using the PrettyPrinter Class

If you are going to use a particular option on the pprint () function all the time you
can create your own custom PrettyPrint instance with the parameter set to your
default. This means that you only need to specify the new settings once when you
are instantiating the PrettyPrint object and can use these settings throughout
your program.

7.11 Online Resource 63

import pprint

ppr = pprint.PrettyPrinter (depth=2, indent=2)
ppr.pprint (grades)

The output from this is:

[{'Course': 'Csi', 'Grades': [...], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [...], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [...], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [...], '"Name': 'Denise'}]

Now each time you use the per object you will have the depth set to 2 and the
indent also set 2 but the width is the default 80, etc.

7.11 Online Resource

e https://docs.python.org/3/library/pprint.html Documentation on the pprint
module.

https://docs.python.org/3/library/pprint.html

Chapter 8 ®)
Shallow v Deep Copy ez

8.1 Introduction

When a container or collection type is copied there is an issue of what should be
copied about the elements it contains. By default if a list of lists is copied, then
the copy contains the addresses of the sublists; thus the inner lists are shared. This
is efficient as it means that complex or deep structures aren’t duplicated but can
cause problems if programmers do not realise that a sublist is shared between data
structures and start to modify the sublists. In this chapter we will look at the copy
module that provides for both shallow and deep copy options.

8.2 Copying a List of Lists

There are several ways in which a list can be copied. The two most common
approaches are to use the copy () method on a list or to the use copy slice syntax.

The copy () method is invoked using the dot notation and generates a shallow
copy of the data held in a container; for example when using a list of lists we might
write:

listl = [1, 2, 3]
list2 = [4, 5, 6]
List3 = [listl, 1list2]

Copy using the copy method
list4 = list3.copy ()
for item in list4:

print (f’item: {item}’)

In this example we have a 1ist3 which contains references to two sublists
listland 1ist2. These sublists contain integers. We then create a copy of 1ist3

© Springer Nature Switzerland AG 2023 65
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_8

66 8 Shallow v Deep Copy

and store thatin 1ist4. We then loop through 11 st4 printing out each item in turn.
The output from this is:

item: [1, 2, 3]
item: [4, 5, 6]

We thus end up with two lists (11st3 and 1ist4) which contain sublists with
integers in them.

We could also have used the slice syntax to create a copy of 1ist3 as shown
below:

Copy using slice syntax

list5 = 1ist3[:]

for item in 1ist5:
print(f’item: {item}"’)

Again the output from this is:

item: [1, 2, 3]
item: [4, 5, 6]

8.3 The Problem with Copying

So what is the problem with copy? The issue comes in the way that Python copies
the contents of the top-level list 1ist3. By default it does a shallow copy. That is,
it copies the references to the sublists held in 1ist3 into 1ist4 and 1istb5. This
is efficient in that we don’t create lots of additional lists but it is dangerous in that all
three top-level lists, 1ist3, 1ist4 and 1ist5 reference the same instances of the
lists originally held in 1ist1 and 1ist2. Thus if a sublist is modified via 1ist5,
it is also modified for 1ist3 and 1ist4.
This is illustrated by the ids of the sublists held in each of the top-level lists:

listl _id = id(listl)
print (f'listl_id: {listl_id}")

list2_id = id(1list2)
print (f'list2_1id: {list2_id}")

print(’=’ * 25)
for sublist in 1ist3:

print (f’sublist id: {id(sublist)}’)
print(’'-’ * 25)

for sublist in list4:
print (f’sublist id: {id(sublist)}’)
print(’-' * 25)

list5 = 1list3[:]
for sublist in 1list5:

8.3 The Problem with Copying 67

print (f’sublist id: {id(sublist)}"’)
print(’=’ * 25)

When we run this code the output is:

listl_id: 4521910080
list2_id: 4522960512

sublist id: 4341751808
sublist id: 4342801984

sublist id: 4341751808
sublist id: 4342801984

sublist id: 4341751808
sublist id: 4342801984

This indicates that the ids of the sublists are the same across all three top-level
lists. As every object in Python has a unique id they must be the same instances of
the inner lists.

Pictorially what happens when we copy 1ist3 to 1ist4 is shown below:

list3 ‘/ 1\
list1 1.2.3 4,5,6 list2
list4 N /

As we can see from the diagram both 1ist3 and 1ist4 are referencing the
same instances of 1istl and 1ist2.

The danger occurs when we append a value to a sublist via, for example, 1ist5.
This is shown below:

listh
print
print
print

0] .append(100)
list5)
list4)
list3)

68 8 Shallow v Deep Copy

The output from this is:

(r1, 2, 3, 1001, (4, 5, 6
(r1, 2, 3, 1001, [4, 5,
(r1, 2, 3, 1001, [4, 5,

Here you can see that the integer 100 has apparently been added to 1ist5,
list4 and 1ist3. Actually it was added to the shared sublist originally represented
by listl.

8.4 The Copy Module to the Rescue

The copy module provides two functions, the copy () function and the
deepcopy () function. These are described below:

® copy.copy (x) returns a shallow copy of x.
e copy.deepcopy (x) returns a deep copy of x.

The difference between shallow and deep copying is only relevant for container or
collection like objects such as lists, tuples, dictionaries or class instances. In essence
the difference is that:

® A shallow copy constructs a new top-level object (such as a list) and then (to the
extent possible) inserts references (that is the addresses) of the contained objects
into the copy.

® A deep copy constructs a new top-level object (such as a list) and then, recur-
sively, makes copies of the contained objects which are added to the new top-
level container. Thus copies are made down to any depth within the structure
being copied.

At this point you might be wondering why all copies are not performed as deep
copies as they are safer. There are several issues to consider with deep copies,
including:

® Recursive objects. These are objects which at some point refer back to another
compound object within the same data structure. This may happen directly or
indirectly because of some deep network within the structure. These can cause
recursive loops which mean that a deep copy can fail.

e [ntentionally shared data. Because deep copy copies everything it may copy too
much, such as data which is intended to be shared between copies.

e The amount of data being copied may be prohibitively expensive both in terms of
the memory being used but also in terms of the time taken to make a copy.

For these reasons most programming languages default to a shallow copy mech-
anism and often provide a deep copy option—which is exactly what Python
does.

8.5 Using the deepcopy() Function 69

To try to alleviate some of the issues associated with the first two points above,
the deepcopy () function in Python has a couple of enhancement strategies; these
are:

e Keeping a memo dictionary of objects already copied during the current copying
pass. The term memo is short of memoization and is a form of caching, and it is
typically used where the cache concept is specific to a particular task or function.

e Letting user-defined classes override the copying operation or the set of
components copied.

This second point is worthy of some additional explanation. Classes in Python
can define special methods that typically start with a __ in their name. Copying is
no different to other operations such as addition or subtract in this way. In order
for a class to define its own copy implementation, it can define special methods ___
copy__ () and __deepcopy__ (). The formeris called to implement the shallow
copy operation; no additional arguments are passed. The latter is called to implement
the deep copy operation; it is passed one argument, the memo dictionary. If the _
_deepcopy___ () implementation needs to make a deep copy of a component, it
should call the copy . deepcopy () function with the component as first argument
and the memo dictionary as second argument.

8.5 Using the deepcopy() Function

We can now update our earlier examples to use copy .deepcopy () rather than
just the copy () method or the [:] copy slice syntax. We now have to import the
copy module and then call the copy . deepcopy () function passing in the list to
be copied (in this case 1ist3). The new list is then stored in 1ist4.

In the following code we use the 1d () function to again check the unique id for
each sublist within lists and list4:

import copy

listl = [1, 2, 3]
list2 = [4, 5, 6]
list3 = [listl, list2]

list4 = copy.deepcopy(list3)

for sublist in 1ist3:
print (f’sublist id: {id(sublist)}’)
print(’-’ * 25)

for sublist in list4:
print (f’sublist id: {id(sublist)}’)
print(’-' * 25)

The output from this code is given below:

70 8 Shallow v Deep Copy

sublist id: 4539736128
sublist id: 4539735488

sublist id: 4539737536
sublist id: 4539474560

This time the ids for the sublists in 1ist3 are different to the ids of the sublists
in 1ist4. They no longer hold the same references, but they instead hold copies of
the sublists. This means that if we now add the integer 100 to 1ist4 it will have no
effect on the contents of 1ist3, for example:

1list4[0] .append(100)
print(list4)
print (1ist3)

which produces:

[f1, 2, 3, 1001, [4, 5, 611
(r1, 2, 31, (4, 5, 6]]

As we can see list3 has not been modified.
Thus the effect of using deepcopy () pictorially on list3 and list 4 is:

w [
copyottist [7,23 [ass | copyoriise
\ __/

lista ‘ \ / ‘

8.6 Online Resource

e https://docs.python.org/3/library/copy.html Shallow and deep copy operations.

https://docs.python.org/3/library/copy.html

Chapter 9
The __init_ Versus __new__ and _ call ek

9.1 Introduction

Python classes have many special methods that are of the form
_<name of method>__ . These methods are sometimes referred to as
magic methods or double underscore methods (also dunder methods which
is short for double underscore methods). Many of these support opera-
tors such as __eqg (for the equality operator==) or __1t__ (for the
less than operator<) or for specification functionality such as __len__ for
determining the length of an object or __str_ and __repr_ for
converting objects into string formats. However, two special methods that often get
confused are __new___and __init__ . These two special methods are associated
with instance creation but have different roles and are run at different times in the
object creation process. For many developers they only ever use __init__ and
may not even realise that there is a __new___ method available. This chapter looks
at these two methods, their roles and how they are defined. The chapter concludes
by briefly introducing the __call__ method.

9.2 The new_ and init Methods

In Python, both the __new___and __init__ methods are special methods used
in class definitions. They serve different purposes and are invoked at different stages
of an object’s lifecycle.

© Springer Nature Switzerland AG 2023 71
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_9

72 9 The __init__ Versus __new__ and __call

The __new__ method is responsible for creating and returning the instance of
the object, while the __init__ () method initialises the object’s attributes and
performs any necessary setup. When you create an object using the class constructor,
both methods are automatically invoked in the following sequence:

<Object Instantiated> -> __new__ () -> __init()

The __new__ () method is called first, which creates the object instance and
returns it. It is a static method that takes the class as its first argument, followed
by any additional arguments passed to the class constructor. The __new__ method
is responsible for creating the object and can return an instance of the class or an
instance of a different class.

After the object has been created by the _ new__ ()
method, the __init__ () method is called with the newly created object
instance as its first argument, followed by any additional arguments passed to the
class constructor. The __init__ method is expected to initialise the state of the object,
that is to set up the attributes held by the object and their initial values. It can also
invoke any additional set up or initialisation behaviour as required.

9.3 The new__ Method

The __new__ () method is the object creation method. Its purpose is to create the
instance or object of the class. The default behaviour of the __new___ method is
defined in the class object from which all class in Python inherit. As such all classes
can create instances of a class in the same way. However, subclasses can override
the __new__ method when and if required.

The __new__ method is a static method, and it is therefore part of the class itself
and not part of a particular object or instance. However, it is a special case which
means that you do not need to mark it explicitly as a static method; it automatically
is a static method.

The __new__ method is typically used in situations where you need more control
over the object creation process, such as when dealing with immutable objects or
implementing singletons.

Typical implementations of the __new___ method create a new instance of the
class by invoking the superclass’s __new__ () method using super () .__new_
_(cls(, ...]1) withappropriate arguments and then modifying the newly created
instance as necessary before returning it.

The definition of the _ _new___ method is:
def class (class, *args, **kwargs)
The parameters are:

e class thisis the class of the new object that you want to create.

9.4 When to Use the __new__ Method 73

e The *args and **kwargs parameters must match the parameters of the ___
init__ () of the class. However, the _ _new__ () method is not expected to
use them.

Here’s a basic example of how the __new__ method can be used:

class MyClass:
def _ new_ (cls, *args, **kwargs):
print ('Entering _ new__ ')
Custom object creation logic
instance = super()._ new__ (cls)
print ('New instance created’)
Additional initialisation of the instance i1f needed
return instance

print (’Starting’)
obj = MyClass ()
print (’Done’)

The output generated from running this code is:

Starting
Entering _ new

New instance created
Done

As you can see the output is generated when the instance of MyClass is created.

An important point to note is that it is quite rare to need to implement your own
__new___ method.

The default _ _new__ method in the object class is usually perfectly fine for
most situations. If you do not define your own __new___ method then the default
is inherited from the parent class (e.g. object). This default simply creates and

returns a new instance of the class.

9.4 When to Use the __new__ Method

The __new__ method is usually used in specific situations where there is a need

for fine-grained control over object creation. Here are a few scenarios where the ___
new___ method might be used:

e Implementing Immutable Objects: If we want to create an object that is
immutable (i.e. its state cannot be changed after creation), we can override the
__new__ method to ensure that no modifications can be made to the object’s
attributes.

e Singleton Pattern: The _ new__ method can be used to
implement the singleton design pattern, where only one instance of a class
can exist. By controlling the creation process in __new__, you can ensure that

subsequent requests for the object return the same instance. That is, the class

74 9 The __init__ Versus __new__ and __call

can record the single instance to be used the first time a new instance is created.
Following this, each subsequent request for a new instance will return the original
instance.

e Customising Object Creation: If you need to perform additional operations
during object creation, such as validating arguments or initialising internal state,
you can override the __new___ method to incorporate your custom logic before
the object is initialised by __init_ .

¢ Subclassing an Immutable Base Class: When subclassing an immutable class,
like tuple or str, you need to override the __new___ method instead of ___
init__ because the base class does not allow modification after creation.

9.5 Using __new__ to Create a Singleton Object

The following code creates a simple implementation of a singleton class in Python.
This class overrides the __new__ method such that the first instance of the class is
rec order in the class side attribute instance. After this further requests to return a
new instance just return the previously created instance:

class Singleton:
instance = None

def _ new__ (cls, *args, **kwargs):
print ('Entering _ new__ ')
if Singleton.instance is None:
print ('Creating instance’)
create the single instance
Singleton.instance = super()._ new (cls)

print ('Returning instance’)
return Singleton.instance

print (’Starting’)
sl = Singleton ()

print(’-’ * 25)
s2 = Singleton ()
print(’-’ * 25)
s3 = Singleton ()
print(’-’ * 25)
print (id(sl)
print (id(s2))
print (id(s3))
print (’Done’)

If we run this code the output from this is:

Starting
Entering __ new

Creating instance

9.6 The __init__ Method 75

Returning instance

Entering __ new

Returning instance

Entering _ new

Returning instance

4321848656
4321848656
4321848656
Done

From this we can see that only once does the code print out ‘Creating instance’
and that the ids for each of the objects being referenced by s1, s2 and s3 are the
same. Thus the same instances is being used each time a request is made to make a
new object of type Singleton.

9.6 The init Method

The __init__ method is called after the object has been created by the __new__
_ method. It initialises the object’s attributes and performs any necessary setup. The
__init__ method takes the newly created object instance as its first argument,
followed by any additional arguments passed to the class constructor. It doesn’t
return anything and is primarily used for initialisation purposes.

The following code provides a simple example of creating a class Person in
which the name and age attributes are initialised by values passed into the ___
init__ method:

class Person:

def _ init_ (self, name, age):
print('In_ _init_ ")
self.name = name
self.age = age

def _ repr_ (self):
return f’'Person({self.name}), {self.age})’

print (’Starting’)

pl = Person(’John’, 21)
print (pl)

p2 = Person(’'Denise’, 18)
print (p2)

print (’Done’)

The result of running this code is:

Starting
In __init_

76 9 The __init__ Versus __new__ and __call

Person (John), 21)
In__init_

Person (Denise), 18)
Done

As can be seen from thisthe __init__ method runs when each of the instances
of the class Person is created.

9.7 Can __new__and __init__ Be Used Together?

The short answer here is yes they can—they serve different purposes as has been
indicated above.

Thus an individual class may well have need for both a _ new__ and an ___
init__ methods. For example, the _ new__ method may be used to limit the
number of instances of a class that are created whereas the ___init__ method may
be used to initialise the state of any instances that are actually created.

The following class has botha __new___andan __init__ methods.

class MyClass:

def _ new__ (cls, *args, **kwargs) :
print ('Entering _ _new__ ')
Custom object creation logic
instance = super().__new__ (cls)
print ('New instance created’)
Additional initialisation of the instance if needed
return instance

def _ init_ (self):
print (‘In _ _init__ ")

print (’Starting’)
obj = MyClass ()
print (’Done’)

When we run this code the output generated will be:

Starting
Entering _ _new___
New instance created
In__init_

Done

As this shows the __new__ method runs before the __init__ method.

9.9 Summary 77

9.8 The call Method

A final special method that we should consider is the __call__ method. This
special method allows an object to be called as if it were a function. When an object
defines the __call__ method, it can be invoked using parentheses () as if it were
a function call.

A simple example is given below:

class CallableClass:
def _ call_ (self, *args, **kwargs):
print ("The object was called!")

print (’Start’)

obj = CallableClass ()
obj ()

print (’Done’)

The output generated for this code is:

Start
The object was called!
Done

We can therefore make any class into a callable or executable thing. The
inverse of this is that not all objects in Python can be called. Only objects that
define the __call__ () method can be invoked as functions.

Another point to note is that when an object is instantiated in Python using the stan-
dard notation, it is this method that makes the class creation behaviour an executable
thing; thatis the __call__ () method is invoked when creating a new instance of
a class. Thus the following invokes the call method to create a new Person instance:

Pl = Person(’John’)

9.9 Summary

To summarise, the __new___ method is responsible for creating the instance of the
object, while the __init__ method initialises the object’s attributes and performs
setup operations. The __new___ method is rarely used in everyday Python program-
ming, except in cases where you need more control over object creation. On the other
hand, the __init__ method is commonly used for typical initialisation tasks.

Chapter 10 ®)
Python Metaclasses and Meta i
Programming

10.1 Introduction

This chapter looks at metaprogramming and metaclasses in Python. Metaprogram-
ming relates to the idea that a Python program can generate or modify code dynam-
ically at runtime. This is a very powerful (although potentially dangerous) feature
in Python which many statically compiled languages such as C++ do not provide.
This chapter introduces metaprogramming before discussing three ways in which
metaprogramming can be achieved in Python; using decorators, metaclasses and
dynamic code execution.

10.2 Metaprogramming

Metaprogramming is exactly that, it is software that can generate program code (or
indeed modify existing code). Hence it is ‘meta’ programming—that is programs
that generate programs. In Python such metaprogramming happens dynamically at
runtime. There are several features in the language that can support metaprogram-
ming including decorators, metaclasses and dynamic code execution using exec()
and eval():

e Decorators: Decorators are functions that modify the behaviour of other func-
tions. They are denoted by the “@” symbol and can be applied to functions,
classes, or methods. Decorators allow you to add functionality to existing code
without modifying it directly.

e Metaclasses: Metaclasses are classes that define the behaviour of other classes.
By defining a metaclass, you can customise the creation and behaviour of class
objects. Metaclasses are often used to implement frameworks and libraries.

© Springer Nature Switzerland AG 2023 79
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_10

80 10 Python Metaclasses and Meta Programming

e Dynamic code execution: Python provides the exec and eval functions, which
allow you to execute dynamically generated code. These functions take a string
containing Python code and execute it at runtime. This enables dynamic code
generation and execution based on specific conditions or user input.

Thus the key aspect to metaprogramming is that the developer must create code
that will generate or manipulate other code. This may sound non-sensical, but it does
allow developers to create very flexible and powerful code abstractions that would
not be possible using traditional coding techniques.

A word of caution is appropriate at this point. Metaprogramming is very powerful;
however, it can also have significant drawbacks. The most notable issue with metapro-
gramming is that it can make code much harder to understand, debug and maintain as
there is a level of indirection and additional complexity involved. Metaprogramming
can be very useful for generic, reusable frameworks but should only be used when
they are appropriate and not as a general technique.

It is therefore useful to consider the situations in which metaprogramming can be
useful. Some of these include:

e Code Generation: Metaprogramming allows a developer to generate code
dynamically based on specific conditions, configurations or input. This can be
helpful when an application or library needs to automate repetitive code generation
tasks or customise code behaviour at runtime.

¢ Frameworks and Libraries: Metaprogramming is often used in frameworks and
libraries to provide flexible and extensible APIs. By using metaprogramming tech-
niques, frameworks can automatically handle common tasks, enforce conventions,
and provide abstractions that simplify development.

e Dynamic Configuration: Metaprogramming allows the developer to load and
modify configuration files or data structures at runtime. This can be helpful when
it is necessary to dynamically adjust the behaviour of an application based on
different environments, user preferences, or external data.

¢ Domain-Specific Languages (DSLs): Metaprogramming can be used to create
domain-specific languages that provide a higher level of abstraction tailored to
specific problem domains. DSLs enable solutions to be expressed in a more
concise and intuitive manner, improving productivity and code readability. For
example a DSL might be created to represent submitting jobs to some task
processing system, or to describe a set of domain concepts such as trades in a
financial trading system, etc.

e Aspect-Oriented Programming (AOP): Metaprogramming can be applied to
implement aspect-oriented programming techniques. AOP allows you to modu-
larise cross-cutting concerns, such as logging, error handling or performance
monitoring, by separating them from the core logic of your application. AOP is
widely used in several common frameworks although it is often hidden from the
end user, for example turning logging on within a framework may appear to be
a simple ‘on’ function but behind the scenes metaprogramming may be used to
enable cross-framework logging.

10.3 Decorators as a Form of Metaprogramming 81

The overall guiding principle regarding whether to use a metaprogramming tech-
nique or not should be ‘does its use improve the flexibility, comprehensibility or
readability or maintainability of your code without significantly comprising that
code?’. Thus an appropriate balance between these aspects should be borne in mind.

10.3 Decorators as a Form of Metaprogramming

Decorators in Python are a language feature that can be used to implement a
metaprogramming approach.

Decorators are higher-order functions that take a function as input and can return
a modified or wrapped version of that function as their result. They can thus replace,
modify or wrap a function there by dynamically modifying the behaviour of a
function.

Some common uses for metaprogramming style decorators include:

e Function Wrapping: This is the classic use of decorators. A decorator can wrap
a function with additional behaviour. For example, you can create a decorator to
log function calls, measure execution time, or handle exceptions.

e Access Control: Decorators can be used to control access to the associated
wrapped function or method. This access can be used to check for security
constraints such as is the current user valid and do they have access rights to
the function or method.

e Caching and Memoization: Decorators can be used to create a form of caching
often referred to as memoization. This approach allows a function to cache the
results generated for particular parameter values. The cache holds information
about the parameters and the results previously generated. This means that when
the function is invoked a look up is performed to see if the function has already
cached the results. This is particularly useful for computations that are expensive
to perform as the computation is only required to be performed once. However,
it also relies on the function or method not using mutable external values. For
memoization to work a function or method must rely sole on the parameter values
passed into it to generate the result or only reference immutable external values.
This is referred to as Referential Transparency (aka RT).

e Input valuation and Sanitisation: Decorators can also be used to validate and
sanitise input values. By defining reusable decorators that can do such input valu-
ation/sanitisation you can provide common integrity support across functions and
methods.

e Frameworks and Libraries: Decorators are widely used within many frame-
works and library APIs to link functions, classes and methods into those
frameworks, etc. Flask discussed later in this book is an example of such a
framework.

One specific benefit of using decorators to perform the above metaprogramming
use cases is that it enables a separation of concerns as well as code reuse. For example,

82 10 Python Metaclasses and Meta Programming

the logic associated with a Flask RESTFul service is encapsulated to a large extent
within a set of decorators, while the behaviour required when a service is invoked is
encapsulated within a function.

Here is an example that demonstrates how decorators can be used for metapro-
gramming in Python:

def uppercase_decorator (func) :
def wrapper (*args, **kwargs) :
result = func(*args, **kwargs)
if isinstance(result, str):
return result.upper ()
return result
return wrapper

@Quppercase_decorator
def greeter (name) :
return f"Hello, {name}!"

print (greeter (’Hello Denise’))

The output generated by this code is:

HELLO, DENISE!

In this example, we define a decorator called uppercase_decorator. This
decorator takes a function func as an argument and returns a new function
wrapper. The wrapper function wraps the original function func and modi-
fies its behaviour. That is when wrapper is called it calls the original function and
then adds some behaviour which may modify the result of the function.

In this case, the uppercase_decorator converts the return value of the
decorated function into uppercase if it is a string. The wrapper function receives the
arguments passed to the decorated function, calls the original function func and
stores the result in the result variable.

Then, it checks if the result is a string using the i sinstance function. If it is,
the wrapper function converts the result to uppercase using the upper () method.
Finally, the modified result is returned.

The @uppercase_decorator syntax is used to apply the decorator to the
greeter () function. Now, whenever the greeter () function is called, the
uppercase_decorator is automatically invoked, modifying the output by
converting it to uppercase if it’s a string.

When we call greeter (*Denise’), the output is “HELLO, DENISE!”,
demonstrating how the decorator modifies the behaviour of the original function.

Of course the @uppercase_decorator could be applied to any function or
method and would convert all strings to upper case; it is not tied to the greeter ()
function.

10.4 Metaclasses for Metaprogramming 83

10.4 Metaclasses for Metaprogramming

Metaclasses in Python provide a way to define the behaviour of classes themselves.
A metaclass is the class of a class, meaning it is responsible for creating and defining
the behaviour of class objects. Metaclasses allow you to modify class creation and
control how classes behave at runtime. Metaclasses are used with Abstract Base
Classes to provide the basic behaviour of an ABC.

Metaclasses are classes for classes, and there are several points worth noting about
metaclasses including:

e Metaclasses are Templates for Classes: By template here we mean that a meta-
class acts as a pattern or blueprint for creating a class. It defines the structure,
behaviour and attributes of the classes that will be created using the metaclass.

e C(lass Creation and Initialisation is Handled by Metaclasses: If a class has a
metaclass defined for it, then when an instance of a class is created, the metaclass
will be used to create that instance (object). Python will therefore invoke the
metaclasses _ _new__ () and __init__ () methods. Thus it’s the metaclass
that decides how a new object will be created and its state set up.

e Metaclasses can modify the behaviour of a class: A metaclass can intercept and
modify class attributes, methods and their behaviour. Metaclasses can therefore
add, modify or remove attributes, override methods, modify the effect of a method
or add new methods to a class.

e Metaclasses can add class-level behaviour: Class-level methods are methods
that apply to the class itself rather than instances of the class. This includes defining
custom class methods, class properties or class-level methods.

e Metaclasses can control inheritance: Metaclasses can control how classes inherit
from parent/super classes. They can modify the inheritance order, enforce specific
constraints on inheritance or dynamically generate parent classes based on specific
conditions.

Although metaclasses provide a very powerful way to create abstractions,
libraries, frameworks and the like, care should be taken with them. As the saying
goes, with great power comes great responsibility! Best practice suggests that meta-
classes should be used with caution and only where their use has clear benefits in
terms of readability, reusability, maintenance and further extensions.

10.4.1 Singleton Metaclass

As an alternative to the singleton pattern implementation presented in the
last chapter, here is a metaclass version. This version allows the metaclass
SingletonMetaclass to be used with any class that we wish to convert into a
singleton pattern. This provides significant benefits in terms of reusability, that is we
only need to define this behaviour once and we can use it with any class.

84 10 Python Metaclasses and Meta Programming

Here’s an example that demonstrates a SingletonMetaclass used for
metaprogramming in Python:

class SingletonMetaclass (type) :
_instances = {}

def _ call_ (cls, *args, **kwargs) :
print (’In SingletonMetaclass._ call__ ')
if cls not in cls._instances:
print (f’'Creating new instance of {cls}’)
cls._instances|[cls] = super().__call__ (*args, **kwargs)
print ('Returning instance’)
return cls._instances[cls]

class Session (metaclass=SingletonMetaclass) :
def init_ (self):
print (’In Session initialiser’)

print (’Starting’)
sl = Session()
s2 = Session/()

print (£7id(sl): {id(sl)}")

print (£/id(s2): {id(s2)}’)

checks to see if they are the same instance
print (f’sl is s2: {sl is s2}"')

print (’Done’)

The output from this sample code is:

Starting

In SingletonMetaclass._ _call_
Creating new instance of <class ‘_ main__.Session’>
In Session initialiser
Returning instance

In SingletonMetaclass._ _call_
Returning instance

id(sl): 4305011728

id(s2): 4305011728

sl is s2: True

Done

If we examine the output we can see that only one instance of the class
__main__ .Session is created. Subsequent requests to create a new instance
will return the stored instance. This is illustrated by the ids of s1 and s2 being the
same and by the is operator returning True.

To understand how this works let us look at the implementation. The class
SingletonMetaclass is a metaclass that inherits from the class metaclass
(this is what makes it a metaclass). It overrides the default behaviour of the
__call__ () method which is used when creating a new instance of a class.

The SingletonMetaclass maintains a class side dictionary _instances that
holds the instances created for any classes that the SingletonMetaclass is
applied to. Note that we are using the _ notation here to indicate that it is a protected

10.5 Exec and Eval for Metaprogramming 85

attribute. When a new instance of a class is to be created the __call__ () method
checks to see if an instance of that class already exists in the dictionary _instances.
If it does, it returns the existing instance. Otherwise, it creates a new instance using
the super () .__call__ method and stores it in _instances before returning
it.

Once we have defined the SingletonMetaclass we define aclass Session
which has its metaclass set to be SingletonMetaclass. This means that the
SingletonMetaclass metaclass will be used to create and customise the
behaviour of instances of the Session class.

When we create instances of Session (sl and s2), the
SingletonMetaclass metaclass ensures that only one instance of Session is
created. Subsequent calls to create new instances will return the existing instance.

When we print out the id of the objects held in s1 and s2 we can see that they
are the same indicating that s1 and s2 both hold the same instances. This is also
confirmed by the is operator which checks for referential equality rather than value
based equality.

10.5 Exec and Eval for Metaprogramming

Both exec () and eval () functions in Python allow a developer to dynamically
compile and execute code. That is Python can on the fly create new code which
can be compiled and executed at runtime. This allows them to be used as a way to
implement metaprogramming style behaviours.

10.5.1 The exec() Function

The exec () function allows a developer to execute dynamically generated code
as a statement block. It takes a string containing Python code as an argument and
executes it within the current scope.

As an example of the exec () function, consider the following code:

MAX = 4

code ="' "' '
for i in range (MAX) :
print (i)

exec (code)

When this code is run the output is:

0
1

86 10 Python Metaclasses and Meta Programming

2
3

The above example has a global value MAX set to 4. A string is then created
containing valid, well formed, Python code. The code within the string actually
references the value in MAX but of course at this point it’s just a string. We then call
exec () passing in the string within code. The exec () function now executes the
contents of the string as Python within the current execution context. This means
that it runs the code as if it had been in the Python file as normal code and it can
therefore access the MAX value. The result of running the code is a series of integers
printed to the standard output.

The code that is executed is created on the fly and could have been loaded from a
database, a text file or constructed based on other information available dynamically
at runtime.

10.5.2 The eval() Function

The eval function evaluates a string containing a Python expression and returns the
result. It allows you to dynamically compute values based on code provided as a
string.
The key here is that eval executes expressions that are expected to return a value.
An example of using eval to evaluate an expression is given below:

expression = ' ((2 +3) - 4) * 5’
result = eval (expression)
print (result)

The output from this code is:

5

In this example the expression ‘ ((2 4+ 3) —4) * 5’isheldin astring stored
in the variable expression. This is evaluated using eval () and the result is
printed out. In this case the result is 5.

The eval () function can be used to dynamically generate a string containing
an expression which is executed at runtime.

10.5.3 eval Versus exec()

It is worth noting a difference between eval () and exec () as they can both
appear to do the same thing at first glance. The main difference between eval ()
and exec () in Python lies in their functionality and the type of code they handle:

10.5 Exec and Eval for Metaprogramming 87

e eval () isabuilt-in Python function that evaluates a single expression and returns
the result. The resultreturned by eval () is theresult of evaluating the expression.
It is typically used for evaluating mathematical or logical expressions, or for
dynamically computing values based on user input or configuration files.

e exec () is a built-in Python function that executes a block of code (statements)
in the current context. It takes a string containing one or more lines of Python
code as input and executes but does not return any value. It is commonly used for
executing dynamically generated code, code generation tasks, or running code
obtained from external source.

Both exec and eval should be used with caution since they execute arbitrary
code and can introduce security risks if used with untrusted input. It’s essential to
validate and sanitise any input used with exec or eval to prevent potential security
vulnerabilities.

Part 11
Computer Graphics and GUIs

Chapter 11 ®)
Introduction to Computer Graphics oo

11.1 Introduction

Computer Graphics are everywhere; they are on your TV, in cinema adverts, the core
of many films, on your tablet or mobile phone and certainly on your PC or Mac as
well as on the dashboard of your car, on your smart watch and in children’s electronic
toys.

However what do we mean by the term Computer Graphics? The term goes back
to a time when many (most) computers were purely textual in terms of their input and
output, and very few computers could generate graphical displays let alone handle
input via such a display. However, in terms of this book we take the term Computer
Graphics to include the creation of Graphical User Interfaces (or GUIs), graphs and
charts such as bar charts or line plots of data, graphics in computer games (such as
Space Invaders or Flight Simulator) as well as the generation of 2D and 3D scenes
or images. We also use the term to include Computer Generated Art.

The availability of Computer Graphics is very important for the huge acceptance
of computer systems by non-computer scientists over the last 40 years. It is in part
thanks to the accessibility of computer systems via computer graphic interfaces that
almost everybody now uses some form of computer system (whether that is a PC, a
tablet, a mobile phone or a smart TV).

A Graphical User Interface (GUI) can capture the essence of an idea or a situation,
often avoiding the need for a long passage of text or textual commands. It is also
because a picture can paint a thousand words; as long as it is the right picture.

In many situations where the relationships between large amounts of information
must be conveyed, it is much easier for the user to assimilate this graphically than
textually. Similarly, it is often easier to convey some meaning by manipulating some
system entities on screen, than by combinations of text commands.

For example, a well-chosen graph can make clear information that is hard to
determine from a table of the same data. In turn, an adventure style game can become
engaging and immersive with computer graphics which is in marked contrast to the

© Springer Nature Switzerland AG 2023 91
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_11

92 11 Introduction to Computer Graphics

textual versions of the 1980s. This highlights the advantages of a visual presentation
compared to a purely textual one.

11.2 Background

Every interactive software system has a human—computer interface, whether it be
a single text line system or an advanced graphic display. It is the vehicle used by
developers for obtaining information from their user(s), and in turn, every user has
to face some form of computer interface in order to perform any desired computer
operation.

Historically computer systems did not have a Graphical User Interface and rarely
generated a graphical view. These systems from the 60s, 70s and 80s typically
focussed on numerical or data processing tasks. They were accessed via green or grey
screens on a text oriented terminal. There was little or no opportunity for graphical
output.

However, during this period various researchers at laboratories such as Stanford,
MIT, Bell Telephone Labs and Xerox were looking at the possibilities that graphic
systems might offer to computers. Indeed even as far back as the 1963 Ivan Sutherland
showed that Interactive Computer Graphics were feasible with his Ph.D. thesis on
the Sketchpad system.

11.3 The Graphical Computer Era

Graphical computer displays and interactive graphical interfaces became a common
means of human—computer interaction during the 1980s. Such interfaces can save a
user from the need to learn complex commands. They are less likely to intimidate
computer naives and can provide a large amount of information quickly in a form
which can be easily assimilated by the user.

The widespread use of high-quality graphical interfaces (such as those provided
by the Apple Macintosh and the early Windows interface) led many computer users to
expect such interfaces to any software they use. Indeed these systems paved the way
for the type of interface that is now omnipresent on PCs, Macs, Linux boxes, tablets
and smart phones. This graphical user interface is based on the WIMP paradigm
(Windows, Icons, Menus and Pointers) which is now the prevalent type of graphical
user interface in use today.

The main advantage of any window-based system, and particularly of a WIMP
environment, is that it requires only a small amount of user training. There is no
need to learn complex commands, as most operations are available either as icons,
operations on icons, user actions (such as swiping) or from menu options, and are
easy to use. (Anicon is a small graphic object that is usually symbolic of an operation

11.4 Interactive and Non Interactive Graphics 93

or of a larger entity such as an application program or a file). In general, WIMP-
based systems are simple to learn, intuitive to use, easy to retain and straightforward
to work with.

These WIMP systems are exemplified by the Apple Macintosh interface (see
Goldberg and Robson as well as Tesler), which was influenced by the pioneering
work done at the Palo Alto Research Center on the Xerox Star Machine. It was,
however, the Macintosh which brought such interfaces to the mass market, and first
gained acceptance for them as tools for business, home and industry. This interface
transformed the way in which humans expected to interact with their computers,
becoming a de facto standard, which forced other manufacturers to provide similar
interfaces on their own machines, for example Microsoft Windows for the PC.

This type of interface can be augmented by providing direct manipulation
graphics. These are graphics which can be grabbed and manipulated by the user,
using a mouse, to perform some operation or action. Icons are a simple version of
this, the “opening” of an icon causes either the associated application to execute or
the associated window to be displayed.

11.4 Interactive and Non Interactive Graphics

Computer graphics can be broadly subdivided into two categories:

e Non-Interactive Computer Graphics
e Interactive Computer Graphics

In Non-Interactive Computer Graphics (aka Passive Computer Graphics) an image
is generated by a computer typically on a computer screen; this image can be
viewed by the user (however they cannot interact with the image). Examples of
non-interactive graphics presented later in this book include Computer Generated
Art in which an image is generated using Pythons Turtle graphics library. Such an
image can reviewed by the user but not modified. Another example might be a basic
bar chart generated using Matplotlib which presents some set of data.

Interactive Computer Graphics involve the user interacting with the image
displayed in the screen in some way. This might be to modify the data being displayed
or to change the way in which the image is being rendered, etc. It is typified by interac-
tive Graphical User Interfaces (GUIs) in which a user interacts with menus, buttons,
input field, sliders, scrollbars, etc. However, other visual displays can also be interac-
tive. For example, a slider could be used with a Matplotlib chart. This display could
present the number of sales made on a particular date; as the slider is moved so the
data changes and the chart is modified to show different data sets.

Another example is represented by all computer games which are inherently inter-
active and most, if not all, update their visual display in response to some user inputs.
For example in the classic flight simulator game, as the user moves the joystick or
mouse, the simulated plane moves accordingly and the display presented to the user
updates.

94 11 Introduction to Computer Graphics

11.5 Pixels

A key concept for all computer graphics systems is the pixel. Pixel was originally a
word formed from combining and shortening the words picture (or pix) and element.
A pixel is a cell on the computer screen. Each cell represents a dot on the screen. The
size of this dot or cell and the number of cells available will vary depending upon
the type, size and resolution of the screen. For example, it was common for early
Windows PCs to have a 640 by 480 resolution display (using a VGA graphics card).
This relates to the number of pixels in terms of the width and height. This meant that
there were 640 pixels across the screen with 480 rows of pixels down the screen. By
contrast todays 4 K TV displays have 4096 by 2160 pixels.

The size and number of pixels available affect the quality of the image as presented
to auser. With lower-resolution displays (with fewer individual pixels) the image may
appear blocky or poorly defined; whereas with a higher resolution it may appear sharp
and clear.

Each pixel can be referenced by its location in the display grid. By filling a pixels
on the screen with different colours various images/displays can be created. For
example, in the following picture a single pixel has been filled at position 4 by 4:

Pixel filled
with colour red

height

h 4

width

A sequence of pixels can form a line, a circle or any number of different shapes.
However, since the grid of pixels is based open individual points, a diagonal line or
a circle may need to utilise multiple pixels which when zoomed may have jagged
edges. For example, the following picture shows part of a circle on which we have
zoomed in:

11.5 Pixels 95

Each pixel can have a colour and a transparency associated with it. The range
of colours available depends on the display system being used. For example,
monochrome displays only allow black and white, whereas a grey scale displays
only allows various shades of grey to be displayed. On modern systems it is usually
possible to represent a wide range of colours using the tradition RGB colour codes
(where R represents Red, G represents Green and B represents Blue). In this encoding
solid Red is represented by a code such as [255, 0, 0] where as solid Green is repre-
sented by [0, 255, 0] and solid Blue by [0, 0, 255]. Based on these various shades
can be represented by combination of these codes such as Orange which might be
represented by [255, 150, 50]. This is illustrated below for a set of RGB colours
using different red, green and blue values:

Colour Chart
RGB Solid 75% 50% 25%

RGB(30,0,0)
RGB(60, 0, 0)
RGB(90, 0, 0)
RGB(120, 0, 0)
RGB(150, 0, 0)
RGB(180, 0, 0)
RGB(210, 0, 0)
RGB(240, 0, 0)
RGB(0, 30, 0)
RGB(30, 60, 0)
RGB(60, 90, 0)
RGB(90, 120, 0)
RGB(120, 150, 0)
RGB(150, 180, 0)
RGB(180, 210, 0)
RGB(210, 240, 0)
RGB(0, 0, 30)
RGB(30, 30, 60)
RGB(60, 60, 90)
RGB(90, 90, 120)
RGB(120, 120, 150)
RGB(150, 150, 180) |

RGB(180, 180, 210)

RGB(210, 210, 240)

= b
- gl BN s G N -

B = o o o b b e e
SO 0N Os WM

N NN NRK
[™
|
|
=

In addition it is possible to apply a transparency to a pixel. This is used to indicate
how solid the fill colour should be. The above grid illustrates the effect of applying

96 11 Introduction to Computer Graphics

a75%, 50% and 25% transparency to colours displayed using the Python wxPython
GUI library. In this library the transparency is referred to as the alpha opaque value.
It can have values in the range 0 to 255 where 0 is completely transparent and 255 is
completely solid.

11.6 Bit Map Versus Vector Graphics

There are two ways of generating an image/display across the pixels on the screen.
One approach is known as bit mapped (or raster) graphics, and the other is known
as vector graphics. In the bit mapped approach each pixel is mapped to the values to
be displayed to create the image. In the vector graphics approach geometric shapes
are described (such as lines and points), and these are then rendered onto a display.
Raster graphics are simpler, but vector graphics provide much more flexibility and
scalability.

11.7 Buffering

One issue for interactive graphical displays is the ability to change the display as
smoothly and cleanly as possible. If a display is jerky or seems to jump from one
image to another, then users will find it uncomfortable. It is therefore common to
drawn the next display on some in memory structure; often referred to as a buffer.
This buffer can then be rendered on the display once the whole image has been
created. For example, Turtle graphics allows the user to define how many changes
should be made to the display before it is rendered (or drawn) on to the screen. This
can significantly speed up the performance if a graphic application.

In some cases systems will use two buffers; often referred to as double buffering.
In this approach one buffer is being rendered or drawn onto the screen while the other
buffer is being updated. This can significantly improve the overall performance of
the system as modern computers can perform calculations and generate data much
faster than it can typically be drawn onto a screen.

11.8 Python and Computer Graphics

In the remainder of this section of the book we will look at generating computer
graphics using the Python Turtle graphics library. We will also discuss using this
library to create Computer Generated Art. Following this we will explore the
Matplotlib library used to generate charts and data plots such as bar charts, scatter
graphs, line plots and heat maps. We will then explore the use of Python libraries to
create GUIs using menus, fields, tables, etc.

11.10 Online Resources 97

11.9 References

The following are referenced in this chapter:

LE. Sutherland, Sketchpad: a man—machine graphical communication system (courtesy Computer
Laboratory, University of Cambridge UCAM-CL-TR-574 September 2003), January 1963.
D.C. Smith, C. Irby, R. Kimball, B. Verplank, E. Harslem, Designing the Star user interface. BYTE

7(4), 242-282 (1982).

11.10 Online Resources

The following provide further reading material:

https://en.wikipedia.org/wiki/Sketchpad Ivan Sutherlands Sketchpad from 1963.
http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketch
pad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf Ivan
Sutherlands Ph.D. 1963.

e https://en.wikipedia.org/wiki/Xerox_Star The Xerox Star computer and GUIL

https://en.wikipedia.org/wiki/Sketchpad
http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketchpad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf
http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketchpad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf
https://en.wikipedia.org/wiki/Xerox_Star

Chapter 12 ®)
Python Turtle Graphics e

12.1 Introduction

Python is very well supported in terms of graphics libraries. One of the most widely
used graphics libraries is the Turtle graphics library. This is partly because it is
straight forward to use and partly because it is provided by default with the Python
environment (and thus you do not need to install any additional libraries to use it).
This chapter introduces the Python Turtle Graphics library.

The chapter concludes by briefly considering a number of other graphic libraries
including PyOpenGL. The PyOpenGL library can be used to create sophisticated 3D
scenes.

12.2 The Turtle Graphics Library

12.2.1 The Turtle Module

This provides a library of features that allow what are known as vector graphics to
be created. Vector graphics refers to the lines (or vectors) that can be drawn on the
screen. The drawing area is often referred to as a drawing plane or drawing board
and has the idea of x, y coordinates.

The Turtle graphics library is intended just as a basic drawing tool; other libraries
can be used for drawing two- and three-dimensional graphs (such as Matplotlib) but
those tend to focus on specific types of graphical displays.

The idea behind the Turtle module (and its name) derives from the Logo program-
ming language from the 60s and 70s that was designed to introduce programming
to children. It had an on screen turtle that could be controlled by commands such as
forward (which would move the turtle forward), right (which would turn the turtle

© Springer Nature Switzerland AG 2023 99
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_12

100 12 Python Turtle Graphics

buy a certain number of degrees), left (which turns the turtle left by a certain number
of degrees), etc. This idea has continued into the current Python Turtle graphics
library where commands such as turtle.forward(10) moves the turtle (or cursor as
it is now) forward 10 pixels, etc. By combining together these apparently simple
commands, it is possible to create intricate and quite complex shapes.

12.2.2 Basic Turtle Graphics

Although the turtle module is built into Python 3 it is necessary to import the
module before you use it:

import turtle

There are in fact two ways of working with the turtle module; one is to use
the classes available with the library, and the other is to use a simpler set of functions
that hide the classes and objects. In this chapter we will focus on the set of functions
you can use to create drawings with the turtle library.

The first thing we will do is to set up the window we will use for our drawings; the
TurtleScreen class is the parent of all screen implementations used for whatever
operating system you are running on.

If we are using the turtle module functions then the screen object is initialised
as appropriate for our operating system. This means that we can just focus on the
following functions to configure the layout/display such as this screen can have a
title, a size, a starting location, etc.

The key functions are:

e setup(width, height, startx, starty) Sets the size and position
of the main window/screen. The parameters are:

— width—ifaninteger, a size in pixels, if a float, a fraction of the screen; default
is 50% of screen

— height—if an integer, the height in pixels, if a float, a fraction of the screen;
default is 75% of screen

— startx—if positive, starting position in pixels from the left edge of the
screen, if negative from the right edge, if None, centre window horizontally

— starty—ifpositive, starting position in pixels from the top edge of the screen,
if negative from the bottom edge, if None, centre window vertically

title(titlestring) sets the title of the screen/window.

exitonclick () shutsdown the turtle graphics screen/window when the use
clicks on the screen.

bye () shuts down the turtle graphics screen/window.

done () starts the main event loop; this must be the last statement in a turtle
graphics program.

12.2 The Turtle Graphics Library 101

speed (speed) thedrawing speed to use, the default is 3. The higher the value
the faster the drawing takes place, values in the range 0—10 are accepted.
turtle. tracer (n=None) canbeused to batch updates to the Turtle graphics
screen. It is very useful when a drawing become large and complex. By setting
the number (n) to a large number (say 600) then 600 elements will be drawn
in memory before the actual screen is updated in one go; this can significantly
speed up the generation of for example, a fractal picture. When called without
arguments, returns the currently stored value of n.

turtle.update () performs an update of the turtle screen; this should be
called at the end of a program when tracer () has been used as it will ensure
that all elements have been drawn even if the tracer threshold has not yet been
reached.

pencolor (color) used to set the colour used to draw lines on the screen;
the colour can be specified in numerous ways including using named colours set
as ‘red’, ‘blue’, ‘green’ or using the RGB colour codes or by specifying the colour
using hexadecimal numbers. For more information on the named colours and RGB
colour codes to use see https://www.tcl.tk/man/tcl/TkCmd/colors.htm. Note all
colour methods use American spellings for example this method is pencolor
(not pencolour).

fillcolor (color) used to set the colour to use to fill in closed areas within
drawn lines. Again note the spelling of colour!

The following code snippet illustrates some of these functions:
import turtle

set a title for your canvas window
turtle.title('My Turtle Animation")

set up the screen size (in pixels)
set the starting point of the turtle (0, 0)
turtle.setup (width=200, height=200, startx=0, starty=0)

sets the pen color to red
turtle.pencolor ('red")

..

Add this so that the window will close when clicked on
turtle.exitonclick()

We can now look at how to actually draw a shape onto the screen.
The cursor on the screen has several properties; these include the current drawing

colour of the pen that the cursor moves, but also its current position (in the x, y
coordinates of the screen) and the direction it is currently facing. We have already
seen that we can control one of these properties using the pencolor () method;
other methods are used to control the cursor (or turtle) and are presented below.

https://www.tcl.tk/man/tcl/TkCmd/colors.htm

102 12 Python Turtle Graphics

The direction in which the cursor is pointing can be altered using several functions
including:

right (angle) Turn cursor right by angle units.

left (angle) Turn the cursor left by angle units

setheading (to_angle) Set the orientation of the cursor to to_angle.
Where 0 is east, 90 is north, 180 is west and 270 is south.

We can move the cursor (and if the pen is down we will draw a line) using:

e forward(distance) move the cursor forward by the specified distance in
the direction that the cursor is currently pointing. If the pen is down draw a line.

e backward (distance) move the cursor backward by distance in the opposite
direction that that in which the cursor is pointing.

And we can also explicitly position the cursor:

e goto(x, y) move the cursor to the x, y location on the screen specified; if the
pen is down draw a line. You can also use steps and set position to do the same
thing.
setx (x) sets the cursor’s x coordinate, leaves the y coordinate unchanged.
sety (y) sets the cursor’s y coordinate, leaves the x coordinate unchanged.

It is also possible to move the cursor without drawing by modifying whether the
pen is up or down:

e penup () move the pen up—moving the cursor will no longer draw a line.
e pendown () move the pen down—moving the cursor will now draw a line in the
current pen colour.

The size of the pen can also be controlled:

® pensize(width) set the line thickness to width. The method width () is an
alias for this method.

It is also possible to draw a circle or a dot:

e circle(radius, extent, steps) draws acircle using the given radius.
The extent determines how much of the circle is drawn; if the extent is not given
then the whole circle is drawn. Steps indicate the number of steps to be used to
drawn the circle (it can be used to draw regular polygons).

e dot(size, color) draws a filled circle with the diameter of size using the
specified colour.

We can now use some of the above method to draw a shape on our screen. For
this first example, we will keep it very simple, we will draw a simple square:

Draw a square
turtle. forward(50)
turtle.right (90)
turtle. forward(50)
turtle.right (90)

12.2 The Turtle Graphics Library 103

turtle. forward(50)
turtle.right (90)
turtle. forward(50)
turtle.right (90)

The above moves the cursor forward 50 pixels then turns 90 degrees before
repeating these steps three times. The end result is that a square of 50 x 50 pixels is
drawn on the screen:

| ® © @ My Turtle Animation

Note that the cursor is displayed during drawing (this can be turned off with
turtle.hideturtle () asthe cursor was originally referred to as the turtle).

12.2.3 Drawing Shapes

Of course you do not need to just use fixed values for the shapes you draw, you can
use variables or calculate positions based on expressions, etc.

For example, the following program creates a sequences of squares rotated around
a central location to create an engaging image:

import turtle

def setup():
"mr provide the config for the screen
turtle.title('Multiple SqQuares Animation')
turtle.setup (100, 100, 0, 0)
turtle.hideturtle()

monon

def draw_square(size) :
"mr Draw a square in the current direction
turtle.forward(size)
turtle.right (90)
turtle. forward(size)
turtle.right (90)
turtle. forward(size)
turtle.right (90)
turtle.forward(size)

nnon

setup ()

104 12 Python Turtle Graphics

for _ in range (0, 12):
draw_square (50)
Rotate the starting direction
turtle.right (120)

Add this so that the window will close when clicked on
turtle.exitonclick()

In this program two functions have been defined, one to setup the screen or window
with a title and a size and to turn off the cursor display. The second function takes
a size parameter and uses that to draw a square. The main part of the program then
sets up the window and uses a for loop to draw 12 squares of 50 pixels each by
continuously rotating 120 degrees between each square. Note that as we do not need
to reference the loop variable we are using the ‘_’ format which is considered an
anonymous loop variable.

The image generated by this program is shown below:

@ @ Multiple Squares Animation !

L5

12.2.4 Filling Shapes

It is also possible to fill in the area within a drawn shape. For example, if we wanted
to fill in one of the squares we have drawn as shown below:

12.3 Other Graphics Libraries 105

| @ @ Filled Square Exa...

To do this we can use the begin_fill() and end_£il1 () functions:

e begin_fill () indicates that shapes should be filled with the current fill colour,
this function should be called just before drawing the shape to be filled.

e end_fill () called after the shape to be filled has been finished. This will
cause the shape drawn since the last call to begin_£fil1 () to be filled using
the current fill colour.

e filling () Return the current fill state (True if filling, False if not).

The following program uses this (and the earlier draw_square () function) to
draw the above filled square:

turtle.title('Filled Square Example')
turtle.setup (100, 100, 0, 0)
turtle.hideturtle()

turtle.pencolor('red"')
turtle.fillcolor('yellow')
turtle.begin £ill()

draw_square (60)

turtle.end £ill ()
turtle.done ()

12.3 Other Graphics Libraries

Of course Turtle graphics is not the only graphics option available for Python;
however, other graphics libraries do not come pre-packed with Python and must
be downloaded using a tool such as Anaconda or PyCharm.

e PyQtGraph: The PyQtGraph library is pure Python library oriented towards
mathematics, scientific and engineering graphic applications as well as GUI
applications. For more information see http://www.pyqtgraph.org.

http://www.pyqtgraph.org

106 12 Python Turtle Graphics

e Pillow: Pillow is a Python Imaging Library (based on PIL the Python Imaging
Library) that provides image processing capabilities for use in Python. For more
information on Pillow see https://pillow.readthedocs.io/en/stable.

e Pyglet: Pyglet is another windowing and multimedia library for Python. See
https://bitbucket.org/pyglet/pyglet/wiki/Home.

12.4 3D Graphics

Although itis certainly possible for a developer to create convincing 3D images using
Turtle graphics, it is not the primary aim of the library. This means that there is no
direct support for creating 3D images other than the basic cursor moving facilities
and the programmers skill.

However, there are 3D graphics libraries available for Python. One such library is
Pand3D (https://www.panda3d.org) while another is VPython (https://vpython.org)
while a third is pi3d (https://pypi.org/project/pi3d). However we will briefly look at
the PyOpenGL library as this builds on the very widely used OpenGL library.

12.4.1 PyOpenGL

PyOpenGL is an open-source project that provides a set of bindings (or wrappings
around) the OpenGL library. OpenGL is the Open Graphics Library which is a cross-
language, cross-platform API for rendering 2D and 3D vector graphics. OpenGL is
used in a wide range of applications from games, to virtual reality, through data
and information visualisation systems to computer-aided design (CAD) systems.
PyOpenGL provides a set of Python functions that call out from Python to the under-
lying openGL libraries. This makes it very easy to create 3D vector-based images
in Python using the industry standard OpenGL library. A very simple example of an
image created using PyOpenGL is given below:

https://pillow.readthedocs.io/en/stable
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://www.panda3d.org
https://vpython.org
https://pypi.org/project/pi3d

12.6 Exercises 107

12.5 Online Resources

The following provides further reading material:

e https://docs.python.org/3/library/turtle.html Turtle graphics documentation.

e http://pythonturtle.org/ The Python Turtle programming environment—this
intended for teaching the basic concepts behind programming using the Turtle
graphics library.

e http://pyopengl.sourceforge.net The PyOpenGL home page.

e https://www.opengl.org The OpenGL home page.

12.6 Exercises

The aim of this exercise is to create a graphic display using Python Turtle graphics.

You should create a simple program to draw an octagon on the Turtle graphics
screen.

Modify your program so that there is a hexagon drawing function. This function
should take three parameters, the x and y coordinates to start drawing the octagon
and the size of each side of the octagon.

Modify your program to draw the hexagon in multiple locations to create the
following picture:

e @ Hexagons

A
255
g \
_\>—< >—/

N/

)
)

https://docs.python.org/3/library/turtle.html
http://pythonturtle.org/
http://pyopengl.sourceforge.net
https://www.opengl.org

Chapter 13 ®)
Computer Generated Art S

13.1 Creating Computer Art

Computer Art is defined as any art that uses a computer. However, in the context of
this book we mean it to be art that is generated by a computer or more specifically
a computer program. The following example illustrates how in a very few lines of
Python code, using the Turtle graphics library, you can create images that might be
considered to be Computer Art.

The following image is generated by a recursive function that draws a circle at
a given X, y location of a specified size. This function recursively calls itself by
modifying the parameters so that smaller and smaller circles are drawn at different
locations until the size of the circles goes below 20 pixels.

© Springer Nature Switzerland AG 2023 109
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_13

110 13 Computer Generated Art

The program used to generate this picture is given below for reference:
import turtle

WIDTH = 640
HEIGHT = 360

def setup_window () :
Set up the window
turtle.title(’Circles in My Mind’)
turtle.setup (WIDTH, HEIGHT, 0, 0)
Indicates RGB numbers will be in the range 0 to 255
turtle.colormode (255)
turtle.hideturtle()
Batch drawing to the screen for faster rendering
turtle.tracer (2000)

Speed up drawing process
turtle.speed(10)
turtle.penup ()

def draw_circle(x, y, radius, red=50, green=255, blue=10, width=7) :
""" Draw a circle at a specific x, y location.
Then draw four smaller circles recursively """
colour = (red, green, blue)

Recursively drawn smaller circles
if radius > 50:
Calculate colours and line width for smaller circles
if red < 216:
red = red + 33
green = green - 42
blue = blue + 10
width - =1
else:
red =0
green = 255
Calculate the radius for the smaller circles
new_radius = int (radius / 1.3)
Drawn four circles
draw_circle(int (x 4+ new_radius), y, new_radius, red, green,
blue, width)
draw_circle(x - new_radius, y, new_radius, red, green, blue,
width)
draw_circle(x, int(y + new_radius), new_radius, red, green,
blue, width)
draw_circle(x, int(y - new_radius), new_radius, red, green,
blue, width)

13.2 A Computer Art Generator 111

Draw the original circle
turtle.goto(x, V)
turtle.color(colour)
turtle.width (width)
turtle.pendown ()
turtle.circle(radius)
turtle.penup ()

Run the program

print (’Starting’)
setup_window ()
draw_circle (25, -100, 200)

Ensure that all the drawing is rendered
turtle.update()

print (’Done’)

turtle.done ()

There are a few points to note about this program. It uses recursion to draw the
circles with smaller and smaller circles being drawn until the radius of the circles
falls below a certain threshold (there termination point).

It also uses the turtle. tracer () function to speed up drawing the picture
as 2000 changes will be buffered before the screen is updated.

Finally, the colours used for the circles are changed at each level of recession;
a very simple approach is used to that the Red, Green and Blue codes are changed
resulting in different colour circles. Also a line width is used to reduce the size of
the circle outline to add more interest to the image.

13.2 A Computer Art Generator

As an another example of how you can use Turtle graphics to create Computer Art,
the following program randomly generates RGB colours to use for the lines being
drawn which gives the pictures more interest. It also allows the user to input an angle
to use when changing the direction in which the line is draw. As the drawing happens
within a loop even this simple change to the angle used to draw the lines can generate
very different pictures.

Lets play with some colours
import turtle
from random import randint

def get_input_angle() :
nmr Obtain input from user and convert to an int
message = ‘Please provide an angle:’
value_as_string = input (message)
while not value_as_string.isnumeric() :

nnon

112 13 Computer Generated Art

print (’The input must be an integer!’)
value_as_string = input (message)
return int (value_as_string)

def generate_random_colour () :
""" Generates an R,G,B values randomly in range
0 to 255 "
r = randint (0, 255)
g = randint (0, 255)
b = randint (0, 255)
returnr, g, b

print (’Set up Screen’)

turtle.title(’Colourful pattern’)

turtle.setup (640, 600)

turtle.hideturtle()

turtle.bgcolor (’black’) # Set the background colour of the
screen

turtle.colormode (255) # Indicates RGB numbers will be in the
range 0 to 255

turtle.speed(10)

angle = get_input_angle ()

print (’Start the drawing’)

for i in range (0, 200) :
turtle.color (generate_random_colour())
turtle. forward (i)
turtle.right (angle)

print (’Done’)
turtle.done ()

Some sample images generated from this program are given below. The left most
picture is generated by inputting an angle of 38, the picture on the right uses an angle
of 68 and the bottom picture an angle of 98.

13.2 A Computer Art Generator 113

® @ Colourful pattern

The following pictures below use an angles of 118, 138 and 168 respectively.

What is interesting about these images is how different each is; even though
they use exactly the same program. This illustrates how algorithmic or Computer
Generated Art can be as subtle and flexible as any other art form. It also illustrates
that even with such a process it is still up to the human to determine which image (if
any) is the most aesthetically pleasing.

114 13 Computer Generated Art

13.3 Fractals in Python

Within the arena of Computer Art fractals are a very well-known art form. Fractals
are recurring patterns that are calculated either using an iterative approach (such
as for loop) or a recursive approach (when a function calls itself but with modified
parameters). One of the really interesting features of fractals is that they exhibit
the same pattern (or nearly the same pattern) at successive levels of granularity.
That is, if you magnified a fractal image you would find that the same pattern is
being repeated at successively smaller and smaller magnifications. This is known as
expanding symmetry or unfolding symmetry; if this replication is exactly the same
at every scale, then it is called affine self-similar.

Fractals have their roots in the world of mathematics starting in the seventeenth
century, with the term fractal being coined in the twentieth century by mathematical
Benoit Mandelbrot in 1975. One often cited description that Mandelbrot published
to describe geometric fractals is:

a rough or fragmented geometric shape that can be split into parts, each of which is (at least
approximately) a reduced-size copy of the whole.

For more information see Mandelbrot, Benoit B. (1983). The fractal geometry of
nature. Macmillan. ISBN 978-0-7167-1186-5).

Since the latter part of the twentieth century fractals have been a commonly used
way of creating Computer Art.

One example of a fractal often used in Computer Art is the Koch snowflake, while
another is the Mandelbrot set. Both of these are used as examples to illustrate how
Python and the Turtle graphics library can be used to create fractal-based art.

13.4 The Koch Snowflake

The Koch snowflake is a fractal that begins with equilateral triangle and then replaces
the middle third of every line segment with a pair of line segments that form an
equilateral bump. This replacement can be performed to any depth generating finer
and finer grained (smaller and smaller) triangles until the overall shape resembles a
snow flake.

The following program can be used to generate a Koch snowflake with different
levels of recursion. The larger the number of levels of recursion the more times each
line segment is dissected.

import turtle

Set up Constants
ANGLES = [60, -120, 60, 0]
SIZE_OF_SNOWFLAKE = 300

def get_input_depth() :
"mr Obtain input from user and convert to an int """

13.4 The Koch Snowflake 115

message = 'Please provide the depth (0 or a positive integer):’
value_as_string = input (message)
while not value_as_string.isnumeric() :
print (’The input must be an integer!’)
value_as_string = input (message)
return int (value_as_string)

def setup_screen(title, background=’white’, screen_size_x=640,
screen_size_y=320, tracer_size=800):

print (’Set up Screen’)

turtle.title(title)

turtle.setup(screen_size_x, screen_size_y)

turtle.hideturtle()

turtle.penup ()

turtle.backward(240)

Batch drawing to the screen for faster rendering

turtle.tracer (tracer_size)

turtle.bgcolor (background) # Set the background colour of the
screen

def draw_koch(size, depth) :
if depth > 0:
for angle in ANGLES:
draw_koch(size / 3, depth - 1)
turtle.left (angle)
else:
turtle. forward(size)

depth = get_input_depth()

setup_screen (’Koch Snowflake (depth ’ + str(depth) + 7)’,
background=’black’,
screen_size_x=420, screen_size_y=420)

Set foreground colours

turtle.color (’sky blue’)

Ensure snowflake 1is centred
turtle.penup ()
turtle.setposition(-180,0)
turtle.left (30)
turtle.pendown ()

Draw three sides of snowflake

for _ in range(3):
draw_koch (SIZE_OF_SNOWFLAKE, depth)
turtle.right (120)

Ensure that all the drawing is rendered
turtle.update ()

print (’Done’)

turtle.done ()

116 13 Computer Generated Art

Several different runs of the program are shown below with the depth set at 0, 1,
3and 7.

Running the simple draw_koch () function with different depths makes it easy
to see the way in which each side of a triangle can be dissected into a further triangle
like shape. This can be repeated to multiple depths giving a more detailed structured
in which the same shape is repeated again and again.

13.5 Mandelbrot Set

Probably one of the most famous fractal images is based on the Mandelbrot set. The
Mandelbrot set is the set of complex numbers ¢ for which the function z * z +
c does not diverge when iterated from z = 0 for which the sequence of functions
(func(0), func(func(0)), etc.) remains bounded by an absolute value. The definition
of the Mandelbrot set and its name is down to the French mathematician Adrien
Douady, who named it as a tribute to the mathematician Benoit Mandelbrot.

13.5 Mandelbrot Set 117

Mandelbrot set images may be created by sampling the complex numbers and
testing, for each sample point ¢, whether the sequence func(0), func(func(0)), etc.
ranges to infinity (in practice this means that a test is made to see if it leaves some
predetermined bounded neighbourhood of 0 after a predetermined number of itera-
tions). Treating the real and imaginary parts of ¢ as image coordinates on the complex
plane, pixels may then be coloured according to how soon the sequence crosses an
arbitrarily chosen threshold, with a special colour (usually black) used for the values
of ¢ for which the sequence has not crossed the threshold after the predetermined
number of iterations (this is necessary to clearly distinguish the Mandelbrot set image
from the image of its complement).

The following image was generated for the Mandelbrot set using Python and
Turtle graphics.

ane Mandalbrot

The program used to generate this image is given below:
import turtle

Set up constants
SCREEN_OFFSET_X = 250
SCREEN_OFFSET_Y = 240

max iterations allowed
MAX_ITERATIONS = 255

image size
IMAGE_SIZE_X = 512
IMAGE_SIZE_Y = 512

Drawing area
MIN_ X = -2.0
MAX_ X =1.0
MIN.Y =-1.5

118 13 Computer Generated Art

MAX Y =1.5

def setup_screen(title, background='white’, screen_size_x=640,
screen_size_y=320, tracer_size=200):

print (’Set up Screen’)

turtle.title(title)

turtle.setup(screen_size_x, screen_size_y)

turtle.hideturtle()

turtle.penup ()

turtle.backward(240)

turtle.tracer (tracer_size)

turtle.bgcolor (background) # Set the background colour of the
screen

setup_screen (’'Mandelbrot’, screen_size_ x=IMAGE_SIZE_X, screen_
size_y=IMAGE_SIZE_Y, tracer_size=20000)

turtle.colormode (255) # Indicates RGB numbers will be in the
range 0 to 255

Generate Mandelbrot
for v in range (IMAGE_SIZE_Y) :
zy =y * (MAX_Y - MIN_Y) / (IMAGE_SIZE_ Y - 1) + MIN_Y
for x in range (IMAGE_SIZE_X) :
zX = x * (MAX_X - MIN_X) / (IMAGE_SIZE_Y - 1) + MIN_X
z =2zxX + zy * 13
c=z
for i in range (MAX_ITERATIONS) :
if abs(z) >2.0:
break
z=z%*z+4+cC
turtle.color((i $4 *64, 1 %8 *32, 1%16 *16))
turtle.setposition(x - SCREEN_OFFSET_X, y - SCREEN_OFFSET_Y)
turtle.pendown ()
turtle.dot (1)
turtle.penup ()

Ensure that all the drawing is rendered
turtle.update()

print (’Done’)
turtle.done()

13.7 Exercises 119

13.6 Online Resources

The following provide further reading material:

e https://en.wikipedia.org/wiki/Fractal For the Wikipedia page on Fractals.

e https://en.wikipedia.org/wiki/Koch_snowflake the Wikipedia page on the Koch
snowflake.

e https://en.wikipedia.org/wiki/Mandelbrot_set Wikipedia page on the Mandelbrot
set.

13.7 Exercises

The aim of this exercise is to create a fractal tree.

A fractal tree is a tree in which the overall structure is replicated at finer and finer
levels through the tree until a set of leaf elements are reached.

To draw the fractal tree you will need to:

e Draw the trunk.

e At the end of the trunk, split the trunk in two with the left trunk and the right
trunk being 30° left/right of the original trunk. For aesthetic purposes the trunk
may become thinner each time it is split. The trunk may be drawn in a particular
colour such as brown.

e Continue this until a maximum number of splits have occurred (or the trunk size
reduces to a particular minimum). You have now reached the leaves (you may
draw the leaves in a different colour, e.g. green).

An example of a fractal tree is given below:

https://en.wikipedia.org/wiki/Fractal
https://en.wikipedia.org/wiki/Koch_snowflake
https://en.wikipedia.org/wiki/Mandelbrot_set

Chapter 14 ®)
Introduction to Matplotlib oo

14.1 Introduction

Matplotlib is a Python graphing and plotting library that can generate a variety of
different types of graph or chart in a variety of different formats. It can be used to
generate line charts, scatter graphs, heat maps, bar charts, pie charts and 3D plots. It
can even support animations and interactive displays.

An example of a graph generated using Matplotlib is given below. This shows a
line chart used to plot a simple sign wave:

Simple Plot
. =YY
L] XXX
2.0
L
L
1.5
s
£
% 10 s
L
0.5
0.0
0.0 05 10 15 2.0
time (s)
© Springer Nature Switzerland AG 2023 121

J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_14

122 14 Introduction to Matplotlib

Matplotlib is a very flexible and powerful graphing library. It can support a variety
of different Python graphics platforms and operating system windowing environ-
ments. It can also generate output graphics in a variety of different formats including
PNG, JPEG, SVG and PDF.

Matplotlib can be used on its own or in conjunction with other libraries to provide a
wide variety of facilities. One library that is often used in conjunction with Matplotlib
is NumPy which is a library often used in Data Science applications that provides
a variety of functions and data structures (such as n-dimensional arrays) that can be
very useful when processing data for display within a chart.

However, Matplotlib does not come pre-built into the Python environment; it is
an optional module which must be added to your environment of IDE.

In this chapter we will introduce the Matplotlib library, its architecture, the compo-
nents that comprise a chart and the pyplot APIL The pyplot APl is the simplest
and most common way in which a programmer interacts with Matplotlib. We will
then explore a variety of different types of chart and how they can be created using
Matplotlib, from simple line charts, through scatter charts, to bar charts and pie
charts. We will finish by looking at a simple 3D chart.

14.2 Matplotlib

Matplotlib is a graph plotting library for Python. For simple graphs Matplotlib is very
easy to use, for example to create a simple line graph for a set of x and y coordinates
you can use the matplotlib.pyplot.plot function:

import matplotlib.pyplot as pyplot

Plot a sequence of values
pyplot.plot([1l, 0.25, 0.5, 2, 3, 3.75, 3.51])

Display the chart in a window
pyplot.show ()

This very simple program generates the following graph:

14.3 Plot Components 123

35

3.0

2.5

2.0 1

1.0 1

0.5

In this example, the plot () function takes a sequence of values which will be
treated as the y axis values; the x axis values are implied by the position of the value
within the list. Thus as the list has six elements in it the x axis has the range 0-6. In
turn as the maximum value contained in the list is 3.75, then the y value ranges from
Oto4.

14.3 Plot Components

Although they may seem simple, there are numerous elements that comprise a
Matplotlib graph or plot. These elements can all be manipulated and modified
independently. It is therefore useful to be familiar with the Matplotlib terminology
associated with these elements, such as ticks, legends, labels, etc.

The elements that make up a plot are illustrated below:

124 14 Introduction to Matplotlib

CSimple Plot

L] Yy
9
2.0 L] e xXxx > Legend

™) —

S

Grid

Title

Major tick

1P

¥ Axis Label

0.5 Line Plot
L]
C.)
0.0 Scatter Plot
025 050 075 100 125 150 175 2.00
Major Tick @
Label X Axis Label

The diagram illustrates the following elements:

e Axes An Axes is defined by the matplotlib.axes.Axes class. Itis used to
maintain most of the elements of a figure, namely the X and Y Axis, the ticks, the
line plots, any text and any polygon shapes.

e Title This is the title of the whole figure.

e Ticks (major and minor) The ticks are represented by the class
matplotlib.axis.Tick. A tick is the mark on the Axis indicating a
new value. There can be major ticks which are larger and may be labelled. There
are also minor ticks which can be smaller (and may also be labelled).

e Tick Labels (major and minor) This is a label on a tick.

e Axis Themaplotlib.axis.Axis class defines an Axis object (such as an X
or Y axis) within a parent Axes instance. It can have formatters used to format
the labels used for the major and minor ticks. It is also possible to set the locations
of the major and minor ticks.

o Axis Labels (X, Y and in some cases Z) These are labels used to describe the
Axis.

e Plot types such as line and scatter plots. Various types of plots and graphs are
supported by Matplotlib including line plots, scatter graphs, bar charts and pie
charts.

e Grid This is an optional grid displayed behind a plot, graph or chart. The grid can
be displayed with a variety of different line styles (such as solid or dashed lines),
colours and line widths.

14.4 Matplotlib Architecture 125

14.4 Matplotlib Architecture

The Matplotlib library has a layered architecture that hides much of the complexity
associated with different windowing systems and graphic outputs. This architecture
has three main layers, the Scripting Layer, the Artist Layer and the Backend Layer.
Each layer has specific responsibilities and components. For example, the Backend
is responsible for reading and interacting with the graph or plot being generated. In
turn the Artist Layer is responsible for creating the graph objects that will be rendered
by the Backend Layer. Finally the Scripting Layer is used by the developer to create
the graphs.
This architecture is illustrated below:

‘ Scripting Layer J

‘.’ Artist Layer ‘

‘.P Backend Layer \

14.4.1 Backend Layer

The Matplotlib backend layer handles the generation of output to different target
formats. Matplotlib itself can be used in many different ways to generate many
different outputs.

Matplotlib can be used interactively, it can be embedded in an application (or
graphical user interface), and it may be used as part of a batch application with plots
being stored as PNG, SVG, PDF or other images.

To support all of these use cases, Matplotlib can target different outputs, and each
of these capabilities is called a backend; the “frontend” is the developer facing code.
The Backend Layer maintains all the different backends, and the programmer can
either use the default backend or select a different backend as required.

The backend to be used can be set via the matplotlib.use () function. For
example, to set the backend to render Postscript use: matplotlib.use(‘PS’) this is
illustrated below:

import matplotlib

if 'matplotlib.backends'not in sys.modules:
matplotlib.use('PS')

import matplotlib.pyplot as pyplot

126 14 Introduction to Matplotlib

It should be noted that if you use the matplotlib.use () function, this must
be done before importingmatplotlib.pyplot.Callingmatplotlib.use ()
after matplotlib.pyplot has been imported will have no effect. Note that the
argument passed to the matplotlib.use () function is case sensitive.

The default renderer is the ‘Agg’ which uses the Anti-Grain Geometry C++
library to make a raster (pixel) image of the figure. This produces high-quality raster
graphics-based images of the data plots.

The ‘Agg’ backend was chosen as the default backend as it works on a broad
selection of Linux machines as its supporting requirements are quite small; other
backends may run on one particular machine, but may not work on another machine.
This occurs if a particular machine does not have all the dependencies loaded that
the specified Matplotlib backend relies on.

/ Backend Layer \

Backend Implementations

User Interface Hardcopy
Backends Backends

GTK, wxWidgets, TK, Qt PDF, SVG, PNG, Postscript

\ Backend Base Classes

\

)

The Backend Layer can be divided into two categories:

e User interface backends (interactive) that support various Python windowing
systems such as wxWidgets, Qt, TK, etc.

e Hardcopy Backends (non-interactive) that support raster and vector graphic
outputs.

The user interface and hardcopy backends are built upon common abstractions
referred to as the Backend base classes.

14.4.2 The Artist Layer

The Artist Layer provides the majority of the functionality that you might consider
to be what Matplotlib actually does; that is the generation of the plots and graphs
that are rendered/displayed to the user (or output in a particular format).

14.4 Matplotlib Architecture

-

Artist Layer

127

Artist Implementations

Primitives

e.g. Line2D,
Rectangle, Ellipse

Collections

EllipseCollection,
LineCollection,

PolyCollection

Containers

Figure, Axis, Axes

\

Artist Base Classes

J/

The artist layer is concerned with things such as the lines, shapes, axis, axes, text,

etc. that comprise a plot.

The classes used by the Artist Layer can be classified into one of the following
three groups; primitives, containers and collections:

e Primitives are classes used to represent graphical objects that will be drawn on to

a figures canvas.

e Containers are objects that hold primitives. For example, typically a figure would
be instantiated and used to create one or more Axes, etc.
e Collections are used to efficiently handle large numbers of similar types of objects.

Although it is useful to be aware of these classes, in many cases you will not need
to work with them directly as the pyplot API hides much of the detail. However,
it is possible to work at the level of figures, axes, ticks, etc. if required.

14.4.3 The Scripting Layer

The scripting layer is the developer facing interface that simplifies the task of working

with the other layers.

128 14 Introduction to Matplotlib

.-*'/ Scripting Layer \

pyplot
Setup Config Run Control
Backend | ' Artist
Wrappers Wrappers
\..___ B //

Note that from the programmers’ point of view, the Scripting Layer is represented
by the pyplot module. Under the covers pyplot uses module-level objects to track
the state of the data, handle drawing the graphs, etc.

When imported pyplot selects either the default backend for the system or the
one that has been configured; for example via the matplotlib.use () function.

It then calls a setup () function that:

e C(Creates a figure manager factory function, which when called will create a new
figure manager appropriate for the selected backend,

e Prepares the drawing function that should be used with the selected backend,

e Identifies the callable function that integrates with the backend mainloop
function,

e Provides the module for the selected backend.

The pyplot interface simplifies interactions with the internal wrappers by
providing methods such as plot (), pie(), bar (), title(), savefig(),
draw () and figure().

Most of the examples presented later in this chapter will use the functions provided
by the pyplot module to create the required charts, thereby hiding the lower level
details.

14.5 Online Resources

See the online documentation for:

e https://matplotlib.org The Matplotlib library. This incorporates numerous exam-
ples with complete listings, documentation, galleries and a detailed user guide
and FAQ.

e https://pythonprogramming.net/matplotlib-python-3-basics-tutorial Python
Matplotlib crash course.

https://matplotlib.org
https://pythonprogramming.net/matplotlib-python-3-basics-tutorial

Chapter 15 ®)
Graphing with Matplotlib Pyplot oo

15.1 Introduction

In this chapter we will explore the Matplotlib pyplot API. This is the most common
way in which developers generate different types of graphs or plots using Matplotlib.

15.2 The pyplot API

The purpose of the pyplot module and the API it presents is to simplify the gener-
ation and manipulation of Matplotlib plots and charts. As a whole the Matplotlib
library tried to make simple things easy and complex things possible. The primary
way in which it achieves the first of these aims is through the pyplot API as this
API has high-level functions such as bar(), plot(), scatter() and pie() that make it easy
to create bar charts, line plots, scatter graphs and pie charts.

One point to note about the functions provided by the pyplot APIis that they can
often take very many parameters; however most of these parameters will have default
values that in many situations will give you a reasonable default behaviour/default
visual representations. You can therefore ignore most of the parameters available
until such time as you actually need to do something different; at which point you
should refer to the Matplotlib documentation as this has extensive material as well
as numerous examples.

It is of course necessary to import the pyplot module; as it is a module within
the Matplotlib (e.g.matplotlib.pyplot)library. Itis often given an alias within
a program to make it easier to reference. Common alias for this module are pyplot
orplt.

© Springer Nature Switzerland AG 2023 129
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_15

130 15 Graphing with Matplotlib Pyplot

A typical import for the pyplot module is given below:

import matplotlib.pyplot as pyplot

The pyplot API can be used to

construct the plot,

configure labels and axis,

manage colour and line styles,

handles events/allows plots to be interactive,
display (show) the plot.

We will see examples of using the pyplot API in the following sections.

15.3 Line Graphs

A line graph or line plot is a graph with the points on the graph (often referred to as
markers) connected by lines to show how something changes in value as some set
of values (typically the x axis) changes. For example, over a series to time intervals
(also known as a time series). Such line charts are typically drawn in chronological
order; such charts are known as run charts.

The following chart is an example of such a run chart; it charts time across the
bottom (x axis) against speed (represented by the y axis).

Speed v Time

The program used to generate this chart is given below:

15.3 Line Graphs 131

import matplotlib.pyplot as pyplot

Set up the data
x=[0,1,2,3,4,5, 6]
vy =10, 2,6, 14, 30, 43, 75]

Set the axes headings
pyplot.ylabel (‘Speed’, fontsize=12)
pyplot.xlabel (‘Time’, fontsize=12)

Set the title
pyplot.title(“Speed v Time”)

Plot and display the graph

Using blue circles for markers (‘'bo’)
and a solid line ('-"')

pyplot.plot(x, vy, ‘bo-')

pyplot.show ()

The first thing that this program does is to import the matplotlib.pyplot
module and give it an alias of pyplot (as this is a shorter name it makes the code
easier to read).

Two lists of values are then created for the x and y coordinates of each marker
or plot point.

The graph itself is then configured with labels being provided for the x and y axis
(using the pyplot functions x1abel () and ylabel ()). The title of the graph is
then set (again using a pyplot function).

After this the x and y values are then plotted as a line chart on the graph. This is
done using the pyplot.plot () function. This function can take a wide range of
parameters, the only compulsory parameters being the data used to define the plot
points. In the above example a third parameter is provided; this is a string ‘bo-’.
This is a coded format string in that each element of the string is meaningful to the
pyplot.plot () function. The elements of the string are:

e b—thisindicates the colour to use when drawing the line; in this case the letter ‘b’
indicates the colour blue (in the same way ‘r’ would indicate red and ‘g’ would
indicate green).

e o—thisindicates that each marker (each point being plotted) should be represented
by a circle. The lines between the markers then create the line plot.

e ‘—’_This indicates the line style to use. A single dash (‘-’) indicates a solid line,
where as a double dash (‘--") indicates a dashed line.

132

15 Graphing with Matplotlib Pyplot

Finally the program then uses the show () function to render the figure on the
screen; alternatively savefig () could have been used to save the figure to a file.

15.3.1 Coded Format Strings

There are numerous options that can be provided via the format string; the following

tables summarises some of these:

The following colour abbreviations are supported by the format string:

Character Colour
‘b Blue

‘g Green
r’ Red

‘c Cyan
‘m’ Magenta
v’ Yellow
'k Black
‘W’ White

Different ways of representing the markers (points on the graph) connected by
the lines are also supported including:

Character Description

Point marker

< Pixel marker

‘o’ Circle marker

‘v’ Triangle_down marker
w Triangle_up marker
<’ Triangle_left marker
>’ Triangle_right marker
‘s’ Square marker

‘P’ Pentagon marker

o Star marker

‘h Hexagonl marker
‘4 Plus marker

X’ x marker

‘D’ Diamond marker

Finally, the format string supports different line styles:

15.4 Scatter Graph 133

Character Description

Solid line style

- Dashed line style

- Dash-dot line style

Dotted line style

Some examples of formatting strings:

‘r’ red line with default markers and line style.

‘g-’ green solid line.

‘--> dashed line with the default colour and default markers.
‘yo:’ yellow dotted line with circle markers.

15.4 Scatter Graph

A scatter graph or scatter plot is type of plot where individual values are indicated
using Cartesian (or x and y) coordinates to display values. Each value is indicated
via a mark (such as a circle or triangle) on the graph. They can be used to represent
values obtained for two different variables; one plotted on the x axis and the other
plotted on the y axis.

An example of a scatter chart with three sets of scatter values is given below:

Activities Scatter Graph
10 - A @ riding
A swimming
9 1 A A A * sailing
A
81 A A
A *
7 - A A *
4 o B
§ 6 [] *
5 - e ° * *
®
4 - ° ° * *
°
31 @ *
2 *
20 25 30 35 40

134 15 Graphing with Matplotlib Pyplot

In this graph each dot represents the amount of time people of different ages spend
on three different activities.
The program that was used to generate the above graph is shown below:

import matplotlib.pyplot as pyplot

Create data

riding = ((17, 18, 21, 22, 19, 21, 25, 22, 25, 24),
(3, 6,3.5,4,5,6.3,4.5,5, 4.5, 4))
swimming = ((17, 18, 20, 19, 22, 21, 23, 19, 21, 24),
(8, 9, 7,10, 7.5, 9,8, 7, 8.5, 9))
sailing = ((31, 28, 29, 36, 27, 32, 34, 35, 33, 39),

(4, 6.3, 6,3,5,7.5,2,5,7,4))

Plot the data

pyplot.scatter (x=riding[0], y=riding[l], c=‘red’, marker=‘o’,
label=‘riding’)
pyplot.scatter (x=swimming[0], y=swimming([1], c=‘green’,

marker=‘47, label=‘swimming’)
pyplot.scatter (x=sailing([0], y=sailing[1l], c=‘blue’, marker=‘*’,
label=‘sailing’)

Configure graph

pyplot.xlabel (‘Age’)

pyplot.ylabel (‘Hours’)
pyplot.title(‘Activities Scatter Graph’)
pyplot.legend()

Display the chart
pyplot.show ()

In the above example the plot.scatter () function is used to generate the
scatter graph for the data defined by the riding, swimming and sailing tuples.

The colours of the markers have been specified using the named parameter c. This
parameter can take a string representing the name of a colour or a two-dimensional
array with a single row in which each value in the row represents an RGB colour code.
The marker Indicates the marker style such as ‘o’ for a circle, a ‘A’ for a triangle
and “*’ for a star shape. The 1abel is used in the chart legend for the marker.

Other options available on the pyplot.scatter () function include:

e alpha: indicates the alpha blending value, between O (transparent) and 1
(opaque).
linewidths: which is used to indicate the line width of the marker edges.
edgecolors: indicates the colour to use for the marker edges if different from
the fill colour used for the marker (indicates by the parameter ‘c’).

15.4.1 When to Use Scatter Graphs

A useful question to consider is when should a scatter plot be used? In general scatter
plots are used when it is necessary to show the relationship between two variables.

15.4 Scatter Graph 135

Scatter plots are sometimes called correlation plots because they show how two
variables are correlated.

In many cases a trend can be discerned around the points plotted on a scatter chart
(although there may be outlying values). To help visualise the trend it can be useful
to draw a trend line along with the scatter graph. The trend line helps to make the
relationship of the scatter plots to the general trend clearer.

The following chart represents a set of values as a scatter graph and draws the
trend line of this scatter graph. As can be seen some values are closer to the trendline
than others.

120 -

110 4

100 <

80 1

70 A

60 -

The trend line has been created in this case using the numpy function
polyfit ().

Thepolyfit () function performs aleast squares polynomial fit for the data it is
given. A poly1ld class is then created based on the array returned by polyfit ().
This class is a one-dimensional polynomial class. It is a convenience class, used
to encapsulate “natural” operations on polynomials. The polyld object is then
used to generate a set of values for use with the set of x values for the function
pyplot.plot ().

136 15 Graphing with Matplotlib Pyplot

import numpy as np
import matplotlib.pyplot as pyplot

x=(5,5.5,6,6.5,7,8,9, 10)
y = (120, 115, 100, 112, 80, 85, 69, 65)

Generate the scatter plot
pyplot.scatter(x, y)

Generate the trend line
z =np.polyfit(x, vy, 1)

p =np.polyld(z)
pyplot.plot(x, p(x), ‘r’)

Display the figure
pyplot.show ()

15.5 Pie Charts

A pie chart is a type of graph in which a circle is divided into sectors (or wedges)
that each represent a proportion of the whole. A wedge of the circle represents a
category’s contribution to the overall total. As such the graph resembles a pie that
has been cut into different sized slices.

Typically, the different sectors of the pie chart are presented in different colours
and are arranged clockwise around the chart in order of magnitude. However, if there
is a slice that does not contain a unique category of data but summarises several, for
example “other types” or “other answers”, then even if it is not the smallest category,
it is usual to display it last in order that it does not detract from the named categories
of interest.

The following chart illustrates a pie chart used to represent programming language
usage within a particular organisation.

C#

Python

15.5 Pie Charts 137

The pie chart is created using the pyplot.pie () function.
import matplotlib.pyplot as pyplot

labels = (‘Python’, ‘Java’, ‘Scala’, ‘C#’)
sizes = [45, 30, 15, 10]

pyplot.pie(sizes,
labels=1labels,
autopct="%1.£%%",
counterclock=False,
startangle=90)

pyplot.show ()

The pyplot.pie() function takes several parameters, most of which are
optional. The only required parameter is the first one that provides the values to
be used for the wedge or segment sizes. The following optional parameters are used
in the above example:

e The labels parameter is an optional parameter that can take a sequence of
strings that are used to provide labels for each wedge.

e The autopct parameter takes a string (or function) to be used to format the
numeric values used with each wedge.

e The counterclockwise parameter. By default wedges are plotted counter
clockwise in pyplot and so to ensure that the layout is more like the traditional
clockwise approach the counterclock parameter is set to False.

e The startangle parameter. The starting angle has also been moved 90° using
the startangle parameter so that the first segment starts at the top of the chart.

15.5.1 Expanding Segments

It can be useful to emphasise a particular segment of the pie chart by exploding
it; that is separating it out from the rest of the pie chart. This can be done using
the explode parameter of the pie () function that takes a sequence of values
indicating how much a segment should be explored by.

The visual impact of the pie chart can also be enhanced in this case by adding a
shadow to the segments using the named shadow Boolean parameter. The effect of
these is shown below:

138 15 Graphing with Matplotlib Pyplot

Python

The program that generated this modified chart is given below for reference:
import matplotlib.pyplot as pyplot

labels = (‘Python’, ‘Java’, ‘Scala’, ‘C#’)
sizes = [45, 30, 15, 10]

only “explode” the lst slice (i.e. 'Python’) explode= (0.1, 0,
0, 0)

pyplot.pie(sizes,
explode=explode,
labels=1labels,
autopct="%1.£%%",
shadow=True,
counterclock=False,
startangle=90)

pyplot.show ()

15.5.2 When to Use Pie Charts

It is useful to consider what data can be/should be presented using a pie chart. In
general pie charts are useful for displaying data that can be classified into nominal or
ordinal categories. Nominal data is categorised according to descriptive or qualitative
information such as program languages, type of car, country of birth. Ordinal data
is similar but the categories can also be ranked, for example in a survey people may
be asked to say whether they classed something as very poor, poor, fair, good, very
good.

15.6 Bar Charts 139

Pie charts can also be used to show percentage or proportional data and usually
the percentage represented by each category is provided next to the corresponding
slice of pie.

Pie charts are also typically limited to presenting data for six or less categories.
When there are more categories it is difficult for the eye to distinguish between the
relative sizes of the different sectors and so the chart becomes difficult to interpret.

15.6 Bar Charts

A bar chart is a type of chart or graph that is used to present different discrete
categories of data. The data is usually presented vertically although in some cases
horizontal bar charts may be used. Each category is represented by a bar whose height
(or length) represent the data for that category.

Because it is easy to interpret bar charts, and how each category relates to another,
they are one of the most commonly used types of chart. There are also several different
common variations such as grouped bar charts and stacked bar charts.

The following is an example of a typical bar chart. Five categories of programming
languages are presented along the x axis while the y axis indicates percentage usage.
Each bar then represents the usage percentage associated with each programming
language.

Usage

20 4

10 4

Python Scala C# Java PHP
Programming Languages

The program used to generate the above figure is given below:
import matplotlib.pyplot as pyplot
Set up the data

labels = (‘Python’, ‘Scala’, ‘C#’, ‘Java’, ‘PHP’)
index = (1, 2, 3, 4, 5) # provides locations on x axis

140 15 Graphing with Matplotlib Pyplot

sizes = [45, 10, 15, 30, 22]

Set up the bar chart
pyplot.bar (index, sizes, tick_label=labels)

Configure the layout
pyplot.ylabel (‘Usage’)
pyplot.xlabel (‘'Programming Languages’)

Display the chart
pyplot.show ()

The chart is constructed such that the lengths of the different bars are proportional
to the size of the category they represent. The x axis represents the different categories
and so has no scale. In order to emphasise the fact that the categories are discrete,
a gap is left between the bars on the x axis. The y axis does have a scale, and this
indicates the units of measurement.

15.6.1 Horizontal Bar Charts

Bar charts are normally drawn so that the bars are vertical which means that the taller
the bar, the larger the category. However, it is also possible to draw bar charts so that
the bars are horizontal which means that the longer the bar, the larger the category.
This is a particularly effective way of presenting a large number of different categories
when there is insufficient space to fit all the columns required for a vertical bar chart
across the page.

In Matplotlib the pyplot .barh () function can be used to generate a horizontal
bar chart:

C#

Usage

Scala

Python

0 10 20 30 40
Programming Languages

In this case the only line of code to change from the previous example is:

15.6 Bar Charts 141

pyplot.barh(x_values, sizes, tick_label=labels)

15.6.2 Coloured Bars

It is also common to colour different bars in the chart in different colours or using
different shades. This can help to distinguish one bar from another. An example is
given below:

Usage

20

10 4

Python Scala C# Java PHP
Programming Languages

The colour to be used for each category can be provided via the col or parameter
to the bar () (and barh ()) function. This is a sequence of the colours to apply.
For example, the above coloured bar chart can be generated using:

pyplot.bar (x_values, sizes, tick label=labels, color=(‘red’,
‘green’, ‘blue’, ‘yellow’, ‘orange’))

15.6.3 Stacked Bar Charts

Bar charts can also be stacked. This can be a way of showing total values (and
what contributes to those total values) across several categories. That is, it is a way
of viewing overall totals, for several different categories based on how different
elements contribute to those totals.

Different colours are used for the different subgroups that contribute to the overall
bar. In such cases, a legend or key is usually provided to indicate what subgroup each

142 15 Graphing with Matplotlib Pyplot

of the shadings/colours represent. The legend can be placed in the plot area or may
be located below the chart.

For example, in the following chart the total usage of a particular programming
language is composed of its use in games and web development as well as data
science analytics.

- web
B data science
. games

Usage

204

10 A

Python Scala Cc# Java PHP
Programming Languages

From this figure we can see how much each use of a programming language
contributes to the overall usage of that language. The program that generated this
chart is given below:

import matplotlib.pyplot as pyplot

Set up the data

labels = (‘Python’, ‘Scala’, ‘C#’, ‘Java’, ‘PHP’)
index = (1, 2, 3, 4, 5)

web_usage = [20, 2, 5, 10, 14]
data_science_usage = [15, 8, 5, 15, 2]
games_usage = [10, 1, 5, 5, 4]

Set up the bar chart

pyplot.bar (index, web_usage, tick_label=labels, label=‘web’)
pyplot.bar (index, data_science_usage, tick_label=labels,
label=‘data science’, bottom=web_usage)

web_and_games_usage = [web_usage[i] + data_science_usage[i] for i
in range (0, len (web_usage))]
pyplot.bar (index, games_usage, tick_label=labels, label=‘games’,
bottom=web_and_games_usage)

Configure the layout

pyplot.ylabel (‘Usage’)

pyplot.xlabel (‘'Programming Languages’)
pyplot.legend()

15.6 Bar Charts 143

Display the chart
pyplot.show ()

One thing to note from this example is that after the first set of values are added
using the pyplot .bar () function, it is necessary to specify the bottom locations
for the next set of bars using the bot tom parameter. We can do this just using the
values already used for web_usage for the second bar chart; however for the third
bar chart we must add the values used for web_usage and data_science_
usage together (in this case using a for list comprehension).

15.6.4 Grouped Bar Charts

Finally, grouped bar charts are a way of showing information about different
subgroups of the main categories. In such cases, a legend or key is usually provided
to indicate what subgroup each of the shadings/colours represent. The legend can be
placed in the plot area or may be located below the chart.

For a particular category separate bar charts are drawn for each of the subgroups.
For example, in the following chart the results obtained for two sets of teams across
a series of lab exercises are displayed. Thus each team has a bar for labl, lab2,
lab3, etc. A space is left between each category to make it easier to compare the sub
categories.

The following program generates the grouped bar chart for the lab exercises
example:

import matplotlib.pyplot as pyplot
BAR_WIDTH = 0.35

set up grouped bar charts

teama_results = (60, 75, 56, 62, 58)
teamb_results = (55, 68, 80, 73, 55)

Set up the index for each bar

index_teama = (1, 2, 3, 4, 5)

index_teamb = [i + BAR_WIDTH for i in index_teama]

Determine the mid point for the ticks
ticks = [1i + BAR_WIDTH / 2 for i1 in index_teama]
tick_labels = (‘Lab 1’, ‘Lab 2’, ‘Lab 3’, ‘Lab 4’, ‘Lab 5’)

Plot the bar charts

pyplot.bar (index_teama, teama_results, BAR_WIDTH, color=‘b’,
label="Team A’)

pyplot.bar (index_teamb, teamb_results, BAR_WIDTH, color=1‘g’,
label=‘Team B’)

Set up the graph
pyplot.xlabel (‘Labs’)
pyplot.ylabel (*Scores’)
pyplot.title(‘Scores by Lab’)

144 15 Graphing with Matplotlib Pyplot

pyplot.xticks(ticks, tick_labels)
pyplot.legend()

Display the graph
pyplot.show ()

Notice in the above program that it has been necessary to calculate the index for
the second team as we want the bars presented next to each other. Thus the index
for the teams includes the width of the bar for each index point, thus the first bar
is at index position 1 . 35, the second at index position 2 .35, etc. Finally the tick
positions must therefore be between the two bars and thus is calculated by taking
into account the bar widths.

This program generates the following grouped bar chart:

Scores by Lab

80 N Team A
. Team B
70
60
50 -
w
e
o
b 40
30 4
20
10
0 -
Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
Labs

15.7 Figures and Subplots

A Matplotlib figure is the object that contains all the graphical elements displayed
on a plot. That is the axes, the legend, the title as well as the line plot or bar chart
itself. It thus represents the overall window or page and is the top level graphical
component.

In many cases the figure is implicit as the developer interacts with the pyplot
APT; however the figure can be accessed directly if required.

The matplotlib.pyplot.subplots () function is a useful function that
creates common layouts of subplots, including the enclosing figure object. This
function can take optional parameters to indicate the number and organisation of the
subplots, for example:

15.7 Figures and Subplots 145

fig, axs = plt.subplots (2, 2)

Indicates 4 subplots display in a 2 by 2 grid.

This function returns a matplotlib. figure.Figure object and a two-
dimensional array of axis objects that can be used with the subplots. It is then possible
to interact directly with the appropriate axis object. For example it is possible to add
subplots and titles for these subplots to the axes.

Working directly with the axes is necessary if you want to add multiple subplots
to a figure. This can be useful if what is required is to be able to compare different
views of the same data side by side. Each subplot has its own axes which can coexist
within the figure.

One or more subplots can be added to a figure using the appropriate axis. As
the axis is a two-dimensional array (an ndarray) it is possible to access each axis
individually and add a plot to that axis, for example:

axs[0, 0] .plot(t, s)
axs[0, 0] .set_title('Subplot [0, 0]")

This adds a plot to axis in position 0, O within the ndarray and then sets the
title of this plot.

For example, the following figure illustrates four subplots presented within a
single figure. Each subplot is added via the Axes .plot () method.

Subplots
Subplot [0, 0] Subplot [0, 1]
30 - -
25 B
]
= 204]
=
15 E
Subplot [1, 0] Subplot [1, 1]
30 -
25
]
= 201
=
15 - B
o 5 10 15 o 5 10 15
x-label x-label

This figure is generated by the following program:

import matplotlib.pyplot as plt

146 15 Graphing with Matplotlib Pyplot

Generate some data to display
t = range (0, 20)
s = range (30, 10, -1)

Set up the grid of subplots to be 2 by 2
fig, axs = plt.subplots (2, 2)
fig.suptitle(‘Subplots’)

Add first subplot

print (‘Adding first subplot to position [0, 0]')
axs[0, 0] .plot(t, s)

axs[0, 0] .set_title('Subplot [0, 0]")

Add second subplot

print (*Adding second subplot to position [0, 117)
axs[0, 1].plot(t, s, ‘g-")

axs[0, 1].set_title('Subplot [0, 1]’)

Add third subplot

print (*Adding third subplot to position [1, 0]')
axs[1l, 0] .plot(t, s, ‘r-")

axs[1l, 0] .set_title(‘Subplot [1, 0]")

Add fourth subplot

print (*Adding fourth subplot to position [1, 1]’)
axs[l, 1].plot(t, s, ‘y-')

axs[1l, 1].set_title('Subplot [1, 1]’)

Set up X and y axis labels
for ax in axs.flat:
ax.set (xlabel='x-label’, ylabel=‘y-label’)

Hide x labels and tick labels for top plots and y ticks for
right plots.
for ax in axs.flat:

ax.label_outer ()

Display the chart
plt.show()

The console output from this program is given below:

Adding first subplot to position [0, 0]
Adding second subplot to position [0, 1]
Adding third subplot to position [1, 0]
Adding fourth subplot to position [1, 1]

15.8 3D Graphs

A three-dimensional graph is used to plot the relationships between three sets of
values (instead of the two used in the examples presented so far in this chapter). In
a three-dimensional graph as well as the x and y axis there is also a z axis.

15.8 3D Graphs 147

The following program creates a simple 3D graph using two sets of values gener-
ates using the bumpy range function. These are then converted into a coordinate
matrices using the bumpy meshgrid () function. The z axis values are created
using the bumpy sin() function. The 3D graph surface is plotted using the plot_
surface function of the futures axes object. This takes the x, y and z coordinates. The
function is also given a colour map to use when rendering the surface (in this case
the Matplotlib cool to warm colour map is used).

import matplotlib.pyplot as pyplot

Import matplotlib colour map

from matplotlib import cm as colourmap
Provide access to numpy functions
import numpy as np

Make the data to be displayed
x_values = np.arange(-6, 6, 0.3)
yv_values = np.arange(-6, 6, 0.3)

Generate coordinate matrices from coordinate vectors
x_values, y_values = np.meshgrid(x_values, y_values)

Generate Z values as sin of x plus y values
z_values = np.sin(x_values + y_values)

Obtain the figure object / get the axes object for the 3D
graph
figure, axes = pyplot.subplots (subplot_kw={“projection”: “3d”})

Plot the surface.

surf = axes.plot_surface(x_values,
v_values,
z_values,
cmap=colourmap.coolwarm)

Add a color bar which maps values to colors.
figure.colorbar (surf)

Add labels to the graph
pyplot.title(“3D Graph”)
axes.set_ylabel (‘y values’, fontsize=8)
axes.set_xlabel (‘x values’, fontsize=8)
axes.set_zlabel (‘z values’, fontsize=8)

Display the graph
pyplot.show ()

This program generates the following 3D graph:

148 15 Graphing with Matplotlib Pyplot

3D Graph

- 0.25

- 0.00

-—0.25

-0.50

-0.75

One point to note about three-dimensional graphs is that they are not universally
accepted as being a good way to present the data. One of the maxims of data visual-
isation is keep it simple/keep it clean. Many consider that a three-dimensional chart
does not do this and that it can be difficult to see what is really being shown or that it
can be hard to interpret the data appropriately. For example, in the above chart what
are the values associated with any of the peaks? This is difficult to determine as it
is hard to see where the peaks are relative to the X, Y and Z axis. Many consider
such 3D charts to be eye candy; pretty to look at but not proving much information.
As such the use of a 3 D chart should be minimised and only used when actually
necessary.

15.9 Exercises

The following table provides information on cities in the UK and their populations
(note that London has been omitted as its population is so much larger than that of
any other city).

City Population
Bristol 617,280
Cardiff 447,287
Bath 94,782
Liverpool 864,122
Glasgow 591,620

(continued)

15.9 Exercises 149

(continued)
City Population
Edinburgh 464,990
Leeds 455,123
Reading 318,014
Swansea 300,352
Manchester 395,515

Using this data create:

1. A scatter plot for the city to population data.
2. A bar chart for the city to population data.

Chapter 16 ®)
Graphical User Interfaces oo

16.1 Introduction

A Graphical User Interface can capture the essence of an idea or a situation, often
avoiding the need for a long passage of text. Such interfaces can save a user from the
need to learn complex commands. They are less likely to intimidate computer users
and can provide a large amount of information quickly in a form which can be easily
assimilated by the user.

The widespread use of high-quality graphical interfaces has led many computer
users to expect such interfaces to any software they use. Most programming languages
either incorporate a graphical user interface (GUI) library or have third-party libraries
available.

Python is of course a cross-platform programming language, and this brings in
additional complexities as the underlying operating system may provide different
windowing facilities depending upon whether the program is running on Unix, Linux,
macOS or Windows operating systems.

In this chapter we will first introduce what we mean by a GUI and by WIMP-based
Uls in particular. We will then consider the range of libraries available for Python
before selecting one to use. This chapter will then describe how to create rich client
graphical displays (desktop application) using one of these GUI libraries. Thus in
this chapter we consider how windows, buttons, text fields and labels are created,
added to windows, positioned and organised.

16.2 GUIs and WIMPS

Graphical user interfaces (GUIs) and Windows, Icons, Mice and Pop-up Menus
(WIMP) style interfaces have been available within computer systems for many
decades, but they are still one of the most significant developments to have occurred.

© Springer Nature Switzerland AG 2023 151
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_16

152 16 Graphical User Interfaces

These interfaces were originally developed out of a desire to address many of the
perceived weaknesses of purely textual interfaces.

The textual interface to an operating system was typified by a peremptory prompt.
In Unix/Linux systems for example, the prompt is often merely a single character
such as ¥, > or s, which can be intimidating. This is true even for experienced
computer users if they are not familiar with the Unix/Linux family of operating
systems.

For example, a user wishing to copy a file from one directory to another might
have to type something like:

> cp file.pdf ~otheruser/projdir/srcdir/newfile.pdf

This long sequence needs to be entered with no mistakes in order to be accepted.
Any syntax error in this command will cause the system to generate an error message
which might or might not be enlightening. Even where systems attempt to be more
“user friendly” through features like command histories, much typing of arrow keys
and filenames is typically needed.

The main issue on both input and output is one of bandwidth. For example,
in situations where the relationships between large amounts of information must be
described, it is much easier to assimilate this if output is displayed graphically than
if it is displayed as a tables of figures. On input, combinations of mouse actions can
be given a meaning that could otherwise only be conveyed by several lines of text.

WIMP stands for Windows (or Window Managers), Icons, Mice and Pop-up
menus. WIMP interfaces allow the user to overcome at least some of the weaknesses
of their textual counterparts—it is possible to provide a pictorial image of the oper-
ating system which can be based on a concept the user can relate to, menus can
be used instead of textual commands and information in general can be displayed
graphically.

The fundamental concepts presented via a WIMP interface were originally devel-
oped at XEROX’s Palo Alto Research Center and used on the Xerox Star machine,
but gained much wider acceptance through first the Apple Macintosh and then IBM
PC implementations of WIMP interfaces.

Most WIMP style environments use a desktop analogy (although this is less true
of mobile devices such as phones and tablets):

the whole screen represents a working surface (a desktop),
graphic windows that can overlap represent sheets of paper on that desktop,
graphic objects are used for specific concepts, for example filing cabinets for disks
or a waste bin for file disposal (these could be regarded as desk accessories),

e various application programs are displayed on the screen, these stand for tools
that you might use on your desktop.

In order to interact with this display, the WIMP user is provided with a mouse (or
a light pen or a touch sensitive screen), which can be used to select icons and menus
or to manipulate windows.

The software basis of any WIMP style environment is the window manager. It
controls the multiple, possibly overlapping windows and icons displayed on the

16.3 Windowing Frameworks for Python 153

screen. It also handles the transfer of information about events which occur in those
windows to the appropriate application and generates the various menus and prompts
used.

A window is an area of the graphic screen in which a page or piece of a page
of information may be displayed; it may display text, graphics or a combination of
both. These windows may be overlapping, and associated with the same process, or
they may be associated with separate processes. Windows can generally be created,
opened, closed, moved and resized.

An icon is a small graphic object that is usually symbolic of an operation or of a
larger entity such as an application program or a file. The opening of an icon causes
either the associated application to execute or the associated window to be displayed.

At the heart of the users ability to interact with such WIMP-based programs is
the event loop. This loop listens for events such as the user clicking a button or
selecting a menu item or entering a text field. When such an event occurs it triggers
the associated behaviour (such as running a function linked with a button).

16.3 Windowing Frameworks for Python

Python is a cross-platform programming language. As such Python programs can
be written on one platform (such as a Linux box) and then run on that platform or
another operating system platforms (such as Windows or macOS). This can however
generate issues for libraries that need to be available across multiple operating system
platforms. The area of GUIs is particularly an issue as a library written to exploit
features available in the Windows system may not be available (or may look different)
on macOS or Linux systems.

Each operating system that Python runs on may have one or more windowing
systems written for it and these systems may or may not be available on other oper-
ating systems. This makes the job of providing a GUI library for Python that much
more difficult.

Developers of Python GUIs have taken one of two approaches to handle this:

e One approach is to write a wrapper that abstracts the underlying GUI facilities so
that the developer works at a level above a specific windowing system’s facilities.
The Python library then maps (as best it can) the facilities to the underlying system
that is currently being used.

e The other approach is to provide a closer wrapping to a particular set of facilities on
the underlying GUI system and to only target systems that support those facilities.

Some of the libraries available for Python are listed below and have been
categorised into platform-independent libraries and platform-specific libraries:

154 16 Graphical User Interfaces

16.3.1 Platform-Independent GUI Libraries

Tkinter. This is a widely used standard Python GUI library. It is built on top
of the Tcl/Tk widget set that has been around for very many years for many
different operating systems. Tcl stands for Tool Command Language while Tk is
the graphical user interface toolkit for Tcl.

wxPython. wxWidgets is a free, highly portable GUI library. It is written in C++,
and it can provide a native look and feel on operating systems such as Windows,
macOS and Linux. wxPython is a set of Python bindings for wxWidgets. This is
the library that we will be using in this chapter.

PyQT or PySide both of these libraries wrap the Qt toolkit facilities. Qt is a cross-
platform software development system for the implementation of cross-platform
GUIs and applications.

16.3.2 Platform-Specific GUI Libraries

PyObjc is a macOS specific library that provides an Objective-C bridge to the
Apple Mac Cocoa GUI libraries.

PythonWin provides a set of wrappings around the Microsoft Windows
Foundation classes and can be used to create Windows-based GUIs.

16.4 Online Resources

There are numerous online references that support the development of GUIs and of
Python GUISs in particular, including:

1.
2.
3.

e

https://www.wxpython.org wxPython home page.

https://www.tcl.tk for Information on Tcl/Tk.

https://www.qt.io For information on the Qt cross-platform software and UI
development library.

https://wiki.python.org/moin/PyQt For information about PyQt.
https://pypi.org/project/PySide/ which provides project information for PySide.
https://en.wikipedia.org/wiki/Cocoa_(API) for the Wikipedia page on the
MacOS Cocoa library.

https://pythonhosted.org/pyobjc/ for information on the Python to Objective-C
bridge.
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=vs-
2019 Provides an introduction to the Microsoft Foundation classes.
https://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html for information on
PythonWin.

https://www.wxpython.org
https://www.tcl.tk
https://www.qt.io
https://wiki.python.org/moin/PyQt
https://pypi.org/project/PySide/
https://en.wikipedia.org/wiki/Cocoa_%28API%29
https://pythonhosted.org/pyobjc/
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=vs-2019
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=vs-2019
https://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Chapter 17 ®)
Tkinter GUI Library ez

17.1 Introduction

The Tkinter library is a cross-platform GUI library (or toolkit) for Python. It allows
programmers to develop highly graphical user interfaces for their programs using
common concepts such as menu bars, menus, buttons, fields, panels and frames. This
chapter introduces Tkinter. It allows programmers to develop highly graphical user
interfaces for their programs using common concepts such as menu bars, menus,
buttons, fields, panels and frames. This chapter introduces Tkinter.

17.2 TKinter

Tkinter is the de-facto standard for creating graphical user interfaces (GUIs) in
Python. Although there are other libraries available Tkinter is provided as part of
the Python environment and provides all the features required to create desktop
applications.

Some of the key features of Tkinter include:

e Cross-platform: Tkinter is available on most operating systems, including
Windows, macOS, and Linux, making it a platform-independent choice for GUI
development.

e Widget library: Tkinter provides a set of pre-built GUI elements called widgets,
such as buttons, labels, fields, checkboxes, menus and more.

e Event-driven programming: Tkinter follows an event-driven programming
paradigm common to most GUI libraries in most languages. It allows devel-
opers to define event handlers for various user actions, such as button clicks or
key presses, which allows for interactive applications. This is the topic of the next
chapter.

© Springer Nature Switzerland AG 2023 155
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_17

156 17 Tkinter GUI Library

¢ Layout managers: Tkinter offers different layout managers, such as pack (),
grid(), and place (), to control the positioning and organisation of widgets
within a window or frame.

17.3 Windows as Objects

In Tkinter, window frames, buttons and text labels as well as their contents are
instances of appropriate classes (such as Frame, Button or Label). Thus when you
create a window.

® You create an object that knows how to display itself on the computer screen.
You must tell it what to display and then tell it to start listening for user input (if
appropriate).

e You should bear the following points in mind during your reading of this chapter;
they will help you understand what you are required to do:

® You create a window by instantiating a Tk object. This is the applications’ top
most window in a Tk application which typically represents the main window of
an application. It is also possible to have other top-level windows represented by
the TopLevel class.

® You define what the window displays by creating widgets that have an appropriate
parent

e A widget can be played out within a window using one or three strategies such as
pack().

® You can send messages to the window to change its state, perform an operation
and display a graphic object.

e The window, or components within the window, can send messages to other
objects in response to user (or program) actions.

e Everything displayed by a window is an instance of a class and is potentially
subject to all of the above.

e tk.Tk class handles the main event loop of the GUI application.

17.4 Key Concepts

In Tkinter all the elements of a GUI are contained within a Frame held within a
top-level windows such as a Tk class root window or a TopLevel window. These
frames contain graphical components known as widgets. These concepts and are
others are outlined below:

e Tk: The Tk class represents the main window or the root window of a Tkinter
application. It serves as the container for other widgets and is responsible for
managing the application’s event loop.

17.4 Key Concepts 157

e Toplevel: The Toplevel class represents additional top-level windows in a
Tkinter application. These windows are separate from the root window and can
be used for dialog boxes, pop-up windows, or secondary windows within the
application.

e Frame: The Frame class is a container widget that provides a rectangular region
to hold other widgets. It is used to group and organise widgets within the main
window or other windows.

e Widgets, which are graphical components within a Frame, such as a button, a
field, a label, etc.

e Canvas: The Canvas class provides a drawing area where you can draw
graphics, lines, shapes and images.

e Dialogs which are like Frames but provide fewer border controls.

Using these components it is possible to construct complex user interfaces.

17.4.1 The Tk Class

The Tk class is the core class used to create a TK window or frame. The class
methods and attributes that can be used to customise the main window, handle user
events, and manage the application’s behaviour. Some commonly used methods and
attributes of the Tk class include:

title (): Sets the title of the main window.

geometry (): Can be used to set the size and position of the main window.
config (): Configures various properties of the main window.

mainloop (): Starts the Tkinter event loop.

destroy (): Closes the main window and terminates the application.
bind (): Binds an event to a event handler/callback function.

Additionally, the Tk class inherits methods and attributes from the Widget class,
which is the base class for all Tkinter widgets. This allows the developer to further
customise the main window using methods and attributes available to all widgets,
such as setting the background colour, adding images or applying styles. By using
the Tk class and its associated methods and attributes, the developer can create the
main window of their Tkinter application and define its behaviour and appearance.

17.4.2 TK Widgets

There are a set of classes within TKinter referred to as widget classes. Each class
represents a different type of graphical element such as buttons, labels, menus and
list boxes. The widget classes all inherit (or mix in) from the tk, Misc class which
means that all widgets provide a common set of behaviours and attributes as well as
those specific to their type.

158 17 Tkinter GUI Library

When working with a widget it is necessary to create an instance of the corre-
sponding class and link it to its parent widget (which could be a window or a frame
or some other container style widget).

17.4.3 The TopLevel Class

Tkinter also has a class called tk.TopLevel. It represents a top-level window or
dialog box. It is a container widget that functions as a separate independent window,
typically used for creating pop-up windows, dialog boxes or additional top-level
windows in your application.

The tk.TopLevel class is derived from the tk . Tk class, however, unlike the
root window, a TopLevel window is a separate window with its own title bar and
borders.

To create a TopLevel window, you need to instantiate the class and specify the
parent widget as the first argument, typically the root window or another TopLevel
window. For example:

import tkinter as tk
root = tk.Tk()

Create a top-level window
top_level = tk.Toplevel (root)
top_level.title(“My TopLevel”)

Add widgets to the top-level window
label = tk.Label (top_level, text="This is a top level window.")
label.pack()

root.mainloop ()

When this program is run it generates two windows as shown below:

[@ My ToplLevel

This is a top level window.

In this code, we create a TopLevel instance named top_level with root as
the parent widget. The title of the top-level window is then set to “My TopLevel”

17.4 Key Concepts 159

using the title () method. A Label widget is then added to the top-level window
to display some text.

TopLevel windows are useful for creating additional windows or dialog boxes
in a Tkinter application, allowing the developer to display information, prompt for
input, or perform specific tasks independently of the main root window.

17.4.4 The Frame Class

The TK Frame class is a widget that represents a rectangular region used to group
and organise other widgets within a window. It thus acts as a container or a panel
within a window which is very useful when creating hierarchical layouts. This is
because each Frame can have their own layout management and thus by combining
frames together complex Uls can be created.

The tk.Frame () constructor can be used to create a new instance of a Frame
with respect to parent widget such as the root window. For example:

import tkinter as tk
root = tk.Tk()

Create a frame
frame = tk.Frame (root)
frame.pack()

Add widgets to the frame
label = tk.Label (frame, text=“Hello, World!")
label.pack()

root.mainloop ()

In this program an initial root window is created using tk.Tk (). This root is
then used as the parent of the tk.Frame () that is subsequently instantiated. The
frame is then packed with the root windows. Following this a label is created and
that is added to the Frame. The main loop of the top-level window is then started.

The result of running this program is that a simple window is displayed as shown
below:

@ ® tk
Hello, World!

160 17 Tkinter GUI Library

Note that the frame does not by and of its self have a default visual presence
within the top-level window.

17.4.5 Dialogs

You can use the tkinter.simpledialog or the tkinter .messagebox
modules to create common dialog types, such as input dialogs, file dialogs or message
boxes. These libraries provide pre-defined functions that make it easy to use dialogs
in your applications. The simpledialog module provides:

SimpleDialog—A simple modal dialog box.

Dialog—a base class for dialogs.

askinteger ()—a function to display a dialog to get an integer from the user.
askfloat ()—a function to display a dialog to get a float from the user
askstring ()—a function to display a dialog to get a string from the user

For example, the following code illustrates creating a simple Enter Your Name
style dialog:

import tkinter as tk
import tkinter.simpledialog as simpledialog

root = tk.Tk()

Function to display an input dialog
def display_dialog() :
answer = simpledialog.askstring (“Name Entry”,
“Please enter your name:”)
if answer:
print (“Your name is:”, answer)
else:
print (“No input provided. ")

Create a button to show the dialog

button = tk.Button(root, text=“Open Dialog”, command=display_
dialog)

button.pack()

root.mainloop ()

This program imports tkinter.simpledialogand usethe askstring ()
function to display an input dialog box. The function takes two arguments: the title
of the dialog box and the prompt message. It returns the user’s input as a string or
None if no input is provided. If the user entered their name it is printed out, if the user
did not enter their name then a message telling the user that no input was provided
is printed to the console.

When this program is run it generates a window containing a single button ‘Open
Dialog’. When you click on this button a ‘dialog’ is opened that will ask the user to
enter their name (as a string), for example:

17.4 Key Concepts 161

Open Dialog Name Entry

Please enter your name:
Johr|

When the user enters their name it is then printed out to the console:

Your name is: John

17.4.6 The Canvas Class

The Canvas class in Tkinter provides a 2D drawing area that can be used to create
and manipulate graphical elements such as lines, shapes, images and text.

To use the Canvas class, it is first necessary to create an instance of the Canvas
and specify its parent container, usually the main window or a TopLevel window.
For example:

import tkinter as tk

window = tk.Tk()
canvas = tk.Canvas (window, width=400, height=300)
canvas.pack ()

In this example, we have created an instance of the Canvas class, passing the
root window as the parent and specifying the desired width and height of the
canvas. We then use the pack () method to layout and display the canvas within the
main window.

Once the canvas is created, it can be used to draw and manipulate graphical
elements suing methods such as:

e create_line(): Draws a straight line between two coordinates on the
receiving canvas.

e create_rectangle ():Drawsarectangle specified by its top-left and bottom-

right coordinates.

create_oval (): Draws an oval specified by its bounding box coordinates.

create_polygon (): Draws a polygon specified by a list of coordinates.

create_image (): Displays an image on the canvas.

create_text (): Places text on the canvas.

As an example off using the canvas to display a graphical element, the following

program draws a rectangle and a line as specific positions within the canvas:

162 17 Tkinter GUI Library

Draw a rectangle
canvas.create_rectangle (50, 50, 200, 150, fill=‘red’)

Draw a line
canvas.create_line (100, 100, 300, 200, fill="blue’, width=3)

root.mainloop ()

In this example, we use the create_rectangle () method to draw a red
rectangle and the create_line () method to draw a blue line on the canvas.
The coordinates passed to these methods specify the position and dimensions of the
shapes.

The Canvas class provides additional methods for controlling the appearance
and behaviour of the canvas and its elements. For example, you can change the colour,
outline or fill of a shape, apply transformations such as scaling or rotation, handle
events like mouse clicks or movements on the canvas and more.

Using the Canvas class it is possible to create complex graphics, interactive
visualisations or custom drawing tools within your Tkinter application.

17.5 The Class Inheritance Hierarchy

The following diagram illustrates part of the inheritance tree for the graphical Tk
components (or widgets).

Widget
I
I [[[I I |
Canvas Frame Toplevel BaseWidget Button Entry Label Listbox Separator
I | ———
LabelFrame Misc CheckButton RadioButton
Pack
r :]
Place Grid

At the top of the hierarchy is the Widget class, which serves as the base class
for all Tkinter widgets. It provides the basic functionality and attributes shared by
all widgets.

The Widget class is then subclassed by other intermediate classes such as
BaseWidget, Misc, TopLevel, Frame, Button and Canvas, which further
define common behaviour and attributes for groups of related widgets.

Below these intermediate classes, you find specific widget classes like
CheckButton, RadioButton or LabelFrame which is a subclass of Frame.

Additionally, there are widget classes related to menus such as Menu.

Understanding the inheritance hierarchy can be useful when working with Tkinter,
as it helps in identifying common methods, attributes and behaviours shared by

17.6 A Simple Example 163

groups of widgets and allows you to leverage the specific features and customisation
options provided by each widget class.

17.5.1 Layout Management

All Tkinter widgets have access to specific geometry management methods, which
have the purpose of organising widgets throughout the parent widget area. Tkinter
exposes the following geometry manager classes: pack, grid and place.

e pack () This geometry manager organises widgets in blocks before placing them
in the parent widget.

e grid() This geometry manager organises widgets in a table-like structure in the
parent widget.

e place () This geometry manager organises widgets by placing them in a specific
position in the parent widget.

17.6 A Simple Example

To illustrate the basic usage of Tkinter, consider the following code that creates a
window containing a simple button.

import tkinter as tk

def button_click():
""" function to be run when button is clicked”””
print (“Button clicked!”)

Set up the window and the button within the window
window = tk.Tk()

window.geometry (*200x80")

Set the title of the tkinter window
window.title('Simple Window’)

Add a button to the window
button = tk.Button (window,
text="Click Me”,
command=button_click)
button.pack()

Start the main GUI processing loop
window.mainloop ()

When this program is run the following window is displayed:

164 17 Tkinter GUI Library

@ @® Simple Window

Click Me

If the user clicks on the ‘Click Me’ button a message ‘button clicked!” will be
printed to the standard out, for example if we click the button 3 times we will see the
following in the output console:

Button clicked!
Button clicked!
Button clicked!

The above code imports the tkinter module and creates a window using Tk ().
It then sets the size of the window using geometry () and a string describing
the dimensions of the window. Following this the title of the window is set using
the title () method. The program then creates a button using Button () and
associates it with a function button_c11ick to handle the button click event. The
pack () method is used to manage the layout of the button within the window.
In this case there is only the button and so the layout is very simple. Finally, the
mainloop () method is called to start the Tkinter GUI event loop that will listen
for user events and trigger their related behaviours.

17.7 TKkinter Installation

Tkinter is typically included with the standard Python installation on macOS, so you
don’t need to install it separately.

17.7.1 Mac Installation

You may need to ensure that the Tcl/Tk libraries, which Tkinter relies on, are installed
on your Mac. Most Unix/Linux operating system distributions, as well as Mac OS X,
include Tcl/Tk. If not already installed, you can use your system’s package manager
to install the appropriate packages.

Here’s how you can check and install Tkinter-related dependencies:

1. Open Terminal on your Mac.
2. Check if Tcl/Tk is installed by running the following command:

which wish

17.7 Tkinter Installation 165

If Tcl/Tk is installed, the command will display the path to the Tcl/Tk

interpreter.

3. If Tcl/Tk is not installed, you can install it using Homebrew, a popular package
manager for macOS. Install Homebrew by executing the following command in
Terminal:

/bin/bash -c¢ “$ (curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)”

4. Once Homebrew is installed, run the following command to install Tcl/Tk:

brew install tcl-tk
This command will install the Tcl/Tk libraries on your system.

After ensuring that Tcl/Tk is installed, you can start using Tkinter in your Python
programs without any additional installation steps. To check that this is working try
from the command line:

python -m tkinter

This should open a window with a sample tkinter application to verify everything
is ok:

o090tk

Click Me

If you are still having a problem in your environment then it may be necessary to
install the tkinter package on your Mac, this can be done again using homebrew via:

brew install python-tk

Now retest your system to ensure that you can run the tkinter sample application.

17.7.2 Windows Installation

On Windows, Tkinter is typically included with the standard Python installation, so
you don’t need to install it separately.

166 17 Tkinter GUI Library

17.8 GUI Builders for Tkinter

Programming a GUI by hand can provide very powerful and flexible Uls; however,
it is also time consuming and can be error prone. To alleviate this there are so called
GUI builders available for Tkinter that allow you to essentially ‘draw’ the UI and
then the GUI builder can generate the underlying code for you.

In general, these types of tools provide a visual interface for creating and arranging
widgets, setting properties, and generating the corresponding Tkinter code.

A few of the more popular GUI builders/editors for Tkinter are:

e Pygubu: Pygubu is a simple GUI builder that allows the developer to visually
design their GUI by dragging and dropping widgets onto a canvas, setting prop-
erties, and assigning event handlers. Pygubu generates the corresponding Python
code, which can then be used within an application.

e PAGE: Python Automatic GUI Generator (PAGE) is another GUI builder for
Tkinter. It provides a visual environment for designing GUIs and generates the
corresponding Python code. PAGE offers a variety of widgets and properties, and
it supports events and event binding.

e Qt Designer with PyQt: While not specific to Tkinter, you can use Qt Designer,
a visual GUI builder for PyQt (a Python binding for the popular Qt framework),
to design your GUI. PyQt provides a bridge between Tkinter and Qt, allowing
you to use the Qt Designer tool to create the GUI and then convert the generated
‘.ui’ file to Python code that works with Tkinter.

GUI builders can save time and make it easier to create complex layouts and
arrangements of widgets. However, bear in mind that learning the basics of Tkinter
and writing code manually can provide you with more flexibility and control over
your GUI application.

17.9 Online Resources

https://docs.python.org/3/library/tkinter.html Main tkinter documentation.
https://realpython.com/python-gui-tkinter/ Tutorial on Tkinter.
https://tkdocs.com/tutorial/widgets.html Tutorial on the basic widgets.
https://www.geeksforgeeks.org/what-are-widgets-in-tkinter/ Another tutorial on
widgets in Tkinter.

https://github.com/alejandroautalan/pygubu Pygubu reference.
https://sourceforge.net/projects/page/ SourceForge site for PAGE.

e https://pythonbasics.org/qt-designer-python/ Qt Designer tutorial.

https://docs.python.org/3/library/tkinter.html
https://realpython.com/python-gui-tkinter/
https://tkdocs.com/tutorial/widgets.html
https://www.geeksforgeeks.org/what-are-widgets-in-tkinter/
https://github.com/alejandroautalan/pygubu
https://sourceforge.net/projects/page/
https://pythonbasics.org/qt-designer-python/

17.10 Exercises 167

17.10 Exercises

Create a GUI application that has button and label. When the user clicks on the
button, a dialog should be displayed asking the user to enter their name. The field
should then be populated with the value the user provided.

For example, the window might initial look like:

[] @® Simple Window
<<,.>>

Click Me

When the user clicks on the button they should be prompted to enter their name:

<<..>>
Name Entry

Please enter your name:

|
e

If they enter their name the value should then update the display, for example if
they enter ‘John’, then the display should now update to:

® @® Simple Window
John
Click Me

168 17 Tkinter GUI Library

Note that to create the label you can use:

label = tk.Label (window, text=“<<...>>")
label.pack()

And to update the label once it has been created (for example within your button
click function) you can use the config method:

label.config(text=answer)

Chapter 18 ®)
Events in Tkinter User Interfaces Geda

18.1 Introduction

This chapter introduces event handling within a GUI application and Tkinter’s event
handling mechanism in particular. It outlines what an event is, what event handlers
are, and how events are bound to event handlers. It consider what types of events
there are in Tkinter. It then takes the reader through how a simple application is built
to handle several different events.

18.2 Event Handling

Events are an integral part of any GUI; they represent user interactions with the
interface such as clicking on a button, entering text into a field and selecting a menu
option.

The main event loop of GUI listens for an event; when one occurs it processes
that event (which usually results in a function or method being called) and then
waits for the next event to happen. This loop is initiated in Tkinter via the call to the
mainloop () method on the tk. Tk object.

This raises the question ‘what is an Event?” An event object is a piece of infor-
mation representing some interaction that occurred typically with the GUI (although
an event can be generated by anything). An event is processed by an event handler.
This is a method or function that is called when the event occurs. The event is passed
to the handler as a parameter. An event binder is used to bind an event to an event
handler.

© Springer Nature Switzerland AG 2023 169
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_18

170 18 Events in Tkinter User Interfaces

18.3 What is Event Handling?

In Tkinter, an event refers to a specific action that can happen within a graphical user
interface (GUI). It can be triggered by user interactions, such as clicking a button or
pressing a key, or by system events, such as window resizing or mouse movements.

Events are the primary means by which Tkinter communicates user actions or
system changes to the application, allowing that application to respond and handle
those actions appropriately.

When an event occurs, Tkinter generates an event object that contains information
about the event, such as the event type, widget involved, mouse coordinates or key
details.

For example, some of the common Tkinter events are:

Button Click Event (“<Button-1>"): Occurs when the left mouse button is clicked.
Key Press Event (“<Key>"): Occurs when a key on the keyboard is pressed.
Mouse Motion Event (“<Motion>"): Occurs when the mouse moves within a
widget or window.

e Window Close Event (“<Destroy>"): Occurs when a window is closed.

Events are bound to specific widgets using the ‘bind()’ method (the binder). By
specifying the event type and the associated event handler function, a developer can
define how the application should respond when that event occurs.

For example, you a Button Click Event can be bound to button widget for the
left mouse button such that then it is clicked a function will be run. Similarly, you
can bind the Key Press Event (“<Key>") to a widget or the root window and handle
different key presses by calling specific functions.

When the event is triggered, Tkinter invokes the event handler function associated
with that event, passing an event object as an argument. The event object provides
access to event-specific information, allowing you to determine the type of event,
the widget involved, or extract relevant details.

By understanding events and their associated event types, you can capture and
respond to user interactions and system changes in a Tkinter application, making it
interactive and responsive to user actions.

18.4 What Are Event Handlers?

Event handlers, also known as event callback functions or event listeners, are func-
tions that are associated with specific events in a graphical user interface (GUI)
application. They are responsible for handling and responding to events when they
occur.

As a programmer this means that you will associate a function to be invoked with
a widget using the bind () method. When the associated event is triggered, the
function will be called. Tkinter will pass into the function an object representing

18.4 What Are Event Handlers? 171

the event as an argument. This parameter represents the event object and provides
information about the event that occurred, such as the event type, the widget involved
or additional details like mouse coordinates or key information.

Here’s an example of an event handler function for a button click event in Tkinter.
The button is displayed winning the main Tk window:

import tkinter as tk
from datetime import datetime

def button_click(event) :
print (*Button clicked!’)
print (event)
print (f’'Event type: {event.type}’)
print (f'Widget: {event.widget}’)
print (f'Time: {datetime.fromtimestamp (event.time / 1e3)}"’)

Create main window

window = tk.Tk()

Set the size of the window

window.geometry (*200x80")

Set the title of the window
window.title('Simple Window’)

Create button

button = tk.Button (window,
text="Click Me!",
name="'my button’)

button.pack()

Bind the button_click function to the <Button-1> event
button.bind(“<Button-1>“, button_click)

window.mainloop ()

When this program is run it displays a window with a single button in it as shown
below:

&) ® Simple Window

Click Me!

When the user clicks on the button the following output is printed into the console
(although the date will be different):

172 18 Events in Tkinter User Interfaces

Button clicked!

<ButtonPress event num=1 x=63 y=16>
Event type: 4

Widget: .my button

Time: 2023-06-15 10:48:51.181000

The program defines a function button_click (event) which will be called
when the left mouse button is used to click the button in the window. The function
prints out the event (using the default print for events). This indicates thatitis a button
press event at location x 52 and y 12. The function then accesses several properties
of the event such as the type of the event, the widget that generated the event and the
timestamp of the event (which is then formatted into a date time object).

Note that in this example the button has been given an explicit name so that we
can see this returned when we access the event . widget property.

The function is bound to the button using the bind () method and the event binder
(which links the widget to the function for a specific event) is the “<Button-1>"
event binder. When the button is clicked, Tkinter calls the button_clicked
function and passes the event object as the argument.

18.5 Event Binders

Event binders are used to associate an event handler (for example the button_
clicked () function above) with a specific event for a particular widget.

Event binders allow a widget to have multiple event handlers bound that will
handle different event types. Thus a widget might have event handlers for when they
are in focus or lose focus as well as for key presses, etc. Each appropriate function
would be bound to the widget by a specific event binder.

The main method used to bind event handlers to widget for specific event bindings
is the bind () method. The bind () method takes two or more arguments, the key
two are:

e The event binding (the first parameter). This is a string representing the event
type (or a sequence of event types) used for the binding. The value can be a specific
event such as <Buttonl> or a sequence of events separated by a space such as
“<Button-1><Button-3>" for the left and right mouse button clicks.

e The event handler function (the second argument). This is the function that will
be invoked when the event is raised on the widget. Note it should be the name of
the function rather than a direct invocation of that function.

As well as the bind () method, Tkinter providers an unbind () method. This
allows a event handler to be removed from a widget. It also provides an unbind_
all () method which removes all event handlers from a widget.

18.7 Event Definitions 173

18.6 Virtual Events

One point to note is that built-in operating system generated events in Tkinter are
all defined using a single set of brackets such as ‘<KeyPress>’ or ‘<Buttonl>’.
Most of the built-in events are directly tied to actual physical events and follow this
format.

However, you may come across other events that have a double bracket name.
These are called virtual events. They do not necessarily represent a physical event and
often (although not always) are specific to a particular type of widget. For example
the ‘<<ListboxSelect>>’ is only used by the listbox.

Virtual events can be triggered by a combination of other events using the event__
add () widget method, though they can also be generated by calling event_generate.

For example:

widget.event_add (“<<abc>>")

18.7 Event Definitions

It is useful to summarise the definitions around events as the terminology used can
be confusing and is very similar:

¢ Event represents information from the underlying GUI framework that describes
something that has happened and any associated data. The specific data available
will differ depending on what has occurred. For example, if a window has been
moved then the associated data will relate to the window’s new location.

e Event Loop the main processing loop of the GUI that waits for an event to occur.
When an event occurs the associated event handler is called.

e Event Handlers these are methods (or functions) that are called when an event
occurs.

¢ Event Binders associate a type of event with an event handler.

The relationship between the event, the event handler via the event binder is
illustrated below:

Event Event Binder Event Handler

174 18 Events in Tkinter User Interfaces

18.8 What Types of Event Are There?

Tkinter provides a wide range of event types that you can capture and handle in
your graphical user interface (GUI) application. These events cover various user
interactions and system changes. Here are some common event types in Tkinter:

e Mouse Events. There are a range of mouse events that can be handled including
those associated with:

e Button Click: <Button- 1>, <Button-2>, <Button-3> (left, middle, and right mouse
button clicks)

e Button Release: <ButtonRelease-1>, <ButtonRelease-2>, <ButtonRelease-3>

e Mouse Motion: <Motion>

e Mouse Scroll: <MouseWheel>

Key Events. These are associated with keys on the keyboard. They include:

e Key Press: <KeyPress>
e Key Release: <KeyRelease>
e Individual Key Events: <KeyPress-a>, <KeyRelease-Enter>, etc.

Focus Events. These events relate to a widget gaining or loosing focus in the Ul:

e Focus In: <FocusIn>
e Focus Out: <FocusOut>

Window Events. Window events relate to events at the window level such as resizing
and closing windows:

e Window Resize: <Configure >
e Window Close: <Destroy >

Widget-Specific Events. These are events associated with a specific type of widget
such as an entry field, listbox or combo box:

e Entry Field Edit: <Key > events on an Entry widget
e Listbox Selection: <ListboxSelect >

Timer Events. These are events that are triggered after a period of time, for example
every widget has an after method that will generate an event at a specific time interval
from the time it is called. The method takes at least two arguments: the amount of
time (in milliseconds) to wait before generating the event, and the callback function
to call after the time has elapsed.

e Timer Trigger: <Timer >

These are just a few examples of event types available in Tkinter. Each event type
has its own specific format and can be bound to widgets using the ‘bind()’ method.

18.10 Implementing Event Handling 175

18.9 Binding an Event to an Event Handler

An event is bound to an event handler using the bind () method of an event gener-
ating object (such as a button, field, menu item) via a named event binder such as
“<Button-1>".

For example:
import tkinter as tk

def button_click(event) :
print (“Button clicked!”)

root = tk.Tk()

button = tk.Button (root, text=“"Click Me!”)
button.pack/()
button.bind(“<Button-1>”, button_click)

root.mainloop ()

18.10 Implementing Event Handling

There are four steps involved in implementing event handling for a widget or window,
these are:

1.

Identify the event of interest. Many widgets will generate different events in
different situations; it may therefore be necessary to determine which event you
are interested in.

Find the correct Event Binder name, e.g. <Button-1>, <MouseWheel >,
<KeyPress> etc. Again you may find that the widget you are interested in supports
numerous different event binders which may be used in different situations (even
for the same event).

Implement an event handler that will be called when the event occurs. The
event handler will be supplied with the event object.

Bind the Event to the Event Handler via the Binder Name using the bind ()
method of the event generating widget.

To illustrate this we will use a simple example.
We will write a very simple event handling application. This application will have

a Tk window containing a Button, a Label and an Entry.

We will define a set of function that can be called for different events. These

functions will react to the button click event (as we have seen above). However we
will also define a function to be used with a key press and two functions to be used
with focus (being gained and lost).

176 18 Events in Tkinter User Interfaces

We will associate the button_click function with the <Buttonl >event
of the But ton widget. For example:

button = tk.Button (window, text='Click Me! ")
button.pack/()
button.bind('<Button-1>’, button_click)

However, we will associate the other functions all with the Entry widget. Each
function will be bound to a different event so that they will be called in different
situations. We thus need to determine the correct bindings for the event handler
functions.

A widget can support a wide range of events, and we can therefore choose which
event bindings are relevant. In this case we will select:

e the ‘<Key>’ binding for the key_pressed function,
e the ‘<FocusIn>’ binding for the focus_gained function,
e and the ‘<FocusOut>’ binding for the focus_lost function.

For example:

entry = tk.Entry (window, bd =5)
entry.pack(side = tk.RIGHT)
entry.bind('<FocusIn>’, focus_gained)
entry.bind('<FocusOut>’, focus_lost)
entry.bind(‘'<Key>', key_press)

This illustrates how a single widget can invoke different event handler functions
depending upon the type of event generated.

In this case we are also indicating to the pack () method that we would like it to
orient the widget to the right of the container/parent widget (in this case the window).

The end result is the program shown below:

import tkinter as tk

def button_click(event) :
print (f’Button clicked: {event}’)

def key_ press(event) :
print (“Key pressed:”, event.char)

def focus_lost (event) :
print (f’Widget {event.widget} lost focus'’)

def focus_gained(event) :
print (f’'Widget {event.widget} gained focus’)

Create main window

window = tk.Tk()

Set the size of the window
window.geometry (*300x120")

Set the title of the window
window.title('Sample Application’)

button = tk.Button (window, text='Click Me! ')

18.10 Implementing Event Handling 177

button.pack()
button.bind('<Button-1>’, button_click)

label = tk.Label (window, text='User Name’)
label.pack(side = tk.LEFT)

entry = tk.Entry (window, bd =5)
entry.pack(side = tk.RIGHT)
entry.bind(‘'<FocusIn>’, focus_gained)
entry.bind(‘'<FocusOut>’, focus_lost)
entry.bind(‘'<Key>', key_ press)

window.mainloop ()

When this program is run the window is displayed with the button at the top of
the display and the User Name Label and the Entry input field below.

@ @ Sample Application

Click Me!

User Name

If the user then clicks the left mouse button on the button then a message will be
printed out. If they then click on the entry field the focus_gained function will
be invoked, if they type anything into the field then each key press will be echoed to
the output console. Thus if we end up with:

@ @ Sample Application

Click Me!

User Name]Johr{

178 18 Events in Tkinter User Interfaces

Then the output in the console will be:

Button clicked: <ButtonPress event num=1 x=47 y=14>
Widget .'!entry gained focus

Key pressed:

Key pressed: J

Key pressed: o

Key pressed: h

Key pressed: n

Widget .!entry lost focus

18.11 An Interactive GUI Application

As an example of a slightly larger GUI application, that brings together many of the
ideas presented in this chapter and the previous one, is given below.

In this application we have a text input field (a tk.Entry) that allows a user
to enter their name. When they click on the Enter button (tk.Button) a dialog is
displayed allowing them to enter they name. The value entered is then used to update
the contents of the Entry field.

Note that for the Entry field we have used a StringVar as the text variable
as this simplifies updating the on screen field. Using the text variable we can set the
Entry value using the set () method. If we interacted with the Entry directly
then we would have to use delete and insert methods to remove the existing content
and replace it with a new value, for example:

e.delete (0, tk.END)
e.insert (0, text_to_add)

This is only necessary as we want to overwrite any existing values within the
Entry field.
The code used to implement this GUI application is given below:

import tkinter as tk
import tkinter.simpledialog as simpledialog

def key press(event) :
print (“Key pressed:”, event.char)

def focus_lost(event) :
print (f’'Widget {event.widget} lost focus'’)

def focus_gained(event) :
print (f’'Widget {event.widget} gained focus’)

Create main window

window = tk.Tk()

Set the size of the window
window.geometry (*300x120")

Set the title of the window

18.11 An Interactive GUI Application 179

window.title('Sample App’)

Create a frame
frame = tk.Frame (window)
frame.pack()

label = tk.Label (frame, text='User Name'’)
label.pack(side = tk.LEFT)

Set up a ‘ext variable’ to use with the entry field

Makes setting it programmatically easier (don’t need to
delete and insert)

entry_text = tk.StringVar ()

entry = tk.Entry (frame, textvariable=entry_ text, bd =5)
entry.pack(side = tk.RIGHT)

entry.bind(‘'<FocusIn>’, focus_gained)
entry.bind('<FocusOut>’, focus_lost)

entry.bind('<Key>’, key_press)

def button_click(event) :
answer = simpledialog.askstring (“Name Entry”, “Please enter your
name: ")
if answer:
print (“Your name is:”, answer)
entry_text.set (answer)
else:
print (“No input provided. ")

button = tk.Button (window, text=‘'Show Message’)
button.pack()
button.bind('<Button-1>’, button_click)

window.mainloop ()

When the application is run then a window containing the various widgets will
be displayed to the user:

] & Sample App

User Name J

Show Message

180 18 Events in Tkinter User Interfaces
If the wuser «clicks on the ‘Show Message’ button then the

tkinter.simpledialog will display prompt to the user asking for their
name:

Sample App

User Name l

Sh Name Entry

Please enter your name:

-

If the user then enters their name, such as John:

Sample App

User Name l

Sh Name Entry

Please enter your name:
John|
‘I

And then clicks on ‘OK’, the Entry field will be populated with their name:

[XN Sample App

User Name |John

Show Message

18.13 Exercises 181

Of course if the user clicks on the Entry field and types into it, then the event
handlers for the entry field will be triggered, such as the key press and focus gained
and lost event handlers. For example, if they type hunt into the entry field after John,
then the output in the console would be:

Widget .!frame. !entry gained focus
Key pressed:
Key pressed:
Key pressed:
Key pressed:
Key pressed: t

Widget .!frame. !entry lost focus

B com

18.12 Online Resources

There are numerous online references that support the development of GUIs and of
Python GUISs in particular, including:

e https://docs.python.org/3/library/tkinter.html Main tkinter documentation.
e https://pythonprogramming.net/tkinter-tutorial-python-3-event-handling a tuto-
rial on Tkinter event handling.

18.13 Exercises

The application should allow a user to enter their name and age. You will need to
check that the value entered into the age field is a numeric value (for example using
isnumeric ()). If the value is not a number then an error message dialog should
be displayed.

A button should be provided labelled ‘Birthday’; when clicked it should increment
the age by one and display a Happy Birthday message. The age should be updated
within the GUL

An example of the user interface you created in the last chapter is given below:

https://docs.python.org/3/library/tkinter.html
https://pythonprogramming.net/tkinter-tutorial-python-3-event-handling

182 18 Events in Tkinter User Interfaces

(] @ Happy Birthday App

Name: l
Age: l
Enter
Welcome
Birthday

As an example, the user might enter their name and age as shown below:

@® O @ Happy Birthday App

Name: INataIia

Age: |23|

Enter

Welcome
Birthday

If they press enter then the welcome message should update with their name:

(@) @ Happy Birthday App

Name: lNatalia

Age: Izd

Enter

Welcome Natalia

Birthday

When the user clickffigs on the ‘birthday’ button then the Happy Birthday message
dialog is displayed:

18.13 Exercises 183

Happy Birthday App

Name: |Natalia

Age: l23|

Enter

1

Happy birthday Natalia you are
now 24

Note look at from tkinter import messagebox as there are several useful simple to
use dialogs available in this module such as:

messagebox.showerror (‘Error’, msg)
And

messagebox.showinfo (“*Birthday”, msg)

Chapter 19 ®)
PyDraw Tkinter Example Application e

19.1 Introduction

This chapter builds on the GUI library presented in the last two chapters to illustrate
how a larger application can be built. It presents a case study of a drawing tool akin
to a tool such as Visio.

19.2 The PyDraw Application

The PyDraw application allows a user to draw diagrams using squares, circles, lines
and text. At present there is no select, resize, reposition or delete option available
(although these could be added if required). PyDraw is implemented using the TkInter
set of components. Below we can see the PyDraw application running on a Mac:

© Springer Nature Switzerland AG 2023 185
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_19

186 19 PyDraw Tkinter Example Application

Python File Mode
(eoe PyDraw

When a user starts the PyDraw application, they see the interface shown above.
Depending on the operating system it has a menu bar across the top (on a Mac this
menu bar is at the Top of the Mac display) and a drawing area below that.

There are two menus defined for the application, File and Mode:

Python File Mode

® 7 New Python File Mode
Exit] @ Circle
Square

Line

Text

19.3 The Structure of the Application

The user interface created for the PyDraw application is made up of a number of
elements (see below): the PyDrawMenuBar, the PyDrawToolbar containing a
sequence of buttons across the top of the window, the drawing panel and the window
frame (implemented by the PyDrawFrame class).

19.3 The Structure of the Application 187

rawMenuBar 2
Py — 5 @ Python Fila Mode
ene PyDraw .
<+—— PyDrawView
. +«—— Square
\ +——— Line

DrawingPanel

g | I |

- Circle

. %

Text «+— Text

The following diagram shows the same information as that presented above, but
as a containment hierarchy, this means that the diagram illustrates how one object is
contained within another. The lower-level objects are contained within the higher-
level objects.

e

r/ PyDrawView \-

PyDrawController | | PyDrawMenuBar

DrawingModel | | DrawingController

| | DrawingView ‘

. 4

It is important to visualise this as the majority of GUI interfaces are built up in
this way, using containers and layout managers.

The inheritance structure between the classes used in the PyDraw application is
illustrated below. This class hierarchy is typical of an application which incorporates
user interface features with graphical elements.

188 19 PyDraw Tkinter Example Application

Figure T
| tk.Canvas

| 1 | 1
‘Square ” Line H Circle ” Text |

DrawingPanel

tk.Menu | DrawingController

[PyDrawMenuBar | ’m‘ DrawingModel
-

19.3.1 Model, View and Controller Architecture

The application adopts the well-established Model-View-Controller (or MVC)
design pattern for separating out the responsibilities between the view element (e.g.
the Tk or Frame), the control element (for handling user input) and the model element
(which holds the data to be displayed).

This separation of concerns is not a new idea and allows the construction of GUI
applications that mirror the Model-View-Controller architecture. The intention of
the MVC architecture is the separation of the user display, from the control of user
input, from the underlying information model as illustrated below.

Display / Control of
View | “| User Input

NS

Information
Model

There are a number of reasons why this separation is useful:

reusability of application and/or user interface components,

ability to develop the application and user interface separately,

ability to inherit from different parts of the class hierarchy.

ability to define control style classes which provide common features separately
from how these features may be displayed.

19.3 The Structure of the Application 189

This means that different interfaces can be used with the same application, without
the application knowing about it. It also means that any part of the system can be
changed without affecting the operation of the other. For example, the way that the
graphical interface (the look) displays the information could be changed without
modifying the actual application or how input is handled (the feel). Indeed the
application need not know what type of interface is currently connected to it at all.

19.3.2 PyDraw MVC Architecture

The MVC structure of the PyDraw application has a top-level controller class
PyDrawController and a top-level view class the PyDrawFrame (there is
no model as the top level MVC triad does not hold any explicit data itself). This is
shown below:

PyDrawView | «~—— PyDrawController

At the next level down there is another MVC structure; this time for the
drawing element of the application. There is a DrawingController, with a
DrawingModel and a DrawingPanel (the view) as illustrated below:

Drawing | | Drawing
Panel | | Controller

Drawing
Model

The DrawingModel, DrawingPanel and DrawingController classes
exhibit the classic MVC structure. The view and the controller classes
(DrawingPanel and DrawingController) know about each other and the
drawing model, whereas the DrawingModel knows nothing about the view or the
controller. The view is notified of changes in the drawing through the paint event.

190 19 PyDraw Tkinter Example Application

19.3.3 Additional Classes

There are also four types of drawing object (of Figure): Circle, Line, Square
and Text figures. The only difference between these classes is what is drawn on the
graphic device context within the draw () method. The Figure class, from which
they all inherit, defines the common attributes used by all objects within a Drawing
(e.g. representing an x and y location and size).

Figure

I | | 1
Square ‘ Line Circle Text

The PyDrawFrame class also uses a PyDrawMenuBar class which extends the
tk.Menu class with menu items for use within the PyDraw application.

tk.Menu

[

PyDrawMenuBar

The final class is the PyDraw class that initiates the execution of the whole
application.

19.3.4 Object Relationships

However, the inheritance hierarchy is only part of the story for any object-oriented
application. The following figure illustrates how the objects relate to one another
within the working application.

19.4 The Interactions Between Objects 191

| controller

PyDrawMenuBar

menubar

} controller

PyDrawView PyDrawController

view

drawing_view I

i | controller i
Drawing Drawing

View —— Controller get_mode
view s

mOdeI_/mOdE|

Drawing
Model

| contents
| List

Figure

The PyDrawView is responsible for setting up the controller and the
DrawingView.

The PyDrawController is responsible for handling menu and tool bar user
interactions.

This separates graphical elements from the behaviour triggered by the user.

The DrawingView is responsible for displaying any figures held by the
DrawingModel. The DrawingController manages all user interactions with
the DrawingView including adding figures and clearing all figures from the model.
The DrawingModel holds a list of figures to be displayed.

19.4 The Interactions Between Objects

We have now examined the physical structure of the application but not how the
objects within that application interact.

In many situations this can be extracted from the source code of the application
(with varying degrees of difficulty). However, in the case of an application such as
PyDraw, which is made up of a number of different interacting components, it is
useful to describe the system interactions explicitly.

The diagrams illustrating the interactions between the objects use the following
conventions:

e asolid arrow indicates a message send,

192 19 PyDraw Tkinter Example Application

e asquare box indicates a class,
e aname in brackets indicates the type of instance,
e numbers indicate the sequence of message sends.

These diagrams are based on the sequence and collaboration diagrams found in
the Unified Modelling Language (UML) notation.

19.4.1 The PyDrawApp

When the PyDraw application is instantiated the PyDraw object in created, and this
happens if this is the main entry point to the code. The PyDraw class creates the main
PyDraw View display and causes it to be displayed to the user via the mainloop ()
method of the view:

class PyDraw:
def init_ (self):
self.view = PyDrawView ()
self.view.mainloop ()

if name_ == "'_ main_ ':
PyDraw ()

19.5 The PyDrawView Constructor

The PyDrawView initialiser method sets up the main display of the Ul application
and also initialises the controllers and drawing elements. This is shown below using
a collaboration diagram:

instantiate tk.Tk |

instantiate

‘ PyDrawController

instantiate and set menubar 1
PyDrawMenuBar

PyDrawView
instantiate

Set view on pydrawcontroller DrawingView

il

Centre the window

19.5 The PyDrawView Constructor 193

The PyDrawView constructor sets up the environment for the application. It
creates the top level PyDrawController. It creates the DrawingView and initialises
the display layout. It initialises the menu bar. It binds the DrawingView to the overall
PyDrawController. It also uses the Tk object to centre the windowing using:

self.root.eval ('tk::PlaceWindow . center')

19.5.1 Changing the Application Mode

One interesting thing to note is what happens when the user selects an option from
the Drawing menu. This allows the mode to be changed to a square, circle, line or
text. The interactions involved are shown below for the situation where a user selects
the ‘Circle’ menu item on the Drawing menu (using a collaboration diagram):

1. user clicks
on menu
option Tk mmmand
User }—» menu item
S, (circle)

2. set_circle_mode()

PyDraw
Controller

When the user selects one of the menu items the command menu item
calls a referenced PyDrawController method (such as the
set_circle_mode () method). Thus each command menu item is linked to
the appropriate method defined on the overall controller (such as set_circle_
mode () or set_line_mode ()). These methods set the mode attribute of the
controller to an appropriate value.

19.5.2 Adding a Graphic Object

A user adds a graphic object to the drawing displayed by the DrawingView by
pressing the mouse button.

When the user clicks on the drawing panel, the DrawingController responds
as shown below:

194 19 PyDraw Tkinter Example Application

1. user clicks on
| drawing panel Drawing

= View

7. draw_contents()

2. on_mouse_click{event)

3. get x and y values i 6. add_figure(fig)
MouseEvent)..— Drawing p—————— Drawing Model

. Controller
4, add(mode, x, y) 5. instantiate
Circle

The above illustrates what happens when the user presses and releases a mouse
button over the drawing panel, to create a new figure.

When the user presses the left mouse button, a mouse clicked message is sent to the
DrawingController, which decides what action to perform in response (see above).
In PyDraw, it obtains the cursor x and y values at which the event was generated.

The controller then calls its own add() method passing in the current
mode and the current mouse location. The controller obtains the current mode
(from the PyDrawController using the method callback provided when the
DrawingController is instantiated) and adds the appropriate type of figure to
the DrawingModel.

The add () method then adds a new figure to the drawing model based on the
specified mode. It finally asks the view to redraw its contents.

19.6 The Classes

This section presents the classes in the PyDraw application. As these classes build on
concepts already presented in the last few chapters, they shall be presented in their
entirety with comments highlighting specific points of their implementations. Note
that the code imports the tk module from the tkinter library, e.g.

import tkinter as tk
from abc import abstractmethod

19.6.1 The PyDrawConstants Class

The purpose of this class is to provide a set of constants that can be referenced in
the remainder of the application. It is used to provide constants used to represent the
current mode (to indicate whether a line, square, circle or test should be added to the
display) default window sizes and background colour etc.

19.6 The Classes 195

class PyDrawConstants:
WIDTH = 600
HEIGHT = 400

BACKGROUND_COLOUR = 'white"

CIRCLE_MODE = 'Circle'
SQUARE_MODE = 'Square'
LINE_MODE = 'Line’
TEXT_MODE = 'Text'

SIZE = 30

19.6.2 The PyDrawView Class

The PyDrawView class provides the main window for the application. Note that
due to the separation of concerns introduced via the MVC architecture, the view class
is only concerned with the layout of the components:

class PyDrawView:
""" Main Frame responsible for the
layout of the UI."""

def _ init_ (self):
self.root = tk.Tk()

Set the title of the window
self.root.title('PyDraw')

Set up the controller
self.controller = PyDrawController (self.root)

Set up menus
self . .menubar = PyDrawMenuBar (self.root, self.controller)
self.root.config(menu=self.menubar)

Setup drawing view
self.drawing view = DrawingView(self.root,
self.controller.get_mode)
self.controller.view = self.drawing_view

self.root.eval('tk::PlaceWindow . center')

def mainloop(self):
"""Delegate method that passes responsibility onto the root""'
self.root.mainloop ()

196 19 PyDraw Tkinter Example Application

19.6.3 The PyDrawMenuBar Class

The PyDrawMenuBar class is a subclass of the tk.Menu class which defines
the contents of the menu bar for the PyDraw application. It does this by creating
two tk.Menu objects and adding them to the menu bar. Each tk.Menu imple-
ments a dropdown menu from the menu bar. To add individual menu items the add__
command () function is used. These menu items are appended to the menu.
The menus are themselves appended to the menu bar using the add_cascade() func-
tion. Each menu item invokes a method on the controller associated with the menu
bar—thus separating out the concerns of defining the structure of the menu bar and
defining the functionality of each item in the menu bar.

class PyDrawMenuBar (tk.Menu) :
def _ init__ (self, parent, controller):
super()._ _init__ (parent)
self.controller = controller
self.create_file menu()
self.create_mode_menu ()

def create_mode_menu(self) :

mode_menu = tk.Menu(self, tearoff=0)

mode_menu.add_command (label=PyDrawConstants.CIRCLE_MODE,
command=self.controller.set_circle_mode)

mode_menu.add_command (label=PyDrawConstants.SQUARE_MODE,
command=self.controller.set_square_mode)

mode_menu.add_command (label=PyDrawConstants.LINE_MODE,
command=self.controller.set_line_mode)

mode_menu.add_command (label=PyDrawConstants.TEXT_MODE,
command=self.controller.set_text_mode)

self.add_cascade(label="Mode’, menu=mode_menu)

def create_file menu(self):
file_menu = tk.Menu(self, tearoff=0)
file menu.add_command(label='New',
command=self.controller.new_canvas)
file _menu.add_command(label="Exit’,
command=self.controller.exit_app)
self.add_cascade(label='File', menu=file_menu)

19.6.4 The PyDrawController Class

This class provides the control element of the top-level view. It maintains the current
mode. It also provides a method which can be used to obtain the current mode. The
final two methods support cleaning out the display and quitting the application.

19.6 The Classes 197

class PyDrawController:

def init_ (self, root):
self.root = root
self.view = None
Set the initial mode
self.mode = PyDrawConstants.SQUARE_MODE

def set_circle_mode (self) :
self.mode = PyDrawConstants.CIRCLE_MODE

def set_line_mode(self) :
self.mode = PyDrawConstants.LINE_MODE

def set_square_mode (self) :
self.mode = PyDrawConstants.SQUARE_MODE

def set_text_mode(self) :
self.mode = PyDrawConstants.TEXT_MODE

def clear_drawing (self) :
self.view.drawing controller.clear ()

def get_mode (self) :
return self.mode

def new_canvas (self) :
self.view.delete('all')

def exit_app (self) :
self.root.quit ()

19.6.5 The DrawingModel Class

The DrawingModel class has a contents attribute that is used to hold all the
figures in the drawing. It also provides some convenience methods to reset the
contents and to add a figure to the contents.

class DrawingModel:

def init_ (self):
self.contents = []

def clear_figures (self) :
self.contents = []

def add_figure(self, figure):
self.contents.append (figure)

The DrawingModel is a relatively simple model which merely records a set of
graphical figures in a List. These can be any type of object and can be displayed in
any way as long as they implement the draw () method. It is the objects themselves
which determine what they look like when drawn.

198 19 PyDraw Tkinter Example Application

19.6.6 The DrawingView Class

The DrawingView class is a subclass of the tk.Canvas class. It provides the
view for the drawing data model. This uses the classical MVC architecture and has
a model (DrawingModel), a view (the DrawingPanel) and a controller (the
DrawingController).

The DrawingPanel instantiates its own DrawingModel to hold the figures
to be drawn and DrawingController to handle mouse events.

It also registers for button events to be handled by the on_mouse_click method of
the controller.

class DrawingView (tk.Canvas) :
def _ init_ (self, parent, get_mode,
width=PyDrawConstants.WIDTH,
height=PyDrawConstants.HEIGHT,
bg=PyDrawConstants.BACKGROUND_COLOUR) :
super()._ _init_ (parent, width=width, height=height, bg=bg)
self.model = DrawingModel ()
self.controller = DrawingController (self, self.model, get_
mode)
self.pack()
self.bind('<Button-1>', self.controller.on_mouse_click)

def draw_contents (self) :
for figure in self.model.contents:
figure.draw ()

19.6.7 The DrawingController Class

The DrawingController class provides the control class for the top level MVC
architecture used with the DrawingModel (model) and DrawingPanel (view)
classes. In particular it handles the mouse events in the DrawingView via the on__
mouse_click () method.

It also defines an add method that is used to add a figure to the DrawingModel
(the actual figure depends on the current mode of the PyDrawController) and
requests that the view refresh itself. A final method, the clear () method, removes
all figures from the drawing model and refreshes the display.

class DrawingController:

def init_ (self, view, model, get_mode) :
self.view = view
self . model = model
self.get_mode = get_mode

def on_mouse_click(self, mouse_event) :
X = mouse_event.x

19.6 The Classes 199

Yy = mouse_event.y
self.add (self.get_mode (), x, v)

def add(self, mode, x, y, size=PyDrawConstants.SIZE) :

if mode == PyDrawConstants.SQUARE_MODE:
fig = Square(self.view, x, v, size)

elif mode == PyDrawConstants.CIRCLE_MODE:
fig = Circle(self.view, x, y, size)

elif mode == PyDrawConstants.TEXT_MODE:
fig = Text (self.view, x, V)

else:

fig = Line(self.view, x, y, size)
self.model.add_figure(fig)
self.view.draw_contents ()

def clear(self):
self.model.clear_figures()
self.view.delete('all")

19.6.8 The Figure Class

The Figure class (an abstract superclass of the Figure class hierarchy) captures
the elements which are common to graphic objects displayed within a drawing. The
x and y values define the position of the figure, while the size attribute defines the
size of the figure. The fill attributes defines the background colour used to fill the
figure (if appropriate).

The Figure class defines a single abstract method draw () that must be imple-
mented by all concrete subclasses. This method should define how the shape is drawn
on the drawing panel.

class Figure:
def _ init_ (self,
canvas,
x=0,
y=0,
size=None,
fill="blue'):
self.canvas = canvas
self.x=x
self.y=vy
self.size = size
self.fill = £fill

@abstractmethod
def draw(self) :
pass

200 19 PyDraw Tkinter Example Application

19.6.9 The Square Class

This is a subclass of Figure that specifies how to draw a square shape in a
drawing. It implements the draw () method inherited from Figure using the
canvas.create_rectangle () method.

class Square (Figure) :
def _ init__ (self, canvas, x, vy, size):
super()._ init_ (canvas=canvas, X=X, y=y, size=size)

def draw(self) :
self.canvas.create_rectangle(self.x,
self.vy,
self.x + self.size,
self.y + self.size,
fill=self.fill)

19.6.10 The Circle Class

This is another subclass of Figure. It implements the draw () method by drawing
acircle (viathe create_oval () method of the canvas. Note that the size attribute
must be used to generate an appropriate radius.

class Circle(Figure) :
def _ init__ (self, canvas, x, y, size):

super()._ init__ (canvas=canvas, X=X, y=y, size=size,
fill='red")

def draw(self) :
self.canvas.create_oval (self.x,
self.vy,
self.x + self.size,
self.y + self.size,
fill=self.fill)

19.6.11 The Line Class

This is another subclass of Figure. In this very simple example, a default end point
for the line is generated. Alternatively the program could look for a mouse released
event and pick up the mouse at this location and use this as the end point of the line.

class Line (Figure) :
def _ init__ (self, canvas, x, vy, size):
super()._ init_ (canvas=canvas, X=X, y=y, size=size)

19.8 Exercises 201

def draw(self):
self.canvas.create_line(self.x,
self.vy,
self.x + self.size,
self.y + self.size)

19.6.12 The Text Class

This is also a subclass of Figure. A default value is used for the text to display;
however a dialog could be presented to the user allowing them to input the text they
wish to display:

class Text (Figure) :

def _ init__ (self, canvas, x, y, text_string='Text',
font='Helvetica 15 bold', fill='black'):
super()._ init_ (canvas=canvas, x=x, y=y, £fill=£fill)

self.text_string = text_string
self. font = font

def draw (self) :
text = self.text_string
self.canvas.create_text (self.x,
self.v,
text=text,
fill=self.fill,
font=self. font)

19.7 Reference

The following provides some background on the Model-View-Controller architecture in user
interfaces.

1. G.E. Krasner, S.T. Pope, A cookbook for using the model-view controller user interface
paradigm in smalltalk-80. JOOP 1(3), 2649 (1988)

19.8 Exercises

You could develop the PyDraw application further by adding the following features:

1. A delete option You can add a button labelled Delete to the window. It should set
the mode to “delete”. The drawingPanel must be altered so that the mouseRe-
leased method sends a delete message to the drawing. The drawing must find and
remove the appropriate graphic object and send the changed message to itself.

202 19 PyDraw Tkinter Example Application

2. A resize option This involves identifying which of the shapes has been selected
and then either using a dialog to enter the new size or providing some option that
allows the size for the shape to be indicated using the mouse.

Part 111
Computer Games

Chapter 20 ®)
Introduction to Games Programming oo

20.1 Introduction

Games programming is performed by developers/coders who implement the logic
that drives a game.

Historically games developers did everything; they wrote the code, designed the
sprites and icons, handled the game play, dealt with sounds and music, generated any
animations required etc. However, as the game industry has matured games compa-
nies have developed specific riles including Computer Graphics (CG) animators,
artists, games developers and games engine and physics engine developers etc.

Those involved with code development may develop a physics engine, a games
engine, the games themselves, etc. Such developers focus on different aspects of a
game. For examples a game engine developer focusses on creating the framework
within which the game will run. In turn a physics engine developer will focus on
implementing the mathematics behind the physics of the simulated games world
(such as the effect of gravity on characters and components within that world). In
many cases there will also be developers working on the Al engine for a game. These
developers will focus on providing facilities that allow the game or characters in the
game to operate intelligently.

Those developing the actual game play will use these engines and frameworks
to create the overall end result. It is they who give life to the game and make it an
enjoyable (and playable) experience.

20.2 Games Frameworks and Libraries

There are many frameworks and libraries available that allow you to create anything
from simple games to large complex role playing games with infinite worlds.

© Springer Nature Switzerland AG 2023 205
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_20

206 20 Introduction to Games Programming

One example is the Unity framework that can be used with the C# program-
ming language. Another such framework is the Unreal engine used with the C++
programming language.

Python has also been used for games development with several well known games
titles depending on it in one way or another. For example, Battlefield 2 by Digital
Illusions CE is a military simulator first-person shooter game. Battlefield Heroes
handles portions of the game logic involving game modes and scoring using Python.

Other games that use Python include Civilisation IV (for many of the tasks), Pirates
of the Caribbean Online and Overwatch (which makes its choices with Python).

Python is also embedded as a scripting engine within tools such as Autodesk’s
Maya which is a computer animation toolkit that is often used with games.

20.3 Python Games Development

For those wanting to learn more about game development; Python has much to
offer. There are many examples available online as well as several game oriented
frameworks.

The frameworks/libraries available for games development in Python include:

e Arcade. This is a Python library for creating 2D style video games.

e pygletis a windowing and multimedia library for Python that can also be used for
games development.

e Cocos2d is a framework for building 2D games that is built on top of pyglet.

e pygame is probably the most widely used library for creating games within the
Python world. There are also many extensions available for pygame that help to
create a wide range of different types of games.

We will focus on pygame in the next two chapters in this book.
Other libraries of interest to Python games developers include:

e PyODE. This is an open-source Python binding for the Open Dynamics Engine
which is an open-source physics engine.

e pymunk Pymunk is a easy-to-use 2D physics library that can be used whenever
you need 2d rigid body physics with Python. It is very good when you need 2D
physics in your game, demo or other application. It is built on top of the 2D physics
library Chipmunk.

e pyBox2D pybox2dis a 2D physics library for your games and simple simulations.
It’s based on the Box2D library written in C++. It supports several shape types
(circle, polygon, thin line segments) as well as a number of joint types (revolute,
prismatic, wheel, etc.).

e Blender. This is a open-source 3D Computer Graphics software toolset used for
creating animated films, visual effects, art, 3D printed models, interactive 3D
applications and video games. Blender’s features include 3D modelling, texturing,

20.5 Online Resources 207

raster graphics editing, rigging and skinning, etc. Python can be used as a scripting
tool for creation, prototyping, game logic and more.

e Quake Army Knife which is an environment for developing 3D maps for games
based on the Quake engine. It is written in Delphi and Python.

20.4 Using Pygame

In the next two chapters we will explore the core pygame library and how it can be
used to develop interactive computer games. The next chapter explores pygame itself
and the facilities it provides. The following chapter developers a simple video game
in which the user moves a starship around avoiding meteors which scroll vertically
down the screen.

20.5 Online Resources

For further information games programming and the libraries mentioned in this
chapter see:

https://unity.com/ the C# framework for games development.

https://www.unrealengine.com for C++ games development.

http://arcade.academy/ provides details on the Arcade games framework.

http://www.pyglet.org/ for information on the piglet library.

http://cocos2d.org/ is the home page for the Cocos2d framework.

https://www.pygame.org for information on pygame.

http://pyode.sourceforge.net/ for details of the PyODE bindings to the Open

Dynamics Engine.

http://www.pymunk.org/ provides information on pymunk.

https://github.com/pybox2d/pybox2d which is a GitHub repository for pyBox2d.

e https://git.blender.org/gitweb/gitweb.cgi/blender.git GitHub repository for
Blender.

e https://sourceforge.net/p/quark/code SourceForge repository for Quake Army
Knife.

e https://www.autodesk.co.uk/products/maya/overview for information on

Autodesks Maya computer animation software.

https://unity.com/
https://www.unrealengine.com
http://arcade.academy/
http://www.pyglet.org/
http://cocos2d.org/
https://www.pygame.org
http://pyode.sourceforge.net/
http://www.pymunk.org/
https://github.com/pybox2d/pybox2d
https://git.blender.org/gitweb/gitweb.cgi/blender.git
https://sourceforge.net/p/quark/code
https://www.autodesk.co.uk/products/maya/overview

Chapter 21 ®)
Building Games with Pygame oo

21.1 Introduction

Pygame is a cross-platform, free and open-source Python library designed to make
building multimedia applications such as games easy. Development of pygame started
back in October 2000 with pygame version 1.0 being released six months later. The
version of pygame discussed in this chapter is version 2.4.0. If you have a later
version, check to see what changes have been made to see if they have any impact
on the examples presented here.

You can install pygame using pip for example.

pip install pygame

The pygame library is built on top of the SDL library. SDL (or Simple Directmedia
Layer) is a cross-platform development library designed to provide access to audio,
keyboards, mouse, joystick and graphics hardware via OpenGL and Direct3D. To
promote portability, pygame also supports a variety of additional backends including
WinDIB, X11, Linux Frame Buffer, etc.

SDL officially supports Windows, Mac OS X, Linux, i0OS and Android (although
other platforms are unofficially supported). SDL itself is written in C, and pygame
provides a wrapper around SDL. However, pygame adds functionality not found in
SDL to make the creation of graphical or video games easier. These functions include
vector maths, collision detection, 2D sprite scene graph management, MIDI support,
camera, pixel array manipulation, transformations, filtering, advanced freetype font
support, and drawing.

The remainder of this chapter introduces pygame, the key concepts; the key
modules, classes and functions, and a very simple first pygame application. The
next chapter steps through the development of a simple arcade style video game
which illustrates how a game can be created using pygame.

© Springer Nature Switzerland AG 2023 209
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_21

210 21 Building Games with Pygame

21.2 The Display Surface

The Display Surface (aka the display): this is the most important part of a pygame
game. It is the main window display of your game and can be of any size; however,
you can only have one display surface.

In many ways, the display surface is like a blank piece of paper on which you can
draw. The surface itself is made up of pixels which are numbered from 0,0 in the top
left hand corner with the pixel locations being indexed in the x axis and the y axis.
This is shown below:

X >
Y 0,0 9,0
b 4
0,9 9,9

The above diagram illustrates how pixels within a surface are indexed. Indeed a
surface can be used to draw lines, shapes (such as rectangles, squares, circles and
elapses), display images, manipulate individual pixels, etc. Lines are drawn from one
pixel location to another (e.g. from location 0,0 to location 9,0 which would draw a
line across the top of the above display surface). Images can be displayed within the
display surface given a starting point such as 1, 1.

The display surface is created by the pygame .display.set_mode () func-
tion. This function takes a tuple that can be used to specify the size of the display
surface to be returned. For example:

display_surface = pygame.display.set_mode((400, 300))

This will create a display surface (window) of 400 by 300 pixels.

Once you have the display surface you can fill it with an appropriate background
colour (the default is black); however, if you want a different background colour or
want to clear everything that has previously been drawn on the surface, then you can
use the surface’s £111 () method:

WHITE = (255, 255, 255)
display_surface.fill (WHITE)

21.3 Events 211

The fill method takes a tuple that is used to define a colour in terms of red, green and
blue (or RGB) colours. Although the above examples use a meaningful name for the
tuple representing the RGB values used for white, there is of course no requirement
to do this (although it is considered good practice).

To aid in performance, any changes you make to the display surface actually
happen in the background and will not be rendered onto the actual display that the
user sees until you call the update () or £1ip () methods on the surface. For
example:

pygame.display.update ()
pygame.display.flip()

The update () method will redraw the display with all changes made to the
display in the background. It has an optional parameter that allows you to specify
just a region of the display to update (this is defined using a Rect which represents
a rectangular area on the screen). The £1ip () method always refreshes the whole
of the display (and as such does exactly the same as the update () method with no
parameters).

Another method, which is not specifically a display surface method, but which is
often used when the display surface is created, provides a caption or title for the top-
level window. This is the pygame.display.set_caption() function. For
example:

pygame.display.set_caption('Hello World')

This will give the top-level window the caption (or title) ‘Hello World’.

21.3 Events

Just as the graphical user interface systems described in earlier chapters have an
event loop that allows the programmer to work out what the user is doing (in those
cases this is typically selecting a menu item, clicking a button or entering data, etc.),
pygame has an event loop that allows the game to work out what the player is doing.
For example, the user may press the left or right arrow key. This is represented by
an event.

21.3.1 Event Types

Each event that occurs has associated information such as the type of that event. For
example:

e Pressing a key will result in a KEYDOWN type of event, while releasing a key will
result in a KEYUP event type.

212 21 Building Games with Pygame

Selecting the window close button will generate a QUIT event type, etc.
Using the mouse can generate MOUSEMOTION events as well as
MOUSEBUTTONDOWN and MOUSEBUTTONUP event types.

e Using a Joystick can generate several different types of event
including JOYAXISMOTION, JOYBALLMOTION, JOYBUTTONDOWN and
JOYBUTTONUP.

These event types tell you what occurred to generate the event. This means that
you can choose which types of events you want to deal with and ignore other events.

21.3.2 Event Information

Each type of event object provides information associated with that event. For
example a key-oriented event object will provide the actual key pressed, while a
mouse-oriented event object will provide information on the position of the mouse,
which button was pressed, etc. If you try an access an attribute on an event that does
not support that attribute, then an error will be generated.

The following lists some of the attributes available for different event types:

e KEYDOWN and KEYUP, the event has a key attribute and a mod attribute
(indicating if any other modifying keys such as shift are also being pressed).

e MOUSEBUTTONUP and MOUSEBUTTONDOWN have an attribute pos that holds
a tuple indicating the mouse location in terms of x and y coordinates on the
underlying surface. It also has a button attribute indicating which mouse was
pressed.

e MOUSEMOTION has pos, rel and buttons attributes. The pos is a tuple indicating
the x and y locations of mouse cursor. The real attribute indicates the amount
of mouse movement, and but tons indicate the state of the mouse buttons.

As an example if we want to check for a keyboard event type and then check that
the key pressed was the space bar, then we can write:

if event.type == pygame .KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_SPACE:
print (‘space’)

This indicates that if it is a key pressed event and that the actual key was the space
bar, then print the string ‘space’.

There are many keyboard constants that are used to represent the keys on the
keyboard and pygame . K_SPACE constant used above is just one of them.

All the keyboard constants are pre-fixed with ‘K_’ followed by the key or the
name of the key, for example:

e K TAB,K_SPACE,K PLUS,K 0,K_1,K_AT,K a, K b, K _z, K DELTE, K_
DOWN, K_LEFT, K_RIGHT, K_LEFT, etc.

21.3 Events 213

Further keyboard constants are provided for modifier states that can be combined
with the above such as KMOD_SHIFT, KMOD_CAPS, KMOD_CTRL and KMOD _
ALT.

21.3.3 The Event Queue

Events are supplied to a pygame application via the Event Queue.

The event queue is used to collect together events as they happen. For example,
let us assume that a user clicks on the mouse twice and a key twice before a program
has a chance to process them; then there will be four events in the event queue as
shown below:

¢ Mouse Mouse Key Key] ¢
[event][event][event][event

Event Queue

The application can then obtain an iterable from the event queue and process
through the events in turn. While the program is processing these events, further
events may occur and will be added to the event queue. When the program has
finished processing the initial collection of events, it can obtain the next set of events
to process.

One significant advantage of this approach is that no events are ever lost; that is
if the user clicks the mouse twice while the program is processing a previous set of
events, they will be recorded and added to the event queue. Another advantage is that
the events will be presented to the program in the order that they occurred.

The pygame.event.get () function will read all the events currently on
the event queue (removing them from the event queue). The method returns an
EventList which is an iterable list of the events read. Each event can then be
processed in turn. For example:

for event in pygame.event.get () :
if event.type == pygame.QUIT:
print ('"Received Quit Event:')
elif event.type == pygame .MOUSEBUTTONDOWN :
print ('"Received Mouse Event')
elif event.type == pygame .KEYDOWN:
print ('Received KeyDown Event')

In the above code snippet an EventList is obtained from the event queue containing
the current set of events. The for loop then processes each event in turn checking the
type and printing an appropriate message.

214 21 Building Games with Pygame

You can use this approach to trigger appropriate behaviour such as moving an
image around the screen or calculating the players score. However, be aware that if
this behaviour takes too long it can make the game difficult to play (although the
examples in this chapter and the next are simple enough that this is not a problem).

21.4 A First pygame Application

We are now at the point where we can put together what we have looked at so far
and create a simple pygame application.

Itis common to create a hello world style program when using a new programming
language or using a new application framework, etc. The intention is that the core
elements of the language or framework are explored in order to generate the most
basic form of an application using the language or framework. We will therefore
implement the most basic application possible using pygame.

The application we will create will display a pygame window, with a ‘Hello World’
title. We will then be able to quit the game. Although technically speaking this isn’t
a game, it does possess the basic architecture of a pygame application.

The simple HelloWorld game will initialise pygame and the graphical display.
It will then have a main game playing loop that will continue until the user selects
to quit the application. It will then shut down pygame. The display created by the
program is shown below for both Mac and Windows operating systems:

O Hello World &

To quit the program, click on the exit button for the windowing system you are
using.
The simple HelloWorld game is given below:

import pygame

def main() :
print ('Starting Game')

print('Initialising pygame')
pygame.init() # Required by every pygame application

print ('Initialising HelloWorldGame')

21.4 A First pygame Application 215

pygame.display.set_mode((200, 100))
pygame.display.set_caption('Hello World')

print ('Update display')
pygame.display.update ()

print ('Starting main Game Playing Loop')
running = True
while running:
for event in pygame.event.get () :
if event.type == pygame.QUIT:
print ('Received Quit Event:',6 event)
running = False

print ('Game Over')
pygame.quit ()

if name == '_main ':
main ()

There are several key steps highlighted by this example; these steps are

1. Import pygame. pygame is of course not one of the default modules avail-
able within Python. You must first import pygame into you code. The import
pygame statement imports the pygame module into your code and makes
the functions and classes in pygame available to you (note the capitalisation—
pygame is not the same module name as PyGame). It is also common to find
that programs import

e frompygame.locals import *
e This adds several constants and functions into the namespace of your program.
In this very simple example we have not needed to do this.

2. Initialise pygame. Almost every pygame module needs to be initialised in some
way, and the simplest way to do this is to call pygame.init (). This will do
what is required to set the pygame environment up for use. If you forget to call
this function, you will typically get an error message suchas pygame.error:
video system not initialised (or something similar). If you get
such a method, check to see that you have called pygame.init (). Note
that you can initialise individual pygame modules (e.g. the pygame. font
module can be initialised using pygame . font . init ())if required. However
pygame.init () is the most commonly used approach to setting up pygame.

3. Set up the display. Once you have initialised the pygame framework you can
setup the display. In the above code example, the display is set up using the
pygame.display.set_mode () function. This function takes a tuple spec-
ifying the size of the window to be created (in this case 200 pixels wide by 100
pixels high). Note that if you try and invoke this function by passing in two
parameters instead of a tuple, then you will get an error. This function returns
the drawing surface or screen/window that can be used to display items within
the game such as icons, messages and shapes. As our example is so simple we

216 21 Building Games with Pygame

do not bother saving it into a variable. However, anything more complex than
this will need to do so. We also set the window/frame’s caption (or title). This is
displayed in the title bar of the window.

4. Render the display. We now call the pygame.display.update () func-
tion. This function causes the current details of the display to be drawn. At the
moment this is a blank window. However, it is common in games to perform a
series of updates to the display in the background and then when the program is
ready to update the display to call this function. This batches a series of updates
and the causes the display to be refreshed. In a complex display it is possible to
indicate which parts of the display need to be redrawn rather than redrawing the
whole window. This is done by passing a parameter into the update () function
to indicate the rectangle to be redrawn. However, our example is so simple we
are OK with redrawing the whole window, and therefore we do not need to pass
any parameters to the function.

5. Main game playing loop. It is common to have a main game playing loop that
drives the processing of user inputs, modifies the state of the game and updates
the display. This is represented above by the while running: loop. The
local variable running is initialised to True. This means that the while
loop ensures that the game continues until the user selects to quit the game at
which point the running variable is set to False which causes the loop to
exit. In many cases this loop will call update () to refresh the display. The
above example does not do this as nothing is changed in the display. However
the example developed later in this chapter will illustrate this idea.

6. Monitor for events that drive the game. As mentioned earlier the event queue
is used to allow user inputs to be queued and then processed by the game. In
the simple example shown above this is represented by a for loop that receives
events using pygame . event .get () and then checking to see if the event is
a pygame.QUIT event. If it is, then it sets the running flag to False, which
will cause the main while loop of the game to terminate.

7. Quit pygame once finished. In pygame any module thathasan init () function
also has an equivalent quit () function that can be used to perform any cleanup
operations. As we called init () on the pygame module at the start of our
program we will therefore need to call pygame.quit () at the end of the
program to ensure everything is tidied up appropriately.

The output generated from a sample run of this program is given below:

pygame 2.4.0 (SDL 2.26.4, Python 3.11.3)

Hello from the pygame community. https://www.pygame.org/contri
bute.html

Starting Game

Initialising pygame

Initialising HelloWorldGame

Update display

Starting main Game Playing Loop

21.5 Further Concepts 217

21.5 Further Concepts

There are very many facilities in pygame that go beyond what we can cover in this
book; however a few of the more common are discussed below.

Surfaces are a hierarchy. The top-level display surface may contain other surfaces
that may be used to draw images or text. In turn containers such as panels may render
surfaces to display images or text, etc.

Other types of surface. The primary display surface is not the only surface in
pygame. For example, when an image, such as a PNG or JPEG image, is loaded into
a game, then it is rendered onto a surface. This surface can then be displayed within
another surface such as the display surface. This means that anything you can do to
the display surface you can do with any other surface such as draw on it, put text on
it, colour it and add another icon onto the surface.

Fonts. The pygame . font . Font object is used to create a font that can be used to
render text onto a surface. The render method returns a surface with the text rendered
on it that can be displayed within another surface such as the display surface. Note
that you cannot write text onto an existing surface you must always obtain a new
surface (using render) and then add that to an existing surface. The text can only be
displayed in a single line, and the surface holding the text will be of the dimensions
required to render the text. For example:

text_font = pygame.font.Font ('freesansbold.ttf', 18)
text_surface = text_font.render('Hello World', antialias=True,
color=BLUE)

This creates a new font object using the specified font with the specified font size
(in this case 18). It will then render the string ‘Hello World’ on to a new surface using
the specified font and font size in blue. Specifying that antialias is true indicates that
we would like to smooth the edges of the text on the screen.

Rectangles (or Rects). The pygame.Rect class is an object used to represent
rectangular coordinates. A Rect can be created from a combination of the top left
corner coordinates plus a width and height. For flexibility many functions that expect
a Rect object can also be given a Rectlike list; this is a list that contains the data
necessary to create a Rect object. Rects are very useful in a pygame game as they
can be used to define the borders of a game object. This means that they can be used
within games to detect if two objects have collided. This is made particularly easy
because the Rect class provides several collision detection methods:

pygame.Rect.contains () testif one rectangle is inside another.
pygame.Rect.collidepoint () testif a point is inside a rectangle.
pygame.Rect.colliderect () testif two rectangles overlap.
pygame.Rect.collidelist () testif one rectangle in a list intersects.
pygame.Rect.collidelistall () testif all rectangles in a list intersect.

218 21 Building Games with Pygame

® pygame.Rect.collidedict () test if one rectangle in a dictionary inter-
sects.

e pygame.Rect.collidedictall () test if all rectangles in a dictionary
intersect.

The class also provides several other utility methods such as move () which
moves the rectangle and inflate () which can grow or shrink the rectangles size.

Drawing shapes. The pygame . draw module has numerous functions that can be
used to draw lines and shapes onto a surface, for example:

pygame.draw.rect (display_surface, BLUE, [x, y, WIDTH, HEIGHT])

This will draw a filled blue rectangle (the default) onto the display surface. The
rectangle will be located at the location indicated by x and y (on the surface). This
indicates the top left hand corner of the rectangle. The width and height of the rect-
angle indicate its size. Note that these dimensions are defined within a list which is
a structure referred to as being rect like (see below). If you do not want a filled rect-
angle (i.e. You just want the outline), then you can use the optional width parameter
to indicate the thickness of the outer edge. Other methods available include

pygame.draw.polygon () draw a shape with any number of sides.
pygame.draw.circle () draw a circle around a point.
pygame.draw.ellipse () draw a round shape inside a rectangle.
pygame.draw.arc () draw a partial section of an ellipse.
pygame.draw.line () draw a straight line segment.
pygame.draw.lines () draw multiple contiguous line segments.
pygame.draw.aaline () draw fine antialiased lines.
pygame.draw.aalines () draw a connected sequence of antialiased lines.

Images. The pygame . image module contains functions for loading, saving and
transforming images. When an image is loaded into pygame, it is represented by
a surface object. This means that it is possible to draw, manipulate and process an
image in exactly the same way as any other surface which provides a great deal of
flexibility.

At a minimum the module only supports loading uncompressed BMP images but
usually also supports JPEG, PNG, GIF (non-animated), BMP, TIFF as well as other
formats. However, it only supports a limited set of formats when saving images;
these are BMP, TGA, PNG and JPEG.

An image can be loaded from a file using:

image_surface = pygame.image.load(filename) .convert ()

This will load the image from the specified file onto a surface.

One thing you might wonder at is the use of the convert () method on the
object returned from the pygame . image . 1oad () function. This function returns
a surface that is used to display the image contained in the file. We call the method
convert () onthis Surface, not to convert the image from a particular file format

21.6 A More Interactive pygame Application 219

(such as PNG, or JPEG); instead this method is used to convert the pixel format used
by the surface. If the pixel format used by the Sur face is not the same as the display
format, then it will need to be converted on the fly each time the image is displayed
on the screen; this can be a fairly time-consuming (and unnecessary) process. We
therefore do this once when the image is loaded which means that it should not hinder
runtime performance and may improve performance significantly on some systems.

Once you have a surface containing an image it can be rendered onto another
surface, such as the display surface using the Surface.blit () method. For
example:

display_surface.blit (image_surface, (x, v))

Note that the position argument is a tuple specifying the x and y coordinates to
the image on the display surface.

Strictly speaking the b1it () method draws one surface (the source surface) onto
another surface at the destination coordinates. Thus the target surface does not need
to be the top-level display surface.

Clock. A Clock object is an object that can be used to track time. In particular it can
be used to define the frame rate for the game, that is the number of frames rendered
per second. This is done using the Clock.tick() method. This method should be called
once (and only once) per frame. If you pass the optional framerate argument to
the tick () the function, then pygame will ensure that the games refresh rate is
slower than the given ticks per second. This can be used to help limit the runtime
speed of a game. By calling clock.tick (30) once per frame, the program will
never run at more than 30 frames per second.

21.6 A More Interactive pygame Application

The first pygame application we looked at earlier just displayed a window with the
caption ‘Hello World’. We can now extend this a little by playing with some of the
features we have looked at above.

The new application will add some mouse event handling. This will allow us to
pick up the location of the mouse when the user clicked on the window and draw a
small blue box at that point.

If the user clicks the mouse multiple times, we will get multiple blue boxes being
drawn. This is shown below.

220 21 Building Games with Pygame

@ Box Game
n " a,
ol
o
a" " g &
(1] n
['.'. -"
m B Bmm o
g o
] L] Spgm .'
] T
n El
. o
g L
==

This is still not much of a game but does make the pygame application more
interactive.
The program used to generate this application is presented below:

import pygame

FRAME_REFRESH_RATE = 30

BLUE = (0, 0, 255)

BACKGROUND = (255, 255, 255) # White
WIDTH = 10

HEIGHT = 10

def main() :
print('Initialising PyGame')
pygame.init () # Required by every PyGame application

print('Initialising Box Game')

display_surface = pygame.display.set_mode((400, 300))
pygame.display.set_caption('Box Game')

print ('Update display')

pygame.display.update ()

print ('Setup the Clock')

clock = pygame.time.Clock()

Clear the screen of current contents
display_surface.fill (BACKGROUND)

print ('Starting main Game Playing Loop')
running = True
while running:
for event in pygame.event.get () :
if event.type == pygame.QUIT:
print ('Received Quit Event:',6 event)
running = False
elif event.type == pygame .MOUSEBUTTONDOWN :
print ('"Received Mouse Event',6 event)
X, y = event.pos

21.7 Alternative Approach to Processing Input Devices 221

pygame.draw.rect (display_surface, BLUE, [x, y, WIDTH,
HEIGHT])
Update the display
pygame.display.update ()

Defines the frame rate - the number of frames per second
Should be called once per frame (but only once)
clock.tick (FRAME_REFRESH_RATE)

print ('Game Over')
Now tidy up and quit Python
pygame.quit ()
if name. == "'_main_ ':
main ()

Note that we now need to record the display surface in a local variable
so that we can use it to draw the blue rectangles. We also need to call the
pygame.display.update () function each time round the main while loop
so that the new rectangles we have drawn as part of the event processing for loop are
displayed to the user.

We also set the frame rate each time round the main while loop. This should
happen once per frame (but only once) and uses the clock object initialised at the
start of the program.

21.7 Alternative Approach to Processing Input Devices

There are actually two ways in which inputs from a device such as a mouse, joystick
or the keyboard can be processed. One approach is the event-based model described
earlier. The other approach is the state-based approach.

Although the event-based approach has many advantages, it is has two disadvan-
tages:

e Each event represents a single action, and continuous actions are not explicitly
represented. Thus if the user presses both the X key and the Z key, then this will
generate two events and it will be up to the program to determine that they have
been pressed at the same time.

e [t is also up to the program to determine that the user is still pressing a key (by
noting that no KEYUP event has occurred).

e Both of these are possible but can be error prone.

An alternative approach is to use the state-based approach. In the state-based
approach the program can directly check the state of an input device (such as a key or
mouse or keyboard). For example, you can use pygame . key.get_pressed()
which returns the state of all the keys. This can be used to determine if a specific
key is being pressed at this moment in time. For example, pygame . key.get_

222 21 Building Games with Pygame

pressed () [pygame.K_SPACE] can be used to check to see if the space bar is
being pressed.

This can be used to determine what action to take. If you keep checking that the
key is pressed, then you can keep performing the associated action. This can be very
useful for continuous actions in a game such as moving an object.

However, if the user presses a key and then releases it before the program checks
the state of the keyboard, then that input will be missed.

21.8 pygame Modules

There are numerous modules provided as part of pygame as well as associated
libraries. Some of the core modules are listed below:

e pygame.display This module is used to control the display window or screen.
It provides facilities to initialise and shutdown the display module. It can be used
to initialise a window or screen. It can also be used to cause a window or screen
to refresh, etc.

e pygame.event This module manages events and the event queue. For
example pygame.event.get () retrieves events from the event queue,
pygame.event.poll () gets a single event from the queue, and
pygame.event .peek () tests to see if there are any event types on the queue.

e pygame.draw The draw module is used to draw simple shapes onto
a Surface. For example, it provides functions for drawing a rectangle
(pygame.draw.rect), a polygon, a circle, an ellipse, a line, etc.

e pygame. font The font module is used to create and render TrueType fonts
into a new surface object. Most of the features associated with fonts are supported
by the pygame. font .Font class. Free standing module functions allow the
module to be initialised and shutdown, plus functions to access fonts such as
pygame. font.get_fonts () which provides a list of the currently available
fonts.

e pygame.image This module allows images to be saved and loaded. Note that
images are loaded into a surface object (there is no image class unlike many other
GUI-oriented frameworks).

e pygame.joystick The joystick module provides the joystick object and
several supporting functions. These can be used for interacting with joysticks,
gamepads and trackballs.

e pygame.key This module provides support for working with inputs from the
keyboard. This allows the input keys to be obtained and modifier keys (such as
control and shift) to be identified. It also allows the approach to repeating keys to
be specified.

e pygame.mouse This module provides facilities for working with mouse input
such as obtaining the current mouse position, the state of mouse buttons as well
as the image to use for the mouse.

21.9 Online Resources 223

e pygame. time This is the pygame module for managing timing within a game.
It provides the pygame . time.Clock class that can be used to track time.

21.9 Online Resources

There is a great deal of information available on pygame including:

e https://www.pygame.org The pygame home page.
e http://www.libsdl.org/ SDL (Simple Directmedia Layer) documentation.
e news://gmane.comp.python.pygame The official pygame news group.

https://www.pygame.org
http://www.libsdl.org/
https://gmane.comp.python.pygame

Chapter 22)
StarshipMeteors Pygame ez

22.1 Introduction

In this chapter we will create a game in which you pilot a starship through a field of
meteors. The longer you play the game, the larger the number of meteors you will
encounter.

22.2 Creating a Spaceship Game

A typical display from the game is shown below for an Apple Mac and a Windows
PC:

We will implement several classes to represent the entities within the game. Using
classes is not a required way to implement a game, and it should be noted that many
developers avoid the use of classes. However, using a class allows data associated
with an object within the game to be maintained in one place; it also simplifies the

© Springer Nature Switzerland AG 2023 225
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_22

226 22 StarshipMeteors Pygame

creation of multiple instances of the same object (such as the meteors) within the
game.
The classes and their relationships are shown below:

| GameObject

F 3

inherits

Starship Meteor
1 many
has I has
—> Game
1:4 1

This diagram shows that the Starship and Meteor classes will extend a class
called GameObject.

In turn it also shows that the Game has a 1:1 relationship with the starship class.
That is the Game holds a reference to one starship, and in turn the starship holds a
single reference back to the Game.

In contrast the Game has a one to many relationship with the Meteor class. That
is the game object holds references to many meteors, and each Meteor holds a
reference back to the single Game object.

22.3 The Main Game Class

The first class we will look at will be the Game class itself.

The Game class will hold the list of meteors and the starship as well as the main
game playing loop.

It will also initialise the main window display (e.g. by setting the size and the
caption of the window).

In this case we will store the display surface returned by the
pygame.display.set_mode () function in an attribute of the game object
called display_surface. This is because we will need to use it later on to
display the starship and the meteors.

‘We will also hold onto an instance of the pygame. time.Clock () class that
we will use to set the frame rate each time round the main game playing while
loop.

22.3 The Main Game Class 227

The basic framework of our game is shown below; this listing provides the basic
Game class and the main method that will launch the game. The game also defines
three global constants that will be used to define the frame refresh rate and the size
of the display.

import pygame

Set up Global 'constants'
FRAME_REFRESH_RATE = 30

DISPLAY_WIDTH = 600
DISPLAY_ HEIGHT = 400

class Game:
nmr Represents the game itself, holds the main game playing
loop nonon

def _ init_ (self):
print('Initialising PyGame')
pygame.init ()
Set up the display
self.display_surface = pygame.display.set_mode((DISPLAY_
WIDTH, DISPLAY_HEIGHT))
pygame.display.set_caption('Starship Meteors')
Used for timing within the program.
self.clock = pygame.time.Clock ()

def play(self):
is_running = True

Main game playing Loop
while is_running:
Work out what the user wants to do
for event in pygame.event.get () :
if event.type == pygame.QUIT:
is_running = False
elif event.type == pygame .KEYDOWN :
if event.key == pygame.K_q:
is_running = False

Update the display
pygame.display.update ()

Defines the frame rate
self.clock.tick (FRAME_REFRESH_RATE)

Let pygame shutdown gracefully
pygame.quit ()

def main() :
print ('Starting Game')
game = Game ()
game.play ()
print ('Game Over')

if _ name. == "'__main ':

228 22 StarshipMeteors Pygame

main ()

The main play () method of the Game class has a loop that will continue until
the user selects to quit the game. They can do this in one of two ways, either by
pressing the ‘q’ key (represented by the event .key K_q) or by clicking on the
window close button. In either case these events are picked up in the main event
processing for loop within the main while loop method.

If the user does not want to quit the game, then the display is updated (refreshed)
and then the clock.tick () (or frame) rate is set.

When the user selects to quit the game, then the main while loop is terminated (the
is_running flagis setto False) and the pygame . quit () method is called to
shut down pygame.

At the moment this not a very interactive game as it does not do anything except
allow the user to quit. In the next section we will add in behaviour that will allow us
to display the space ship within the display.

22.4 The GameObject Class

The GameObject class defines three methods:

The 1load_image () method can be used to load an image to be used to visually
represent the specific type of game object. The method then uses the width and height
of the image to define the width and height of the game object.

The rect () method returns a rectangle representing the current area used by the
game object on the underlying drawing surface. This differs from the images own
rect () which is not related to the location of the game object on the underlying
surface. Rects are very useful for comparing the location of one object with another
(e.g. when determining if a collision has occurred).

The draw () method draws the GameObjects’ image onto the display
surface held by the game using the GameObjects current x and y coordinates. It
can be overridden by subclasses if they wish to be drawn in a different way.

The code for the GameObject class is presented below:

class GameObject:

def load_image(self, filename) :
self.image = pygame.image.load(filename) .convert ()
self.width = self.image.get_width()
self.height = self.image.get_height ()

def rect (self):
""" Generates a rectangle representing the objects location
and dimensions """
return pygame.Rect (self.x, self.y, self.width, self.height)

def draw(self) :
""" draw the game object at the
current x, y coordinates """

22.5 Displaying the Starship 229

self.game.display_surface.blit(self.image, (self.x, self.y))

The GameObject 6 the Starship class and the Meteor class.
Currently there are only two types of elements: the starship and the meteors; but
this could be extended in future to planets, comets, shooting stars, etc.

22.5 Displaying the Starship

The human player of this game will control a starship that can be moved around the
display.

The starship will be represented by an instance of the class Starship. This class
will extend the GameObject class that holds common behaviours for any type of
element that is represented within the game.

The starship class defines itsown __init__ () method that takes a reference to
the game that the starship is part of. This initialisation method sets the initial starting
location of the starship as half the width of the display for the x coordinate and the
display height minus 40 for the y coordinate (this gives a bit of a buffer before the end
of the screen). It then uses the 1oad_image () method from the GameObject
parent class to load the image to be used to represent the Starship. This is held in
a file called starship.png. For the moment we will leave the starship class as it
is (however, we will return to this class so that we can make it into a movable object
in the next section).

The current version of the starship class is given below:

class Starship (GameObject) :
"mm Represents a starship"""

def _ _init_ (self, game):
self.game = game
self.x = DISPLAY_WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

Inthe Game class we willnow addalinetothe __init_ () methodtoinitialise
the starship object. This line is:

230 22 StarshipMeteors Pygame

Set up the starship
self.starship = Starship(self)

We will also add a line to the main while loop within the play () method just
before we refresh the display. This line will call the draw () method on the starship
object:

Draw the starship
self.starship.draw()

This will have the effect of drawing the starship onto the windows drawing surface
in the background before the display is refreshed.

When we now run this version of the StarshipMeteor game, we now see the
starship in the display:

Of course at the moment the starship does not move; but we will address that in
the next section.

22.6 Moving the Spaceship

We want to be able to move the starship about within the bounds of the display screen.

To do this, we need to change the starships x and y coordinates in response to the
user pressing various keys.

We will use the arrow keys to move up and down the screen or to the left or right
of the screen. To do this, we will define four methods within the starship class; these
methods will move the starship up, down, left and right, etc.

The updated starship class is shown below:

class Starship (GameObject) :
""" Represents a starship"""

def _ init_ (self, game):
self.game = game

22.6

Moving the Spaceship 231

self.x = DISPLAY_WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

def move_right (self):
""" moves the starship right across the screen """
self.x = self.x + STARSHIP_SPEED
if self.x + self.width > DISPLAY WIDTH:
self.x = DISPLAY WIDTH - self.width

def move_left (self):
"mm Move the starship left across the screen """
self.x = self.x - STARSHIP_SPEED
if self.x < 0:
self.x=0

def move_up (self) :
"mm Move the starship up the screen """
self.y = self.y - STARSHIP_SPEED
if self.y < 0:
self.y =0

def move_down (self) :
"mr Move the starship down the screen """
self.y = self.y + STARSHIP_SPEED
if self.y + self.height > DISPLAY_ HEIGHT:
self.y = DISPLAY_HEIGHT - self.height

def _ str__ (self):
return 'Starship('+ str(self.x) 4+ ', '+ str(self.y) + ")

This version of the starship class defines the various move methods. These methods
use a new global value STARSHIP_SPEED to determine how far and how fast the
starship moves. If you want to change the speed that the starship moves, then you
can change this global value.

Depending upon the direction intended we will need to modify either the x or y
coordinate of the Starship.

e If the starship moves to the left, then the x coordinate is reduced by STARSHIP__
SPEED.
if it moves to the right, then the x coordinate is increased by STARSHIP_SPEED.
in turn if the starship moves up the screen, then the y coordinate is decremented
by STARSHIP_SPEED.

e butifit moves down the screen, then the y coordinate is increased by STARSHIP_
SPEED.

Of course we do not want our starship to fly off the edge of the screen, and so a
test must be made to see if it has reached the boundaries of the screen. Thus tests
are made to see if the x or y values have gone below zero or above the DISPLAY__
WIDTH or DISPLAY_HEIGHT values. If any of these conditions are met, then the
x or y values are reset to an appropriate default.

232 22 StarshipMeteors Pygame

We can now use these methods with player input. This player input will indicate
the direction that the player wants to move the starship. As we are using the left,
right, up and down arrow keys for this we can extend the event processing loop that
we have already defined for the main game playing loop. As with the letter q, the
event keys are pre-fixed by the letter K and an underbar, but this time the keys are
named K_LEFT, K_RIGHT, K_UP and K_DOWN.

When one of these keys is pressed, then we will call the appropriate move method
on the starship object already held by the game object.

The main event processing for loop is now:

Work out what the user wants to do
for event in pygame.event.get () :
if event.type == pygame.QUIT:
is_running = False
elif event.type == pygame .KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_RIGHT:
Right arrow key has been pressed
move the player right
self.starship.move_right ()
elif event.key == pygame.K_LEFT:
Left arrow has been pressed
move the player left
self.starship.move_left ()
elif event.key == pygame.K_UP:
self.starship.move_up ()
elif event.key == pygame.K_DOWN :
self.starship.move_down ()
elif event.key == pygame.K_q:
is_running = False

However, we are not quite finished. If we try and run this version of the program,
we will get a trail of starships drawn across the screen; for example:

IJ lr‘EB”M}]JJJJ”

E!El-ll- .

The problem is that we are redrawing the starship at a different position; but the
previous image is still present.

227 Adding a Meteor Class 233

We now have two choices: one is to merely fill the whole screen with black;
effectively hiding anything that has been drawn so far; or alternatively we could just
draw over the area used by the previous image position, which approach is adopted
depends on the particular scenario represented by your game. As we will have a lot
of meteors on the screen once we have added them; the easiest option is to overwrite
everything on the screen before redrawing the starship. We will therefore add the
following line:

Clear the screen of current contents
self.display_surface.fill (BACKGROUND)

This line is added just before we draw the starship within the main game playing
while loop.

Now when we move the starship, the old image is removed before we draw the
new image:

One point to note is that we have also defined another global value BACKGROUND
used to hold the background colour of the game playing surface. This is set to black
as shown below:

Define default RGB colours
BACKGROUND = (0, 0, 0)

If you want to use a different background colour, then change this global value.

22.7 Adding a Meteor Class

The Meteor class will also be a subclass of the GameObject class. However, it
will only provide a move_down () method rather than the variety of move methods
of the Starship.

234 22 StarshipMeteors Pygame

It will also need to have a random x coordinate so that when a meteor is added
to the game its starting position will vary. This random position can be generated
using the random.randint () function using a value between 0 and the width
of the drawing surface. The meteor will also start at the top of the screen so will
have a different initial y coordinate to the starship. Finally, we also want our meteors
to have different speeds; this can be another random number between 1 and some
specified maximum meteor speed.

To support these, we need to add random to the modules being imported and
define several new global values, for example:

import pygame, random

INITIAL_METEOR_Y_LOCATION = 10
MAX METEOR_SPEED = 5

We can now define the Meteor class:

class Meteor (GameObject) :
"nn represents a meteor in the game """

def _ init_ (self, game):
self.game = game
self.x = random.randint (0, DISPLAY_ _WIDTH)
self.y = INITIAL_METEOR_Y_LOCATION
self.speed = random.randint (1, MAX_ METEOR_SPEED)
self.load_image ('meteor.png')

def move_down (self) :
"mr Move the meteor down the screen
self.y =self.y + self.speed
if self.y > DISPLAY HEIGHT:
self.y=5

wnon

def _ str_ (self):
return 'Meteor(' + str(self.x) + ', ' + str(self.y) + ')"'

The __init__ () method for the Meteor class has the same steps as the
starship; the difference is that the x coordinate and the speed are randomly generated.
The image used for the meteor is also different as it is ‘meteor.png’.

We have also implemented amove_down () method. This is essentially the same
as the starships move_down ().

Note that at this point we could create a subclass of GameObject called
MoveableGameObject (which extends GameObject) and push the move oper-
ations up into that class and have the Meteor and Starship classes extend that
class. However we do not really want to allow meteors to move just anywhere on the
screen.

22.8 Moving the Meteors 235

We can now add the meteors to the Game class. We will add a new global value
to indicate the number of initial meteors in the game:

INITIAL_NUMBER_OF_METEORS = 8

Next we will initialise a new attribute for the Game class that will hold a list of
meteors. We will use a list here as we want to increase the number of meteors as the
game progresses.

To make this process easy, we will use a list comprehension which allows a for
loop to run with the results of an expression captured by the list:

Set up meteors
self.meteors = [Meteor(self) for _ in range (0, INITIAL_NUMBER_OF_
METEORS)]

We now have a list of meteors that need to be displayed. We thus need to update
the while loop of the play () method to draw not only the starship but also all the
meteors:

Draw the meteors and the starship

self.starship.draw()

for meteor in self.meteors:
meteor.draw ()

The end result is that a set of meteor objects are created at random starting locations
across the top of the screen:

22.8 Moving the Meteors

We now want to be able to move the meteors down the screen so that the starship
has some objects to avoid.

236 22 StarshipMeteors Pygame

We can do this very easily as we have already implemented a move_down ()
method in the Meteor class. We therefore only need to add a for loop to the main
game playing while loop that will move all the meteors. For example:

Move the Meteors
for meteor in self.meteors:
meteor.move_down ()

This can be added after the event processing for loop and before the screen is
refreshed/redrawn or updated.

Now when we run the game, the meteors move and the player can navigate the
starship between the falling meteors.

22.9 Identifying a Collision

At the moment the game will play forever as there is no end state and no attempt to
identify if a starship has collided with a meteor.

We can add meteor/starship collision detection using PyGame Rects. As
mentioned in the last chapter, a Rect is a PyGame class used to represent rect-
angular coordinates. It is particularly useful as the pygame .Rect class provides
several collision detection methods that can be used to test if one rectangle (or point)
is inside another rectangle. We can therefore use one of the methods to test if the
rectangle around the starship intersects with any of the rectangles around the meteors.

The GameObject class already provides a method rect () that will return a
Rect object representing the objects current rectangle with respect to the drawing
surface (essentially the box around the object representing its location on the screen).

Thus we can write a collision detection method for the Game class using the
GameObject generated rects and the Rect class colliderect () method:

def check_for_collision(self):
nmr Checks to see if any of the meteors have collided with
the starship """

22.10 Identifying a Win 237

result = False
for meteor in self.meteors:
if self.starship.rect() .colliderect (meteor.rect()):
result = True
break
return result

Note that we have followed the convention here of preceding the method name
with an underbar indicating that this method should be considered to provide to the
class. It should therefore never be called by anything outside of the game class. This
convention is defined in PEP 8 (Python Enhancement Proposal) but is not enforced
by the language.

We can now use this method in the main while loop of the game to check for a
collision:

Check to see if a meteor has hit the ship
if self. check_for_collision():
starship_collided = True

This code snippet also introduces a new local variable starship_collided.
We will initially set this to False and is another condition under which the main
game playing while loop will terminate:

is_running = True
starship_collided = False

Main game playing Loop
while is_running and not starship_collided:

Thus the game playing loop will terminate if the user selects to quit or if the
starship collides with a meteor.

22.10 Identifying a Win

We currently have a way to lose the game but we don’t have a way to win the game!
However, we want the player to be able to win the game by surviving for a specified
period of time. We could represent this with a timer of some sort. However, in our
case we will represent it as a specific number of cycles of the main game playing loop.
If the player survives for this number of cycles, then they have won. For example:

See if the player has won

if cycle_count == MAX_ NUMBER_OF_CYCLES:
print (‘WINNER! ')
break

In this case a message is printed out stating that the player won and then the main
game playing loop is terminated (using the break statement).

238 22 StarshipMeteors Pygame

The MAX_NUMBER_OF_CYCLES global value can be set as appropriate, for
example:

MAX_NUMBER_OF_CYCLES = 1000

22.11 Increasing the Number of Meteors

We could leave the game at this point as it is now possible to both win and lose the
game. However, there are a few things that can be easily added that will enhance the
game playing experience. One of these is to increase the number of meteors on the
screen making it harder as the game progresses.

We can do this using a NEW_METEOR_CYCLE_INTERVAL.

NEW_METEOR_CYCLE_INTERVAL = 40

When this interval is reached, we can add a new Meteor to the list of current
meteors; it will then be automatically drawn by the game class. For example:

Determine if new meteors should be added
if cycle_count $ NEW_METEOR_CYCLE_INTERVAL == 0:
self.meteors.append (Meteor (self))

Now every NEW_METEOR_CYCLE_INTERVAL another meteor will be added at
arandom x coordinate to the game.

22.12 Pausing the Game

Another feature that many games have is the ability to pause the game. This can be
easily added by monitoring for a pause key (this could be the letter p represented by
the event_key pygame . K_p). When this is pressed, the game could be paused until
the key is pressed again.

The pause operation can be implemented as a method _pause () that will
consume all events until the appropriate key is pressed. For example:

def _pause(self):
paused = True
while paused:
for event in pygame.event.get () :
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_p:
paused = False
break

In this method the outer while loop will loop until the paused local variable is
set to False. This only happens when the ‘p’ key is pressed. The break after the

22.13 Displaying the Game Over Message 239

statement setting paused to False ensures that the inner for loop is terminated
allowing the outer while loop to check the value of paused and terminate.

The _pause () method can be invoked during the game playing cycle by moni-
toring for the ‘p’ key within the event for loop and calling the _pause () method
from there:

elif event.key == pygame.K_p:
self._pause()

Note that again we have indicated that we don’t expect the _pause () method
to be called from outside the game by pre-fixing the method name with an underbar

(‘).

22.13 Displaying the Game Over Message

Pygame does not come with an easy way of creating a popup dialog box to display
messages such as ‘“You Won’ or ‘You Lost’ which is why we have used print state-
ments so far. However, we could use a GUI framework such as wxPython to do this
or we could display a message on the display surface to indicate whether the player
has won or lost.

We can display a message on the display surface using the pygame . font . Font
class. This can be used to create a Font object that can be rendered onto a surface
that can be displayed onto the main display surface.

We can therefore add a method _display_message () to the game class that
can be used to display appropriate messages:

def _display_message(self, message) :
nmr Displays a message to the user on the screen """
print (message)
text_font = pygame. font.Font ('freesansbold.ttf', 48)
text_surface = text_font.render (message, True, BLUE, WHITE)
text_rectangle = text_surface.get_rect ()
text_rectangle.center = (DISPLAY_WIDTH / 2, DISPLAY_HEIGHT / 2)
self.display_surface.fill (WHITE)
self.display_surface.blit (text_surface, text_rectangle)

Again the leading underbar in the method name indicates that it should not be
called from outside the game class.

We can now modify the main loop such that appropriate messages are displayed
to the user, for example:

Check to see if a meteor has hit the ship

if self. check_for_collision():

starship_collided = True
self._display_message('Collision: Game Over')

The result of the above code being run when a collision occurs is shown below:

240 22 StarshipMeteors Pygame

Collision: Game Over

22.14 The StarshipMeteors Game

The complete listing for the final version of the StarshipMeteors game is given below:
import pygame, random, time
FRAME_REFRESH_RATE = 30

DISPLAY_WIDTH = 600
DISPLAY_HEIGHT = 400
WHITE = (255, 255, 255)
BACKGROUND = (0, 0, 0)

INITIAL_METEOR_Y_LOCATION = 10
INITIAL_NUMBER_OF_METEORS = 8
MAX_ METEOR_SPEED = 5
STARSHIP_SPEED = 10
MAX_NUMBER_OF_CYCLES = 1000
NEW_METEOR_CYCLE_INTERVAL = 40

class GameObject:

def load_image(self, filename) :
self.image = pygame.image.load(filename) .convert ()
self.width = self.image.get_width()
self.height = self.image.get_height ()

def rect (self):
""" Generates a rectangle representing the objects location
and dimensions """
return pygame.Rect (self.x, self.y, self.width, self.height)

def draw(self):
""" draw the game object at the

22.14 The StarshipMeteors Game 241

wnon

current x, y coordinates
self.game.display_surface.blit(self.image, (self.x, self.y))

class Starship (GameObject) :
""" Represents a starship"""

def _ init_ (self, game):
self.game = game
self.x = DISPLAY_WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

def move_right (self):
""" moves the starship right across the screen """
self.x = self.x + STARSHIP_SPEED
if self.x 4+ self.width > DISPLAY WIDTH:
self.x = DISPLAY_WIDTH - self.width

def move_left(self):
nmr Move the starship left across the screen """
self.x = self.x - STARSHIP_SPEED
if self.x < 0:
self.x=0

def move_up(self):
nmr Move the starship up the screen """
self.y = self.y - STARSHIP_SPEED
if self.y <0:
self.y =0

def move_down (self) :
"mr Move the starship down the screen """
self.y = self.y + STARSHIP_SPEED
if self.y + self.height > DISPLAY_ HEIGHT:
self.y = DISPLAY_ HEIGHT - self.height

def _ str_ (self):
return 'Starship(' + str(self.x) + ', ' + str(self.y) + ")’

class Meteor (GameObject) :
"mr represents a meteor in the game

nwnon

def init_ (self, game):
self.game = game
self.x = random.randint (0, DISPLAY_WIDTH)
self.y = INITIAL_METEOR_Y_LOCATION
self.speed = random.randint (1, MAX_METEOR_SPEED)
self.load_image ('meteor.png')

def move_down (self) :
"mr Move the meteor down the screen """
self.y = self.y + self.speed
if self.y > DISPLAY HEIGHT:
self.y =5

def _ str__ (self):

242 22 StarshipMeteors Pygame

return 'Meteor(' + str(self.x) + ', ' + str(self.y) + ')"'

class Game:
nmr Represents the game itself, holds the main game playing
loop nmonon

def init_ (self):
pygame.init ()
Set up the display
self.display_surface = pygame.display.set_mode ((DISPLAY_
WIDTH, DISPLAY_ HEIGHT))
pygame.display.set_caption('Starship Meteors')
Used for timing within the program.
self.clock = pygame.time.Clock()
Set up the starship
self.starship = Starship(self)
Set up meteors
self.meteors = [Meteor (self) for _ in range (0, INITIAL_NUMBER_
OF_METEORS)]

def _check_for_collision(self):
"mn Checks to see if any of the meteors have collided with
the starship """
result = False
for meteor in self.meteors:
if self.starship.rect().colliderect (meteor.rect()):
result = True
break
return result

def _display_message(self, message) :
nnr pDisplays a message to the user on the screen """
text_font = pygame. font.Font ('freesansbold.ttf', 48)
text_surface = text_font.render (message, True, BLUE, WHITE)
text_rectangle = text_surface.get_rect()
text_rectangle.center = (DISPLAY WIDTH / 2, DISPLAY_ HEIGHT /

self.display_surface.fill (WHITE)
self.display_surface.blit (text_surface, text_rectangle)

def pause(self):
paused = True
while paused:
for event in pygame.event.get () :
if event.type == pygame .KEYDOWN:
if event.key == pygame.K_p:
paused = False
break

def play(self):
is_running = True
starship_collided = False
cycle_count = 0

Main game playing Loop
while is_running and not starship_collided:

22.14 The StarshipMeteors Game 243

Indicates how many times the main game loop has been
run
cycle_count +=1

See i1f the player has won

if cycle_count == MAX_ NUMBER_OF_CYCLES:
self._display_message ('WINNER! ')
break

Work out what the user wants to do
for event in pygame.event.get () :
if event.type == pygame.QUIT:
is_running = False
elif event.type == pygame .KEYDOWN :
Check to see which key is pressed
if event.key == pygame.K_RIGHT:
Right arrow key has been pressed
move the player right
self.starship.move_right ()
elif event.key == pygame.K_LEFT:
Left arrow has been pressed
move the player left
self.starship.move_left ()
elif event.key == pygame.K_UP:
self.starship.move_up ()
elif event.key == pygame.K_DOWN :
self.starship.move_down ()
elif event.key == pygame.K_p:
self._pause()
elif event.key == pygame.K_q:
is_running = False

Move the Meteors
for meteor in self.meteors:
meteor.move_down ()

Clear the screen of current contents
self.display_surface.fill (BACKGROUND)

Draw the meteors and the starship

self.starship.draw()

for meteor in self.meteors:
meteor.draw ()

Check to see if a meteor has hit the ship

if self._check_for_collision():
starship_collided = True
self._display_message('Collision: Game Over')

Determine if new meteors should be added
if cycle_count $ NEW_METEOR_CYCLE_INTERVAL == 0:
self.meteors.append (Meteor (self))

Update the display
pygame.display.update ()

244 22 StarshipMeteors Pygame

Defines the frame rate. The number 1s number of frames
per
second. Should be called once per frame (but only once)
self.clock.tick (FRAME REFRESH RATE)

time.sleep (1)
Let pygame shutdown gracefully
pygame.quit ()

def main () :
print ('Starting Game')
game = Game ()
game.play ()
print ('Game Over')

if name. == "'_main_ ':
main ()

22.15 Online Resources

There is a great deal of information available on PyGame including:

e https://www.pygame.org The PyGame home page.
e https://www.pygame.org/docs/tut/Pygamelntro.html PyGame tutorial.
e https://www.python.org/dev/peps/pep-0008/ PEP8 Style Guide for Python Code.

22.16 Exercises

Using the example presented in this chapter add the following:

e Provide a score counter. This could be based on the number of cycles the player
survives or the number of meteors that restart from the top of the screen, etc.

e Add another type of GameObject, this could be a shooting star that moves
across the screen horizontally; perhaps using a random starting y coordinate.

e Allow the game difficulty to be specified at the start. This could affect the number
of initial meteors, the maximum speed of a meteor, the number of shooting stars,
etc.

https://www.pygame.org
https://www.pygame.org/docs/tut/PygameIntro.html
https://www.python.org/dev/peps/pep-0008/

Part IV
Testing

Chapter 23 ®)
Introduction to Testing oo

23.1 Introduction

This chapter considers the different types of tests that you might want to perform
with the systems you develop in Python. It also introduces Test-Driven Development.

23.2 Types of Testing

There are at least two ways of thinking about testing:

1. Tt is the process of executing a program with the intent of finding errors/bugs
(see Glenford Myers, The Art of Software Testing).

2. Itis aprocess used to establish that software components fulfil the requirements
identified for them that is that they do what they are supposed to do.

These two aspects of testing tend to have been emphasised at different points in the
software lifecycle. Error testing is an intrinsic part of the development process, and
an increasing emphasis is being placed on making testing a central part of software
development (see Test-Driven Development).

It should be noted that it is extremely difficult—and in many cases impossible—to
prove that software works and is completely error-free. The fact that a set of tests
finds no defects does not prove that the software is error-free. ‘Absence of evidence
is not evidence of absence!’. This was discussed in the late 1960s and early 1970s
by Dijkstra and can be summarised as:

Testing shows the presence, not the absence of bugs

© Springer Nature Switzerland AG 2023 247
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_23

248 23 Introduction to Testing

Testing to establish that software components fulfil their contract involves
checking operations against their requirements. Although this does happen at devel-
opment time, it forms a major part of Quality Assurance (QA) and User Accep-
tance testing. It should be noted that with the advent of Test-Driven Develop-
ment, the emphasis on testing against requirements during development has become
significantly higher.

There are of course many other aspects to testing; for example, Performance
Testing which identifies how a system will perform as various factors that affect that
system change, for example, as the number of concurrent requests increases, as the
number of processors used by the underlying hardware changes, as the size of the
database grows, etc.

However you view testing, the more the testing applied to a system, the higher
the level of confidence that the system will work as required.

23.3 What Should Be Tested?

An interesting question is “What aspects of your software system should be subject
to testing?’.

In general, anything that is repeatable should be subject to formal (and ideally
automated) testing. This includes (but is not limited to):

The build process for all technologies involved.

The deployment process to all platforms under consideration.
The installation process for all runtime environments.

The upgrade process for all supported versions (if appropriate).
The performance of the system/servers as loads increase.

The stability for systems that must run for any period of time (e.g. 24 x 7 systems).
The backup processes.

The security of the system.

The recovery ability of the system on failure.

The functionality of the system.

The integrity of the system.

Notice that only the last two of the above list might be what are the commonly
considered areas that would be subject to testing. However, to ensure the quality
of the system under consideration, all of the above are relevant. In fact, testing
should cover all aspects of the software development lifecycle and not just the QA
phase. During requirements gathering testing is the process of looking for missing or
ambiguous requirements. During this phase consideration should also be made with
regard to how the overall requirements will be tested, in the final software system.
Test planning should also look at all aspects of the software to test for functionality,
usability, legal compliance, conformance to regulatory constraints, security, perfor-
mance, availability, resilience, etc. Testing should be driven by the need to identify
and reduce risk.

23.4 Types of Testing 249

23.4 'Types of Testing

Unit Testing

Developer Oriented Testing

Integration Regression
Testing Testing
Performance 5 4 .
ecurity Testin
Testing Stability Testing ¥ g
User Acceptance

Usability Testing System Testing Testing

Installation &
Deployment Testing Smoke Tests

Upgrade Testing

As indicated above there are a number of different types of testing that are commonly
used within industry. These types are.

Unit testing, which is used to verify the behaviour of individual components.
Integration testing that tests that when individual components are combined
together to provide higher-level functional units that the combination of the units
operates appropriately.

e Regression testing. When new components are added to a system, or existing
components are changed, it is necessary to verify that the new functionality does
not break any existing functionality. Such testing is known as regression testing.

e Performance testing is used to ensure that the systems’ performance is as required
and, within the design parameters, is able to scale as utilisation increases.

e Stability testing represents a style of testing which attempts to simulate system
operation over an extended period of time. For example, for an online shopping
application that is expected to be up and running 24 x 7 a stability test might
ensure that with an average load that the system can indeed run 24 h a day for
7 days a week.

e Security testing ensures that access to the system is controlled appropriately
given the requirements. For example, for an online shopping system there may
be different security requirements depending upon whether you are browsing the
store, purchasing some products, or maintaining the product catalogue.

e Usability testing which may be performed by a specialist usability group and
may involve filming users while they use the system.

250 23 Introduction to Testing

e System testing validates that the system as a whole actually meets the user
requirements and conforms to required application integrity.

e User acceptance testing is a form of user-oriented testing where users confirm
that the system does and behaves in the way they expect.

e Installation, deployment and upgrade testing. These three types of testing vali-
date that a system can be installed and deployed appropriate including any upgrade
processes that may be required.

e Smoke tests used to check that the core elements of a large system operate
correctly. They can typically be run quickly and in a faction of the time taken
to run the full system tests.

Key testing approaches are discussed in the remainder of this section.

23.4.1 Unit Testing

A unit can be as small as a single function or as large as a subsystem but typically is
a class, object, self-contained library (API) or web page.

By looking at a small self-contained component, an extensive set of tests can be
developed to exercise the defined requirements and functionality of the unit.

Unit testing typically follows a white box approach, (also called Glass Box or
Structural testing), where the testing utilises knowledge and understanding of the
code and its structure, rather than just its interface (which is known as the black box
approach).

In white box testing, test coverage is measured by the number of code paths that
have been tested. The goal in unit testing is to provide 100% coverage: to exercise
every instruction, all sides of each logical branch, all called objects, handling of all
data structures, normal and abnormal termination of all loops, etc. Of course this may
not always be possible, but it is a goal that should be aimed for. Many automated
test tools will include a code coverage measure so that you are aware of how much
of your code has been exercised by any given set of tests.

Unit testing is almost always automated—there are many tools to help with this,
perhaps the best-known being the xUnit family of test frameworks such as JUnit for
Java and PyUnit for Python. The framework allows developers to:

e focus on testing the unit.
simulate data or results from calling another unit (representative good and bad
results).

e create data-driven tests for maximum flexibility and repeatability.

¢ rely on mock objects that represent elements outside the unit that it must interact
with.

Having the tests automated means that they can be run frequently, at the very least
after initial development and after each change that affects the unit.

23.4 Types of Testing 251

Once confidence is established in the correct functioning of one unit, developers
can then use it to help test other units with which it interfaces, forming larger units
that can also be unit tested or, as the scale gets larger, put through integration testing.

23.4.2 Integration Testing

Integration testing is where several units (or modules) are brought together to be
tested as an entity in their own right. Typically, integration testing aims to ensure
that modules interact correctly and the individual unit developers have interpreted
the requirements in a consistent manner.

An integrated set of modules can be treated as a unit and unit tested in much
the same way as the constituent modules, but usually working at a “higher” level of
functionality. Integration testing is the intermediate stage between unit testing and
full system testing.

Therefore, integration testing focuses on the interaction between two or more
units to make sure that those units work together successfully and appropriately.
Such testing is typically conducted from the bottom-up but may also be conducted
top-down using mocks or stubs to represent called or calling functions. An important
point to note is that you should not aim to test everything together at once (so called
Big Bang testing) as it is more difficult to isolate bugs in order that they can be
rectified. This is why it is more common to find that integration testing has been
performed in a bottom-up style.

23.4.3 System Testing

System testing aims to validate that the combination of all the modules, units, data,
installation, configuration, etc., operates appropriately and meets the requirements
specified for the whole system. Testing the system has a whole typically involving
testing the top most functionality or behaviours of the system. Such behaviour-based
testing often involves end-users and other stakeholders who are less technical. To
support such tests, a range of technologies have evolved that allow a more English
style for test descriptions. This style of testing can be used as part of the requirements
gathering process and can lead to a behaviour-driven development (BDD) process.
The Python module pytest-bddprovides a BDD style extension to the core PyTest
framework.

252 23 Introduction to Testing

23.4.4 Installation/Upgrade Testing

Installation testing is the testing of full, partial or upgrade install processes. It also
validates that the installation and transition software needed to move to the new
release for the product is functioning properly. Typically, it.

e verifies that the software may be completely uninstalled through its back-out
process.

e determines what files are added, changed or deleted on the hardware on which
the program was installed.

e determines whether any other programs on the hardware are affected by the new
software that has been installed.

e determines whether the software installs and operates properly on all hardware
platforms and operating systems that it is supposed to work on.

23.4.5 Smoke Tests

A smoke test is a test or suite of tests designed to verify that the fundamentals of
the system work. Smoke tests may be run against a new deployment or a patched
deployment in order to verify that the installation performs well enough to justify
further testing. Failure to pass a smoke test would halt any further testing until the
smoke tests pass. The name derives from the early days of electronics: If a device
began to smoke after it was powered on, testers knew that there was no point in
testing it further. For software technologies, the advantages of performing smoke
tests include:

Smoke tests are often automated and standardised from one build to another.
Because smoke tests validate things that are expected to work, when they fail it
is usually an indication that something fundamental has gone wrong (the wrong
version of a library has been used) or that a new build has introduced a bug into
core aspects of the system.

If a system is built daily, it should be smoke tested daily.

It will be necessary to periodically add to the smoke tests as new functionality is
added to the system.

23.5 Automating Testing

The actual way in which tests are written and executed needs careful consideration.
In general, we wish to automate as much of the testing process as is possible as this
makes it easy to run the tests and also ensures not only that all tests are run but that
they are run in the same way each time. In addition, once an automated test is set
up it will typically be quicker to rerun that automated test than to manually repeat a

23.6 Test-Driven Development 253

series of tests. However, not all of the features of a system can be easily tested via an
automated test tool, and in some cases the physical environment may make it hard
to automate tests.

Typically, most unit testing is automated and most acceptance testing is manual.
You will also need to decide which forms of testing must take place. Most software
projects should have unit testing, integration testing, system testing and acceptance
testing as a necessary requirement. Not all projects will implement performance or
stability testing, but you should be careful about omitting any stage of testing and be
sure it is not applicable.

23.6 Test-Driven Development

Test-Driven Development (or TDD) is a development technique whereby developers
write test cases before they write any implementation code. The tests thus drive
or dictate the code that is developed. The implementation only provides as much
functionality as is required to pass the test, and thus the tests act as a specification of
what the code does (and some argue that the tests are thus part of that specification
and provide documentation of what the system is capable of).

TDD has the benefit that as tests must be written first, there are always a set of tests
available to perform unit, integration, regression testing, etc. This is good as devel-
opers can find that writing tests and maintaining tests is boring and of less interest
than the actual code itself, and this puts less emphasis into the testing regime than
might be desirable. TDD encourages, and indeed requires, that developers maintain
an exhaustive set of repeatable tests and that those tests are developed to the same
quality and standards as the main body of code.

There are three rules of TDD as defined by Robert Martin; these are:

1. You are not allowed to write any production code unless it is to make a failing
unit test pass.

2. You are not allowed to write any more of a unit test than is sufficient to fail; and
compilation failures are failures.

3. You are not allowed to write any more production code than is sufficient to pass
the one failing unit test.

This leads to the TDD cycle described in the next section.

23.6.1 The TDD Cycle

There is a cycle to development when working in a TDD manner. The shortest form
of this cycle is the TDD mantra:

Red/Green/Refactor

254 23 Introduction to Testing

which relates to the unit testing suite of tools where it is possible to write a unit
test. Within tools such as PyCharm, when you run a PyUnit or PyTest test a Test
View is shown with red indicating that a test failed or green indicating that the test
passed. Hence red/green, in other words write the test and let it fail, then implement
the code to ensure it passes. The last part of this mantra is refactor which indicates
once you have it working make the code cleaner, better and fitter by refactoring it.
Refactoring is the process by which the behaviour of the system is not changed, but
the implementation is altered to improve it.

The full TDD cycle is shown by the following diagram which highlights the test
first approach of TDD:

/—o Write a Test —\

Run Test,
HERUnIE Watch it Fail
Refactor Code Write Code

\ Run Test, ‘—/

Watch it Pass

The TDD mantra can be seen in the TDD cycle that is shown above and described
in more detail below:

Write a single test.

Run the test and see it fail.

Implement just enough code to get the test to pass.

Run the test and see it pass.

Refactor for clarity and deal with any issue of reuse, etc.
Repeat for next test.

AR

23.6.2 Test Complexity

The aim is to strive for simplicity in all that you do within TDD. Thus, you write a
test that fails, then do just enough to make that test pass (but no more). Then you
refactor the implementation code (i.e. change the internals of the unit under test) to
improve the code base. You continue to do this until all the functionality for a unit
has been completed. In terms of each test, you should again strive for simplicity with

23.8 Online Resources 255

each test only testing one thing with only a single assertion per test (although this is
the subject of a lot of debate within the TDD world).

23.6.3 Refactoring

The emphasis on refactoring within TDD makes it more than just testing or Test
First Development. This focus on refactoring is really a focus on (re)design and
incremental improvement. The tests provide the specification of what is needed as
well as the verification that existing behaviour is maintained, but refactoring leads
to better design software. Thus, without refactoring TDD is not TDD!

23.7 Design for Testability

Testability has a number of facets

1. Configurability. Set up the object under test to an appropriate configuration for
the test.

2. Controllability. Control the input (and internal state).

Observability. Observe its output.

4. Verifiability. That we can verify that output in an appropriate manner.

w

23.7.1 Testability Rules of Thumb

If you cannot test code, then change it so that you can!

If your code is difficult to validate, then change it so that it isn’t!

Only one concrete class should be tested per Unit test and then Mock the Rest!
If you code is hard to reconfigure to work with mocks, then make it so that your
code can use Mocks!

Design your code for testability!

23.8 Online Resources

See the following online resources for more information on testing and Test-Driven
Development (TDD).

1. https://www.test-institute.org/Introduction_To_Software_Testing.php Introduc-
tion to Software Testing.

2. https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing
Introduction to software Testing wiki book.

https://www.test-institute.org/Introduction_To_Software_Testing.php
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing

256 23 Introduction to Testing

3. https://en.wikipedia.org/wiki/Test-driven_development Test-Driven Develop-
ment wikipedia page.

4. http://agiledata.org/essays/tdd.html an introduction to Test-Driven Development.

5. https://medium.freecodecamp.org/learning-to-test-with-python-997ace2d8abe a
simple introduction to TDD with Python.

6. http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd Robert
Martins three rules for TDD.
7. http://butunclebob.com/ArticleS.UncleBob. TheBowlingGameKata The

Bowling Game Kata which presents a worked example of how TDD can
be used to create a Ten Pin Bowls scoring keeping application.

23.9 Book Resources

1. The Art of Software Testing, G.J. Myers, C. Sandler and T. Badgett, John Wiley &
Sons, 3rd Edition(Dec 2011), 1,118,031,962.

https://en.wikipedia.org/wiki/Test-driven_development
http://agiledata.org/essays/tdd.html
https://medium.freecodecamp.org/learning-to-test-with-python-997ace2d8abe
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata

Chapter 24)
PyTest Testing Framework i

24.1 Introduction

There are several testing frameworks available for Python, although only one, unittest
comes as part of the typical Python installation. Typical libraries include unittest
(which is available within the Python distribution by default) and PyTest (which
actually builds directly on top of unittest).

In this chapter we will look at PyTest and how it can be used to write unit tests in
Python for both functions and classes.

24.2 What is PyTest?

PyTest is a testing library for Python; it is currently one of the most popular Python
testing libraries (others include unittest and doctest). PyTest can be used for various
levels of testing, although its most common application is as a unit testing framework.
Itis also often used as a testing framework within a TDD-based development project.
In fact, it is used by Mozilla and Dropbox as their Python testing framework.

PyTest offers a large number of features and great flexibility in how tests are
written and in how set up behaviour is defined. It automatically finds test based on
naming conventions and can be easily integrated into a range of editors and IDEs
including PyCharm.

© Springer Nature Switzerland AG 2023 257
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_24

258 24 PyTest Testing Framework

24.3 Setting up PyTest

You will probably need to set up PyTest so that you can use it from within your
environment. If you are using the PyCharm editor, then you will need to add the
PyTest module to the current PyCharm project and tell PyCharm that you want to
use PyTest to run all tests for you. At the time of writing this is PyTest version
7.3.2—you can use pip to install PyTest.

24.4 A Simple PyTest Example

Something to test

To be able to explore PyTest we first need something to test; we will therefore define
asimple Calculator class. The calculator keeps a running total of the operations
performed; it allows a new value to be set, and then this value can be added to, or
subtracted from, that accumulated total.

class Calculator:
def init_ (self):
self.current =0
self.total =0

def set (self, value):
self.current = value

def add(self):
self.total += self.current

def sub(self):
self.total -= self.current

def total (self):
return self.total

Save this class into a file called calculator.py.
Writing a Test

We will now create a very simple PyTest unit test for our Calculator class. This
test will be defined in a class called test_calculator.py.

You will need to import the calculator class we wrote above into your test_
caclculator.py file (remember each file is a module in Python).

The exact import statement will depend on where you placed the calculator file
relative to the test class. In this case the two files are both in the same directory and
SO wWe can write:

from calculator import Calculator

We will now define a test, the test should be pre-fixed with test_ for PyTest to
find them. In fact PyTest uses several conventions to find tests, which are:

24.4 A Simple PyTest Example 259

e Search for test_*.py or *_test.py files.
e From those files, collect test items:

— test_ pre-fixed test functions,
— test_ pre-fixed test methods inside Test pre-fixed test classes (without an___
init__ method)

Note that we keep test files and the files containing the code to be tested separate;
indeed in many cases they are kept in different directory structures. This means that
there is no chance of developers accidentally using tests in production code, etc.

Now we will add to the file a function that defines a test. We will call the func-
tion test_add_one; it needs to start with test_ due to the above convention.
However, we have tried to make the rest of the function name descriptive, so that it
is clear what it is testing. The function definition is given below:

from calculator import Calculator

def test_add_one() :
calc = Calculator()
calc.set (1)
calc.add()
assert calc.total == 1

The test function creates a new instance of the Calculator class and then calls
several methods on it; to set up the value to add, then the call to the add () method
itself, etc.

The final part of the test is the assertion. The assert verifies that the behaviour
of the calculator is as expected. The PyTest assert statement works out what is
being tested and what it should do with the result—including adding information to
a test run report. It avoids the need to have to learn a load of assertSomething type
methods (unlike some other testing frameworks).

Note that a test without an assertion is not a test; i.e. it does not test anything.

Many IDEs provide direct support for testing frameworks including PyCharm.
For example, PyCharm will now detect that you have written a function with an
assert statement in it and add a Run Test icon to the grey area to the left of the editor.
This can be seen in the following picture where a green arrow has been added at line
4; this is the ‘Run Test’ button:

» calculator.py = test_calculator.py

from pythonintro.calculator import Calculator

> def test_add_one():
calc = Calculator()
calc.set(1)
calc.add()
assert calc.total == 1

260 24 PyTest Testing Framework

The developer can click on the green arrow to run the test. They will then be
presented with the Run menu that is pre-configured to use PyTest for you:

' L ——
>

Debug 'pytest for test_calc...! ~4D

If the developer now selects the Run option, this will use the PyTest runner to
execute the test and collect information about what happened and present it in a
PyTest output view at the bottom of the IDE:

Run Pyhon tests for last_calculator test_add_ons

A BT « Tasts pavsact 1

Oms fUsers/Shared/workspaces/pychars/advancedpython3_2nd/venv/bin/python [Applications/PyChara.app/Contents/p
Testing storted at 19:47 ...
Launching pytest with arguments test_calculator.py::test_add_one --no-header --no-summary -g in /Users/Sh

sEEsssssssssEssssssEEssssasss test session Starts ssssssssssssssssssssssssseszEs

collecting ... collected 1 ites
test_caleulator.py::test_add_one PASSED [108%]
sEsssssssssssssssssssusssassss] (93800 in B.6]3 ss=sasssasssssssssessssesseszss

Process finished with exit code @

Here you can see a tree in the left-hand panel that currently holds the one test
defined in the test_calculator.py file. This tree shows whether tests have
passed or failed. In this case we have a green tick showing that the test passed.

To the right of this tree is the main output panel which shows the results of
running the tests. In this case it shows that PyTest ran only one test and that this was
the test_add_one test which was defined in test_calculator.py and that
one test passed.

If you now change the assertion in the test to check to see that the result is O, the
test will fail. The IDE display will update accordingly.

The tree in the left-hand pane now shows the test as failed while the right-hand
pane provides detailed information about the test that failed including where in the
test the failed assertion was defined. This is very helpful when trying to debug test
failures.

24.5 Working with PyTest 261

Hun Pyhon tests for tost_calculaton bost_sdd_one
- T R) Tasts fabee: 1
O Test Rssuits omz fUsers/Shared/worksoaces/pycharn/advencedpythen3_2nd/venv/bin/python fApplications/PyChara.app/Contents/p
0 sl cecuebon Testing started at 19:48 ...
O wst_ndd_ore

Launching pytest with arguments test_calculater.py::test_add_one --no-header --no-sumsary -q in /Users/Sh

sssssssssssssssssssssssssssss test 3€35i0N StArts s=sssssassssssssasassssssssass

collecting ... collected 1 item

test_calculator.py::test_add_ocne FAILED [136%]
test colculator.pv:id (test_add_onz)

11=8

Expected :0

Actual 11

<Click to ses difference»

def test_add_one():
caleulator = Caloulater()
calculator.set(1)
caleulator.add()

= assert calculator.total == @
E assert 1 == @
E + where 1 = <calculator.Calcvlator object at Bx1lbe?f510>. total

test calculator.py:9: AssertionError

ssmsmsssssssssssssnsnssnsnsnns 1 foiled in 8.08s

Process finished with exit code 1

24.5 Working with PyTest

Testing Functions

We can test stand-alone functions as well as classes using PyTest. For example, given
the function increment below (which merely adds one to any number passed into

it):

def increment (x) :
return x + 1

We can write a PyTest test for this as follows:

def test_increment_integer_3():
assert increment (3) == 4

The only real difference is that we have not had to make an instance of a class:

262 24 PyTest Testing Framework

Run Python tests in testing-functions.py

® ¢

@ e @
E v« Test Results Oms
~ + testing-functions Oms

v’ test_increment_integer_3 Oms

O

Organising Tests

Tests can be grouped together into one or more files; PyTest will search for all files
following the naming convention (file names that either start or end with ‘test’) in
specified locations:

If no arguments are specified when PyTest is run, then the search for suitably
named test files starts from the testpaths environment variable (if configured)
or the current directory. Alternatively, command line arguments can be used in
any combination of directories or filenames, etc.

PyTest will recursively search down into subdirectories, unless they
match norecursedirs environment variable.

In those directories, it will search for files that match the naming conven-
tions test_*.py or *_test.py files.

Tests can also be arranged within test files into test classes. Using test classes

can be helpful in grouping tests together and managing the setup and tear down
behaviours of separate groups of tests. However, the same effect can be achieved by
separating the tests relating to different functions or classes into different files.

Test Fixtures

It is not uncommon to need to run some behaviour before or after each test or indeed
before or after a group of tests. Such behaviours are defined within what is commonly
known as test fixtures.

We can add specific code to run:

at the beginning and end of a test class module of test code (setup_module/
teardown_module).

at the beginning and end of a test class (setup_class/teardown_class) or using the
alternate style of the class level fixtures (setup/teardown).

before and after a test function call (setup_function/teardown_function).

before and after a test method call (setup_method/teardown_method).

To illustrate why we might use a fixture, let us expand our Calculator test:

24.5 Working with PyTest 263

def test_initial_value():
calc = Calculator ()
assert calc.total == 0

def test_add_one() :
calc = Calculator ()
calc.set (1)
calc.add()
assert calc.total ==

def test_subtract_one() :
calc = Calculator ()
calc.set (1)
calc.sub()
assert calc.total == -1

def test_add_one_and_one() :
calc = Calculator ()
calc.set (1)
calc.add()
calc.set (1)
calc.add()
assert calc.total ==

We now have four tests to run (we could go further but this is enough for now).

One of the issues with this set of tests is that we have repeated the creation of
the Calculator object at the start of each test. While this is not a problem in
itself it does result in duplicated code and the possibility of future issues in terms of
maintenance if we want to change the way a calculator is created. It may also not be
as efficient as reusing the calculator object for each test.

We can, however, define a fixture that can be run before each individual
test function is executed. To do this we will write a new function and use the
pytest.fixture decorator on that function. This marks the function as being
special and that it can be used as a fixture on an individual function.

Functions that require the fixture should accept a reference to the fixture as an argu-
ment to the individual test function. For example, for a test to accept a fixture called
calculator,itshould have an argument with the fixture name, i.e. calculator.
This name can then be used to access the object returned. This is illustrated below:

import pytest
from calculator import Calculator

@pytest.fixture

def calculator () :
"""Returns a Calculator instance"""
return Calculator()

def test_initial value(calculator):
assert calculator.total ==

def test_add_one(calculator) :
calculator.set (1)
calculator.add()

264 24 PyTest Testing Framework

assert calculator.total ==

def test_subtract_one(calculator):
calculator.set (1)
calculator.sub()
assert calculator.total == -1

def test_add_one_and_one(calculator) :
calculator.set (1)
calculator.add()
calculator.set (1)
calculator.add()
assert calculator.total ==

In the above code, each of the test functions accepts the calculator fixture that
is used to instantiate the Calculator object. We have therefore de-duplicated our
code; there is now only one piece of code that defines how a calculator object should
be created for our tests. Note each test is supplied with a completely new instance
of the Calculator object; there is therefore no chance of one test impacting on
another test.

It is also considered good practice to add a docstring to your fixtures as we have
done above. This is because PyTest can produce a list of all fixtures available along
with their docstrings. From the command line this is done using:

> pytest fixtures

From the command line.

The PyTest fixtures can be applied to functions (as above), classes, modules,
packages or sessions. The scope of a fixture can be indicated via the (optional)
scope parameter to the fixture decorator. The default is “function” which is why we
did not need to specify anything above. The scope determines at what point a fixture
should be run. For example, the session will be run once for the test session, the
module will be run once for the module (i.e. the fixture and anything it generates will
be shared across all tests in the current module), the class scope indicates a fixture
that is run for each new instance of a test class created, etc.

Another parameter to the fixture decorator is autouse which if set to True will
activate the fixture for all tests that can see it. If it is set to False (which is the
default), then an explicit reference in a test function (or method, etc.) is required to
activate the fixture.

If we add some additional fixtures to our tests, we can see when they are run:

import pytest
from calculator import Calculator

@pytest.fixture (scope='session', autouse=True)
def session_scope_fixture() :
print ('session_scope_fixture')

@pytest.fixture (scope="module', autouse=True)
def module_scope_fixture():
print ('module_scope_fixture')

24.6 Parameterised Tests 265

@pytest.fixture (scope="'class', autouse=True)
def class_scope_fixture():
print ('class_scope_fixture')

@pytest.fixture

def calculator():
"""Returns a Calculator instance"""
print ('calculator fixture')
return Calculator()

def test_initial_value(calculator) :
assert calculator.total ==

def test_add_one(calculator) :
calculator.set (1)
calculator.add()
assert calculator.total ==

def test_subtract_one(calculator) :
calculator.set (1)
calculator.sub()
assert calculator.total == -1

def test_add_one_and_one(calculator) :
calculator.set (1)
calculator.add()
calculator.set (1)
calculator.add()
assert calculator.total ==

If we run this version of the tests, then the output shows when the various fixtures
are run:

session_scope_fixture
module_scope_fixture
class_scope_fixture
calculator fixture
.class_scope_fixture
calculator fixture
.class_scope_fixture
calculator fixture
.class_scope_fixture
calculator fixture

Note that higher scoped fixtures are instantiated first.

24.6 Parameterised Tests

One common requirement of a test is to run the same tests multiple times with
several different input values. This can greatly reduce the number of tests that must
be defined. Such tests are referred to as parametrised tests, with the parameter values
for the test specified using the @pytest .mark.parametrize decorator.

266 24 PyTest Testing Framework

@pytest.mark.parametrize ('inputl, input2, expected', [
(3, 1, 4),
(3, 2,5),
1)
def test_calculator_add_operation(calculator, inputl, input2,
expected) :
calculator.set
calculator.add
calculator.set
calculator.add
assert calculator.total == expected

nputl)

(i
0
(input2)
0

This illustrates setting up a parametrised test for the Calculator in which two
input values are added together and compared with the expected value. Note that the
parameters are named in the decorator and then a list of tuples is used to define the
values to be used for the parameters. In this case the test_calculator_add_

operation will be run two passing in 3, 1 and 4 and then passing in 3, 2 and 5 for
the parameters inputl, input?2 and expected, respectively.

Testing for Exceptions

You can write tests that verify that an exception was raised. This is useful as testing
negative behaviour is as important as testing positive behaviour. For example, we
might want to verify that a particular exception is raised when we attempt to withdraw
money from a bank account which will take us over our overdraft limit.

To verify the presence of an exception in PyTest, use the with statement and
pytest.raises. This is a context manager that will verify on exit that the
specified exception was raised. It is used as follows:

with pytest.raises(accounts.BalanceError) :
current_account.withdraw(200.0)

Ignoring tests

In some cases it is useful to write a test for functionality that has not yet been
implemented; this may be to ensure that the test is not forgotten or because it helps
to document what the item under test should do. However, if the test is run, then the
test suite as a whole will fail because the test is running against behaviour that has
yet to be written.

One way to address this problem is to decorate a test with the
@pytest.mark. skip decorator:

@pytest .mark.skip (reason="'not implemented yet')
def test_calculator_multiply(calculator):
calculator.multiply (2, 3)
assert calculator.total ==

This indicates that PyTest should record the presence of the test but should not try
to execute it. PyTest will then note that the test was skipped; for example in PyCharm
this is shown using a circle with a line through it.

24.8 Exercises 267

| IR
v % Test Results Oms
v % test_calculator Oms
+ test_initial_value Oms
+ test_add_one 0Oms
+/ test_subtract_one 0Oms
v/ test_add_one_and_one Oms
>+ test_calculator_add_operation Oms
@) test_calculator_multiply Oms

It is generally considered best practice to provide a reason why the test has been
skipped so that it is easier to track. This information is also available when PyTest
skips the test:

v, Tests passed: 6, ignored: 1 of 7 tests - Oms

SKIPPED (not implemented yet) [100%]
Skipped: not implemented yet

24.7 Online Resources

See the following online resources for information on PyTest:

e http://pythontesting.net/framework/PyTest/PyTest-introduction/ PyTest intro-
duction.

e https://github.com/pluralsight/intro-to-PyTest An example based introduction to
PyTest.
https://docs.pytest.org/en/latest/ PyTest home page.
https://docs.pytest.org/en/latest/#documentation PyTest documentation.

24.8 Exercises

Create a simple Calculator class that can be used for testing purposes. This
simple calculator can be used to add, subtract, multiple and divide numbers.

http://pythontesting.net/framework/PyTest/PyTest-introduction/
https://github.com/pluralsight/intro-to-PyTest
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/#documentation

268 24 PyTest Testing Framework

This will be a purely command-driven application that will allow the user to
specify.
e the operation to perform.

e the two numbers to use with that operation.

The Calculator object will then return a result. The same object can be used
to repeat this sequence of steps. This general behaviour of the Calculator is
illustrated below in flow chart form:

Get selected
operation

o

Get two
numbers

!

Select the function
to call and call it

|

Return Result

You should also provide a memory function that allows the current result to be
added to or subtracted from the current memory total. It should also be possible to
retrieve the value in memory and clear the memory.

Next write a PyTest set of tests for the Calculator class.

Think about what tests you need to write; remember you can’t write tests for
every value that might be used for an operation; but consider the boundaries, 0, — 1,
1, — 10, + 10, etc.

Of course you also need to consider the cumulative effect of the behaviour of
the memory feature of the calculator; that is multiple memory adds or memory
subtractions and combinations of these.

As you identify tests you may find that you have to update your implementation of
the Calculator class. Have you taken into account all input options; for example
dividing by zero, what should happen in these situations?

Chapter 25 ®)
Mocking for Testing i

25.1 Introduction

Testing software systems is not an easy thing to do; the functions, objects, methods,
etc., that are involved in any program can be complex things in their own right. In
many cases they depend on and interact with other functions, methods and objects;
very few functions and methods operate in isolation. Thus the success of failure of
a function or method or the overall state of an object is dependent on other program
elements.

However, in general it is a lot easier to test a single unit in isolation rather than
to test it as part of a larger more complex system. For example, let us take a Python
class as a single unit to be tested. If we can test this class on its own, we only have
to take into account the state of the classes object and the behaviour defined for the
class when writing our tests and determining appropriate outcomes.

% Unit Under test
Test Class (e.g. aclass or

EEEEEE—— function)

However, if that class interacts with external systems such as external services,
databases, third-party software and data sources, then the testing process becomes
more complex:

© Springer Nature Switzerland AG 2023 269
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_25

270 25 Mocking for Testing

Unit Under test

4--"'""-_-_-'
Test Class (e.g. aclass or

- function)
@

It may now be necessary to verify data updates made to the database, or informa-
tion sent to a remote service, etc., to confirm that the operation of a class’s object
is correct. This makes not only the software being tested more complex but it also
makes the tests themselves more complex. This means that there is greater chance
that the test will fail, that the tests will contain bugs or issues themselves and that
the test will be harder for someone to understand and maintain. Thus a common
objective when writing unit tests or subsystem tests is to be able to test elements/
units in isolation.

The question is how to do this when a function or method relies on other elements?

The key to decoupling functions, methods and objects from other program or
system elements is to use mocks. These mocks can be used to decouple one object
from another, one function from another and one system from another, thereby simpli-
fying the testing environment. These mocks are only intended to be used for testing
purposes; for example the above scenario could be simplified by mocking out each
of the external systems as shown below:

= o3

Unit Under test
Test Class (e.g. aclass or
function)

*=n o3

Mocking is not a Python specific concept, and there are many mocking libraries
available for many different languages. However, in this chapter we will be focussing

25.2 Why Mock? 271

on the unittest.mock library which has been part of the standard Python distribution
since Python 3.3.

25.2 Why Mock?

A useful first question considered with regard to mocking in software testing is ‘Why
mock?’. That is, why bother with the concept of a mock in the first place; why not
test with the real thing?

There are several answers to this, some of which are discussed below:

e Testing in isolation is easier. As mentioned in the introduction, testing a unit
(whether that is a class, a function, a module, etc.) is easier in isolation and then
when dependent on external classes, functions, modules, etc.

e The real thing is not available. In many cases it is necessary to mock out part of a
system or an interface to another system because the real thing is just not available.
This could be for several reasons including that it has not been developed yet. In
the natural course of software development some parts of a system are likely to
be developed and ready for testing before other parts. If one part relies on another
part for some element of its operation, then the system that is not yet available
can be mocked out. In other situations the development team or test team may not
have access to the real thing. This may be because it is only available within a
production context. For example, if a software development house is developing
one subsystem, it may not have access to another subsystem as it is proprietary and
only accessible once the software has been deployed within the client organisation.

¢ Real elements can be time consuming. We want our tests to run as quickly as
possible and certainly within a Continuous Integration (CI) environment we want
them to run fast enough that we can repeatedly test a system throughout the day.
In some situations the real thing may take a significant amount of time to process
the test scenario. As we want to test our own code we may not be worried about
whether a system outside of our control operates correctly or not (at least at this
level testing; it may still be a concern for integration and system testing). We can
therefore improve the response times of our tests if we mock out the real system
and replace it with a mock that provides much faster response times (possibly
because it uses canned responses).

e Thereal thing takes time to set up. In a Continuous Integration (CI) environment,
new bulls of system are regularly and repeatedly tested (e.g. whenever a change is
made to their codebase). In such situations it may be necessary to configure and
deploy the final system to a suitable environment to perform appropriate tests. If
an external system is time consuming to configure, deploy and initialise, it may
be more effective to mock that system out.

272 25 Mocking for Testing

¢ Difficult to emulate certain situations. It can be difficult within a test scenario
to emulate specific situations. These situations are often related to error or excep-
tional circumstances that should never happen within a correctly functioning envi-
ronment. However, it may well be necessary to validate that if such a situation
does occur, then the software can deal with that scenario. If these scanners are
related to how external (the unit under test) system fails or operates incorrectly,
then it may be necessary to mock out these systems to be able to generate the
scenarios.

e We want repeatable tests. By their very nature when you run a test, you either
want it to pass or fail each time it is run with the same inputs. You certainly do not
want tests that pass sometimes and fail other times. This means that there is no
confidence in the tests, and people often start ignoring failed tests. This situation
can happen if the data provided by systems that a test depends on does not supply
repeatable data. This can happen for several different reasons, but a common
cause is because they return real data. Such real data may be subject to change,
for example consider a system that uses a data feed for the current exchange rate
between funds and dollars. If the associated test confirms that a trade when priced
in dollars is correctly converted to funds using the current exchange rate, then
that test is likely to generate a different result every time it is run. In this situation
it would lie better to mock out the current exchange rate service so that a fixed/
known exchange rate is used.

¢ The Real System is not reliable enough. In some cases the real system may not
be reliable enough itself to allow for repeatable tests.

¢ The Real System may not allow tests to be repeated. Finally, the real system may
not allow tests to be easily repeated. For example, a test which involves lodging
a trade for a certain number of IBM shares with an trade order management
system may not allow that trade, with those shares, for that customer to be run
several times (as it would then appear to be multiple trades). However, for the
purposes of testing we may want to test submitting such a trade in multiple different
scenarios, multiple times. It may therefore be necessary to mock out the real order
management system so that such tests can be written.

25.3 What is Mocking?

The previous section gave several reasons to use mocks; the next thing to consider
then is what is a mock?
Mocks, both mock functions, methods and mock objects are things that:

e Possess the same inferface as the real thing, whether they are mock functions,
methods or whole objects. They thus take the same range and types of parameters
and return similar information using similar types.

e Define behaviour that in some way represents/mimics real exemplar behaviour
but typically in very controlled ways. This behaviour may be hard coded, may be

25.4 Common Mocking Framework Concepts 273

really on a set of rules or simplified behaviour and may be very simplistic or quite
sophisticated in its own right.

They thus emulate the real system and from outside of the mock may actually
appear to be the real system.

In many cases the term mock is used to cover a range of different ways in which
the real thing can be emulated; each type of mock has its own characteristics. It is
therefore useful to distinguish the different types of mocks as this can help determine
the style of mock to be adopted in a particular test situation.

There are different types of mock include:

e Test Stubs. A test stub is typically a hand coded function, method or object used
for testing purposes. The behaviour implemented by a test stub may represent a
limited subset of the functionality of the real thing.

e Fakes. Fakes typically provide addition functionality compared with a test stub.
Fakes may be considered to be a test specific version of the real thing, such as
an in memory database used for testing rather than the real database. Such fakes
typically still have some limitations on their functionality; for example when the
tests are terminated all data is purged from the in memory database rather than
stored permanently on disc.

e Autogenerated Test Mocks. These are typically generated automatically using
a supporting framework. As part of the setup of the test the expectations are
associated with the test mock. These expectations may specify the results to return
for specific inputs as well as whether the test mock was called, etc.

e Test Mock Spy. If we are testing a particular unit and it returns the correct result,
we might decide that we do not need to consider the internal behaviour of the unit.
However, it is common to want to confirm that the test mock was invoked in the
way we expected. This helps verify the internal behaviour of the unit under test.
This can be done using a test mock spy. Such a test mock records how many times
it was called and what the parameters used were (as well as other information).
The test can then interrogate the test mock to validate that it was invoked as
expected/as many times as expected/with the correct parameters, etc.

25.4 Common Mocking Framework Concepts

As has been mentioned there are several mocking frameworks around for not only
Python but other languages such as Java, C# and Scala. All of these frameworks
have a common core behaviour. This behaviour allows a mock function, method or
object to be created based on the inferface presented by the real thing. Of course
unlike languages such as C# and Java Python do not have a formal interface concept,
however this does not stop the mocking framework from still using the same idea.
In general once a mock has been created it is possible to define how that mock
should appear to behave; in general this involves specifying the return result to use

274 25 Mocking for Testing

for a function or method. It is also possible to verify that the mock has been invoked
as expected with the parameters expected.

The actual mock can be added to a test or a set of tests either programmatically or
via some form of decorator. In either case for the duration of the test the mock will
be used instead of the real thing.

Assertions can then be used to verify the results returned by the unit under test,
while mock specific methods are typically used to verify (spy on) the methods defined
on the mock.

25.5 Mocking Frameworks for Python

Due to Python’s dynamic nature it is well suited to the construction of mock functions,
methods and objects. In fact there are several widely used mocking frameworks
available for Python including:

e unittest.mock The unittest.mock (includedinthe Python distribution from
Python 3.3 onwards). This is the default mocking library provided with Python
for creating mock objects in Python tests.

e pymox This is a widely used making framework. It is an open-source framework
and has a more complete set of facilities for enforcing the interface of a mocked
class.

e Mocktest This is another popular mocking framework. It has its own Domain
Specific Language (DSL) to support mocking and a wide set of expectation
matching behaviour for mock objects.

In the remainder of this chapter we will focus on the unittest .mock library
as it is provided as part of the standard Python distribution.

25.6 The Unittest.Mock Library

The standard Python mocking library is the unittest .mock library. It has been
included in the standard Python distribution since Python 3.3 and provides a simple
way to define mocks for unit tests.

The key to the unites.mock library is the mock class and its subclass MagicMock.
Mock and MagicMock objects can be used to mock functions, methods and even
while classes. These mock objects can have canned responses defined so that when
they are involved by the unit under test, they will respond appropriately. Existing
objects can also have attributes or individual methods mocked allowing an object to
be tested with a known state and specified behaviour.

To make it easy to work with mock objects, the library provides the
@unittest.mock.pactch () decorator. This decorator can be used to replace
real functions and objects with mock instances. The function behind the decorator

25.6 The Unittest.Mock Library 275

can also be used as a context manager allowing it to be used in with-as statements
providing for fine-grained control over the scope of the mock if required.

25.6.1 Mock and Magic Mock Classes

The unittest.mock library provides the Mock
class and the MagicMock class. The Mock class is the base class for mock
objects. The MagicMock class is a subclass of the Mock class. It is called the
MagicMock class as it provides default implementations for several magic method
such as.__len_ (),._ str_ (), and.__iter_ ().

As a simple example consider the following class to be tested:

class SomeClass () :

def _hidden_method(self):
return 0

def public_method(self, x):
return self.hidden_method () + x

This class defines two methods; one is intended as part of the public interface
of the class (the public_method()) and one is intended only for internal or
private use (the _hidden_method ()). Notice that the hidden method uses the
convention of preceding its name by an underbar (*_’).

Let us assume that we wish to test the behaviour of the public_method ()
and want to mock out the _hidden_method ().

We can do this by writing a test that will create a mock object and use this in
place of the real _hidden_method (). We could probably use either the Mock
class or the MagicMock class for this; however due to the additional functionality
provided by the MagicMock class it is a common practice to use that class. We will
therefore do the same.

The test to be created will be defined within a method within a test class. The
names of the test method and the test class are by convention descriptive and thus
will describe what is being tested, for example:

from unittest.mock import *

from unittest import TestCase
from unittest import main

class test_SomeClass_public_interface(TestCase) :

def test_public_method(self):
test_object = SomeClass ()
Set up canned response on mock method
test_object._hidden_method = MagicMock (name = 'hidden_
method’)
test_object._hidden_method.return_value = 10

276 25 Mocking for Testing

Test the object
result = test_object.public_method(5)
self.assertEqual (15, result, ‘return value from public_
method incorrect’)

In this case note that the class being tested is initiated first. The MagicMock
is then instantiated and assigned to the name of the method to be mocked. This in
effect replaces that method for the test_object. The MagicMock object is given a
name as this helps with treating any issues in the report generated by the unites
framework. Following this the canned response from the mock version of the
_hidden_method () is defined; it will always return the value 10.

At this point we have set up the mock to be used for the test and are now ready to
run the test. This is done in the next line where the public_method () is called
on the test_object with the parameter 5. The result is then stored.

The test then validated the result to ensure that it is correct; i.e. that the returned
value is 15.

Although this is a very simple example it illustrates how a method can be mocked
out using the MagicMock class.

25.6.2 The Patchers

The wunittest.mock.patch(), unittest.mock.patch.object()
and unittest.patch.dict () decorators can be used to simplify the creation
of mock objects.

e The patch decorator takes a target for the patch and returns a MagicMock object
in its place. It can be used as a TastCase method or class decorator. As a class
decorator it decorates each test method in the class automatically. It can also be
used as a context manager via the with and with-as statements.

e The patch.object decorator can be provided with either two or three argu-
ments. When given three arguments, it will replace the object to be patched, with a
mock for the given attribute/method name. When given two arguments the object
to be patched is given a default MagicMock object for the specified attribute/
function.

e The patch.dict decorator patches a dictionary or dictionary like object.

For example, we can rewrite the example presented in the previous section using
the @patch.object decorator to provide the mock object for the _hidden_
method () (it returns a MagicMock linked to SomeClass):

25.6 The Unittest.Mock Library 277

class test_SomeClass_public_interface(TestCase) :

@patch.object (SomeClass, ’_hidden_method’)
def test_public_method(self, mock_method) :
Set up canned response
mock_method.return_value = 10
Create object to be tested
test_object = SomeClass ()
result = test_object.public_method(5)
self.assertEqual (15, result, ’return value from public_
method incorrect’)

In the above code the _hidden_method () is replaced with a mock version for
SomeClass within the test_public_method () method. Note that the mock
version of the method is passed in as a parameter to the test method so that the canned
response can be specified.

You can also use the @patch () decorator to mock a function from a module. For
example, given some external module with a function api_call, we can mock
that function out using the @patch () decorator:

@patch(’external module.api_call’)
def test_some_func(self, mock_api_call):

You used patch () asadecorator and passed the target object’s path. The target
path was ‘external_module.api_call’ which consists of the module name and the
function to mock.

25.6.3 Mocking Returned Objects

In the examples looked at so far the results returned from the mock functions or
methods have been simple integers. However, in some cases the returned values
must themselves be mocked as the real system would return a complex object with
multiple attributes and methods.

The following example uses a MagicMock object to represent an object returned
from a mocked function. This object has two attributes: one is a response code and
the other is a JSON string. JSON stands for the JavaScript Object Notation and is a
commonly used format in web services.

import external_module
from unittest.mock import *

from unittest import TestCase
from unittest import main
import json

def some_func () :
Calls out to external API - which we want to mock
response = external_module.api_call()

278 25 Mocking for Testing

return response
class test_some_func_calling api (TestCase) :

@patch (’external_module.api_call’)
def test_some_func (self, mock_api_call):
Sets up mock version of api_call
mock_api_call.return_value = MagicMock (status_code=200,
response=json.dumps ({'key’: 'value’}))
Calls some_func() that calls the (mock) api_call()
function
result = some_func ()
Check that the result returned from some_func() is what
was expected
self.assertEqual (result.status_code, 200, "returned status

code is not 200")
self.assertEqual (result.response, ’{"key": "value"}’,
"response JSON incorrect")

In this example the function being tested is some_func (), but some_
func () calls out to the mocked function external_module.api_call ().
This mocked function returns a MagicMock object with a pre-specified status_
code and response. The assertions then validate that the object returned by
some_func () contains the correct status code and response.

25.6.4 Validating Mocks Have Been Called

Using unittest.mockitis possible to validate that a mocked function or method
was called appropriately using assert_called(), assert_called_with()
or assert_called_once_with () depending on whether the function takes
parameters or not.

The following version of the test_some_func_with params () test
method verifies that the mock api_call () function was called with the correct
parameter.

@patch(’external_module.api_call_with_param’)
def test_some_func_with_param(self, mock_api_call):
Sets up mock version of api_call
mock_api_call.return_value = MagicMock (status_code=200,
response=json.dumps ({’age’: 723"}))
result = some_func_with_param(’Phoebe’)
Check result returned from some_func() 1s what was
expected
self.assertEqual (result.response, ’{age": "23"}’, ’JSON
result incorrect’)
Verify that the mock_api_call was called with the correct
params
mock_api_call.api_call_with_param.assert_called_with (’Phoebe’)

If we wished to validate that it had only been called once, we could use the
assert_called_once_with () method.

25.7 Mock and MagicMock Usage 279

25.7 Mock and MagicMock Usage

25.7.1 Naming Your Mocks

It can be useful to give your mocks a name. The name is used when the mock appears
in test failure messages. The name is also propagated to attributes or methods of the
mock:

mock = MagicMock (name=’£foo’)

25.7.2 Mock Classes

As well as mocking an individual method on a class it is possible to mock a whole
class. This is done by providing the patch() decorator with the name of the class to
patch (with no named attribute/method). In this case the while class is replaced by a
MagicMock object. You must then specify how that class should behave.

import people

from unittest.mock import *
from unittest import TestCase
from unittest import main

class MyTest (TestCase) :

@patch(’people.Person’)
def test_one(self, MockPerson) :
self.assertIs (people.Person, MockPerson)
instance = MockPerson.return_value
instance.calculate_pay.return_value = 250.0
payroll = people.Payroll ()
result = payroll.generate_payslip(instance)
self.assertEqual (‘You earned 250.0’, result, ’payslip
incorrect’)

In this example the people.Person class has been mocked out. This class has a
method calculate_pay() which is being mocked here. The payroll class has a method
generate_payslip () that expects to be given a person object. It then uses
the information provided by the person objects calculate_pay () method to
generate the string returned by the generate_payslip () method.

25.7.3 Attributes on Mock Classes

Attributes on a mock object can be easily defined; for example if we want to set an
attribute on a mock object, then we can just assign a value to the attribute:

280 25 Mocking for Testing

import people
from unittest.mock import *
from unittest import TestCase

class MyTest (TestCase) :

@patch (’people.Person’)
def test_one(self, MockPerson) :
self.assertIs (people.Person, MockPerson)
instance = MockPerson.return_value
instance.age = 24
instance.name = ’‘Adam’
self.assertEqual (24, instance.age, 'age incorrect’)
self.assertEqual (‘Adam’, instance.name, 'name incorrect’)

In this case the attribute age and name have been added to the mock instance of
the people.Person class.

If the attribute itself needs to be a mock object, then all that is required is to assign
a MagicMock (or Mock) object to that attribute:

instance.address = MagicMock (name=’Address’)

25.7.4 Mocking Constants

Itis very easy to mock out a constant; this can be done using the @patch () decorator
and proving the name of the constant and the new value to use. This value can be
a literal value such as 42 or ‘Hello’ or it can be a mock object itself (such as a
MagicMock object). For example:

@patch (’mymodule.MAX COUNT’, 10)
def test_something(self):
Test can now use mymodule.MAX_COUNT

25.7.5 Mocking Properties

It is also possible to mock Python properties. This is done again using the @patch
decorator but using the unittest.mock.PropertyMock class and the new_
callable parameter. For example:

@patch(’/mymoule.Car.wheels’, new_callable=mock.PropertyMock)
def test_some_property(self, mock_wheels) :
mock_wheels.return_value = 6
Rest of test method

25.7 Mock and MagicMock Usage 281

25.7.6 Raising Exceptions with Mocks

A very useful attribute that can be specified when a mock object is created is the
side_effect. If you set this to an exception class or instance, then the exception
will be raised when the mock is called, for example:

mock = Mock (side_effect=Exception(’Boom!’))
mock ()

This will result in the exception being raised when the mock() is invoked.

25.7.7 Applying Patch to Every Test Method

If you want to mock out the thing for every test in a test class, then you can decorate
the whole class rather than each individual method. The effect of decorating the class
is that the patch will be automatically applied to all test methods in the class (i.e. to
all methods starting with the word ‘test’). For example:

import people

from unittest.mock import *
from unittest import TestCase
from unittest import main

@patch(’people.Person’)
class MyTest (TestCase) :

def test_one(self, MockPerson) :
self.assertIs(people.Person, MockPerson)

def test_two(self, MockSomeClass) :
self.assertIs(people.Person, MockSomeClass)

def do_something(self) :
return ’‘something’

In the above test class, the tests test_one and test_two are supplied with
the mock version of the Person class. However the do_something () method
is not affected.

25.7.8 Using Patch as a Context Manager

The patch function can be used as a context manager. This gives fine-grained control
over the scope of the mock object.

In the following example the test_one () method contains a with-as state-
ment that we used to patch (mock) the person class as MockPerson. This mock
class is only available within the with-as statement.

282 25 Mocking for Testing

import people

from unittest.mock import *
from unittest import TestCase
from unittest import main

class MyTest (TestCase) :

def test_one(self):
with patch(’people.Person’) as MockPerson:
self.assertIs (people.Person, MockPerson)
instance = MockPerson.return_value
instance.calculate_pay.return_value = 250.0
payroll = people.Payroll ()
result = payroll.generate_payslip(instance)
self.assertEqual (‘You earned 250.0’, result, ’payslip
incorrect’)

25.8 Mock Where You Use It

The most common error made by people using the unittest.mock library is
mocking in the wrong place. The rule is that you must mock out where you are going
to use it; or to put it another way you must always mock the real thing where it is
imported into, not where it’s imported from.

25.9 Patch Order Issues

It is possible to have multiple patch decorators on a test method. However, the order
in which you define the patch decorators is significant. The key to understanding
what the order should be is to work backwards so that when the mocks are passed
into the test method, they are presented to the right parameters. For example:

@patch(/mymodule.sys’)

@patch(’/mymodule.os’)

@patch(’/mymodule.os.path’)

def test_something (self,
mock_os_path,
mock_os,
mock_sys) :

The rest of the test method

Notice that the last patch’s mock is passed into the second parameter passed to the
test_something () method (self is the first parameter to all methods). In turn
the first patch’s mock is passed into the last parameter. Thus the mocks are passed
into the test method in the reverse order to that which they are defined in.

25.11 Mocking Considerations 283

25.10 How Many Mocks?

An interesting question to consider is how many mocks should you use per test?

This is the subject or a lot of debate within the software testing community. The
general rules of thumb around this topic are given below; however it should be borne
in mind that these are guidelines rather than hard and fast rules.

e Avoid more than 2 or 3 mocks per test. You should avoid more than 2 to
3 mocks as the mocks themselves get harder to manage. Many also consider
that if you need more than 2 to 3 mocks per test, then there are probably some
underlying design issues that need to be considered. For example, if you are testing
a Python class, then that class may have too many dependencies. Alternatively
the class may have too many responsibilities and should be broken down into
several independent classes; each with a distinct responsibility. Another cause
might be that the class’s behaviour may not be encapsulated enough and that you
are allowing other elements to interact with the class in more informal ways (i.e.
the interface between the class and other elements is not clean/exploit enough).
The result is that it may be necessary to refactor your class before progressing
with your development and testing.

e Only mock you nearest neighbour. You should only ever mock your nearest
neighbour whether that is a function, method or object. You should try to avoid
mocking dependencies of dependencies. If you find yourself doing this, then it
will become harder to configure, maintain, understand and develop. It is also
increasingly likely that you are testing the mocks rather than your own function,
method or class.

25.11 Mocking Considerations

The following provide some rules of thumb to consider when using mocks with your
tests:

Don’t over mock—if you do then you can end up just testing the mocks themselves.
Decide what to mock, typical examples of what to mock include those elements
that are not yet available, those elements that are not by default repeatable (such
as live data feeds) or those elements of the system that are time consuming or
complex.

e Decide where to mock such as the interfaces for the unit under test. You want to
test the unit so any interface it has with another system, function, class might be
a candidate for a mock.

Decide when to mock so that you can determine the boundaries for the test.
Decide how you will implement your mocks. For example you need to consider
which mocking framework(s) you will use or how to mock larger components
such as a database.

284 25 Mocking for Testing

25.12 Online Resources

There is a great deal of information available on how to mock, when to mock and
what mock libraries to use; however the following provides useful starting points for
Python mocking:

e https://docs.python.org/3/library/unittest. mock.html The Python Standard
Library documentation on the unitest.mock library.

e https://docs.python.org/3/library/unittest. mock-examples.html A set of examples
you can use to explore mocking using unites.mock.

e https://pymox.readthedocs.io/en/latest/index.html Pymox is an alternative open-
source mock object framework for Python.

e http://gfxmonk.net/dist/doc/mocktest/doc mocktest its yet another mocking
library for Python.

25.13 Exercises

One of the reasons for mocking is to ensure that tests are repeatable. In this exercise
we will mock out the use of a random number generated to ensure that our tests can
be easily repeated.

The following program generates a deck of cards and randomly picks a card from
the deck:

import random

def create_suite(suite):
return [(i, suite) for i in range(1l, 14)]

def pick_a_card(deck) :
print (‘You picked’)
position = random.randint (0, 52)
print (deck|[position] [0], "of", deck[position][1])
return (deck[position])

Set up the data

hearts = create_suite(’hearts’)
spades = create_suite(’spades’)
diamonds = create_suite(’diamonds’)
clubs = create_suite(’clubs’)

Make the deck of cards
deck = hearts + spades + diamonds + clubs

Randomly pick from the deck of cards
card = pick_a_card (deck)

Each time the program is run a different card is picked; for example in two
consecutive runs the following output is obtained:

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock-examples.html
https://pymox.readthedocs.io/en/latest/index.html
http://gfxmonk.net/dist/doc/mocktest/doc

25.13 Exercises 285

You picked
13 of clubs
You picked
1 of hearts

We now want to write a test for the pick_a_card() function. You should mock out
the random.randint(0) function to do this.

Part V
File Input/Output

Chapter 26 ®)
Introduction to Files, Paths and 10 Gouck ko

26.1 Introduction

The operating system is a critical part of any computer systems. It is comprised of
elements that manage the processes that run on the CPU, how memory is utilised
and managed, how peripheral devices are used (such as printers and scanners), it
allows the computer system to communicate with other systems, and it also provides
support for the file system used.

The file system allows programs to permanently store data. This data can then
be retrieved by applications at a later date, potentially after the whole computer has
been shut down and restarted.

The File Management System is responsible for managing the creation, access
and modification of the long-term storage of data in files.

This data may be stored locally or remotely on discs, tapes, DVD drives, USB
drives, etc.

Although this was not always the case, most modern operating systems organise
files into a hierarchical structure, usually in the form of an inverted tree. For example
in the following diagram the root of the directory structure is shown as ‘/’. This root
directory holds six subdirectories. In turn the users subdirectory holds three further
directories and so on:

© Springer Nature Switzerland AG 2023 289
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_26&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_26

290 26 Introduction to Files, Paths and 10

%\
[bin ldev%ew var

tmoore thmt ; ‘I_ep.rocter

docs workspaces [temp

pycharmprojects

furtherpython

Each file is contained within a directory (also known as a folder on some operating
systems such as Windows). A directory can hold zero or more files and zero or more
directories.

For any give directory there are relationships with other directories as shown
below for the directory jhunt:

/ root
|
Users parent
I
jhunt working directory

workspaces | subdirectory

The root directory is the starting point for the hierarchical directory tree structure.
A child directory of a given directory is known as a subdirectory. The directory
that holds the given directory is known as the parent directory. At any one time, the

26.1 Introduction 291

directory within which the program or user is currently working is known as the
current working directory.

A user or a program can move around this directory structure as required. To do
this, the user can typically either issue a series of commands at a terminal or command
window, such as DC to change directory or pwd to print the working directory.
Alternatively graphical user interfaces (GUISs) to operating systems usually include
some form of file manager application that allows a user to view the file structure in
terms of a tree. The finder program for the Mac is shown below with a tree structure
displayed for a pycharmprojects directory. A similar view is also presented for
the Windows Explorer program.

@ @ workspaces
< =] = RIEPEXE-E »
Back/Forward View Action Group Share Edit Tags
Favourites Name ~ Date Modified
% Dropbox v pychamrprojects 26 Af 1
0 Downloads > beginnerspython3 26 Apr 2019 at 12:3¢
7&,: Applications v furtherpython3 Today at 11:23
¢ chapter2 Today at 09:56
@ Documents
7 rgb_colours.py Today at 09:56
R it - e 3 =
fcoms > chapter3 26 Apr 2019 at 12:26
33 midmarsh > chapterd) at 12:26
B2 projects » [0 chapters 2019 at 15:04
) Google Dri... ~ et AL K ANAN s A7
&t jen B Macintosh HD » I Users > Shared » workspaces

“ = 4 1 = Users 3 john * PychanmProgects » furthenpythond v s thergryt s
Prehaemirojects - -~
Eeginnergrython —
Hurthespythond chapter3
prthon-stre chapterd
Saved Games chapterS
Searches chaptert:
g haptes
- chaptert
chapter12
MsDisSorver130 -
e L >
25#ems 1 item selecied =

292 26 Introduction to Files, Paths and 10

26.2 File Attributes

A file will have a set of attributes associated with it such as the data that it was
created, the date it was last updated/modified, how large the file is, etc. It will also
typically have an attribute indicating who the owner of the file is. This may be the
creator of the file; however the ownership of a file can be changed either from the
command line or through the GUI interface. For example, on Linux and Mac OS X
the command chown can be used to change the file ownership.

It can also have other attributes which indicate who can read, write or execute the
file. In Unix style systems (such as Linux and Mac OS X) these access rights can be
specified for the file owner, for the group that the file is associated with and for all
other users.

The file owner can have rights specified for reading, writing and executing a
file. These are usually represented by the symbols ‘r’, ‘w’ and ‘x’, respectively. For
example the following uses the symbolic notation associated with Unix files and
indicates that the file owner is allowed to read, write and execute a file:

Here the first dash is left blank as it is to do with special files (or directories),
then the next set of three characters represent the permissions for the owner, the
following set of three the permissions for all other users. As this example has rwx
in the first group of three characters this indicates that the user can read ‘r’, write
‘w’” and execute ‘x’ the file. However the next six characters are all dashes indicating
that the group and all other users cannot access the file at all.

The group that a file belongs to is a group that can have any number of users as
members. A member of the group will have the access rights as indicated by the
group settings on the file. As for the owner of a file these can be to read, write or
execute the file. For example, if group members are allowed to read and execute a
file, then this would be shown using the symbolic notation as:

————r-X-—-—-—

Now this example indicates that only members of the group can read and execute
the file; note that group members cannot write the file (they therefore cannot modify
the file).

If a user is not the owner of a file, nor a member of the group that the file is part of,
then their access rights are in the ‘everyone else’ category. Again this category can
have read, write or execute permissions. For example, using the symbolic notation,
if all users can read the file but are not able to do anything else, then this would be
shown as:

—————— e r--—

26.3 Paths 293

Of course a file can mix the above permissions together, so that an owner may be
allowed to read, write and execute a file, the group may be able to read and execute
the file, but all other users can only read the file. This would be shown as:

—YwXr-Xr—--—

In addition to the symbolic notation there is also a numeric notation that is used
with Unix style systems. The numeric notation uses three digits to represent the
permissions. Each of the three rightmost digits represents a different component of
the permissions: owner, group, and others.

Each of these digits is the sum of its component bits in the binary numeral system.
As a result, specific bits add to the sum as it is represented by a numeral:

The read bit adds 4 to its total (in binary 100),

The write bit adds 2 to its total (in binary 010), and

The execute bit adds 1 to its total (in binary 001).

The following symbolic notations can be represented by an equivalent numeric
notation:

Symbolic notation | Numeric notation | Meaning

IWX----—- 0700 Read, write, and execute only for owner

-TWXIWX--- 0770 Read, write, and execute for owner and group
-TWXTWXITWX 0777 Read, write, and execute for owner, group, and others

Directories have similar attributes and access rights to files. For example, the
following symbolic notation indicates that a directory (indicated by the ‘d’) has read
and executed permissions for the directory owner and for the group. Other users
cannot access this directory:

dr-xr-x---

The permissions associated with a file or directory can be changed either using
a command from a terminal or command window (such as chmod which is used to
modify the permissions associated with a file or directory) or interactively using the
file explorer style tool.

26.3 Paths

A pathis a particular combination of directories that can lead to a specific subdirectory
or file.

This concept is important as Unix/Linux/macOS X and Windows file systems
represent an inverted tree of directories and files. It is thus important to be able to
uniquely reference locations with the tree.

294 26 Introduction to Files, Paths and 10

For example, in the following diagram the path /Users/jhunt/workspaces/
pycharmprojects/furtherpython/chapter 2 is highlighted:

‘dev‘ Ietcl Users ltm_p[lﬂ‘

tmoore jhunt eprocter
[tmeore | [procter

| docs ‘ | workspaces ‘ ltemp ‘

‘ pycharmprojects |

furtherpython

Path: /Users/jhunt/workspaces/pycharmprojects/furtherpython/chapter2

A path may be absolute or relative. An absolute path is one which provides
a complete sequence of directories from the root of the file system to a specific
subdirectory or file.

A relative path provides a sequence from the current working directory to a
particular subdirectory or file.

The absolute path will work wherever a program or user is currently located within
the directory tree. However, a relative path may only be relevant in a specific location.

For example, in the following diagram, the relative path pycharmprojects/
furtherpython/chapter 2 is only meaningful relative to the directory workspaces:

26.4 File Input/Output

295

|dev| |etc| |users| [tmp

tmoore jhunt | eprocter |

docs | | workspaces | | temp
—_—
further|python

chapter2

Relative path: pycharmprojects/furtherpython/chapter2

Note that an absolute path starts from the root directory (represented by
‘/’), whereas a relative path starts from a particular subdirectory (such as

pychamprojects).

26.4 File Input/Output

File input/output (often just referred to as File I/O) involves reading and writing data
to and from files. The data being written can be in different formats.

For example a common format used in Unix/Linux and Windows systems is the
ASCII text format. The ASCII format (or American Standard Code for Information
Interchange) is a set of codes that represent various characters that is widely used
by operating systems. The following table illustrates some of the ASCII character
codes and what they represent:

Decimal code Character Meaning
42 * Asterisk
43 + Plus
48 0 Zero

(continued)

296 26 Introduction to Files, Paths and 10

(continued)

Decimal code Character Meaning

49 1 One

50 2 Two

51 3 Three

65 A Uppercase A
66 B Uppercase B
67 C Uppercase C
68 D Uppercase D
97 a Lowercase a
98 b Lowercase b
99 c Lowercase ¢
100 d Lowercase d

ASCII is a very useful format to use for text files as they can be read by a wide
range of editors and browsers. These editors and browsers make it very easy to create
human readable files. However, programming languages such as Python often use
a different set of character encodings such as a Unicode character encoding (such
as UTF-8). Unicode is another standard for representing characters using various
codes. Unicode encoding systems offer a wider range of possible character encodings
than ASCII; for example the latest version of Unicode in May 2019, Unicode 12.1,
contains a repertoire of 137,994 characters covering 150 modern and historic scripts,
as well as multiple symbol sets and emojis.

However, this means that it can be necessary to translate ASCII into Unicode (e.g.
UTF-8) and vice versa when reading and writing ASCII files in Python.

Another option is to use a binary format for data in a file. The advantage of
using binary data is that there is little or no translation required from the internal
representation of the data used in the Python program into the format stored in the
file. It is also often more concise than an equivalent ASCII format, and it is quicker
for a program to read and write and takes up less disc space, etc. However, the down
side of a binary format is that it is not in an easily human readable format. It may
also be difficult for other programs, particularly those written in other programming
languages such as Java or C#, to read the data in the files.

26.5 Sequential Access versus Random Access

Data can be read from (or indeed written to) a file either sequentially or via a random
access approach.

Sequential access to data in a file means that the program reads (or writes) data
to a file sequentially, starting at the beginning of a file and processing the data an

26.7 Online Resources 297

item at a time until the end of the file is reached. The read process only ever moves
forward and only to the next item of data to read.

Random access to a data file means that the program can read (or write) data
anywhere into the file at any time. That is the program can position itself at a particular
point in the file (or rather a pointer can be positioned within the file), and it can then
start to read (or write) at that point. If it is reading, then it will read the next data item
relative to the pointer rather than the start of the file. If it is writing data, then it will
write data from that point rather than at the end of the file. If there is already data at
that point in the file, then it will be overwritten. This type of access is also known as
direct access as the computer program needs to know where the data is stored within
the file and thus goes directly to that location for the data. In some cases the location
of the data is recorded in an index and thus is also known as indexed access.

Sequential file access has advantages when a program needs to access information
in the same order each time the data is read. It is also faster to read or write all the
data sequentially than via direct access as there is no need to move the file pointer
around.

Random access files however are more flexible as data does not need to be written
or read in the order in which it is obtained. It is also possible to jump to just the
location for the data required and read that data (rather than needing to sequentially
read through all the data to find the data items of interest).

26.6 Files and I/0 in Python

In the remainder of this section of the book we will explore the basic facilities
provided for reading and writing files in Python. We will also look at the underlying
streams model for file I/O. After this we will explore the widely used CSV and
Excel file formats and libraries available to support those. This section concludes
by exploring the regular expression facilities in Python. While this last topic is not
strictly part of file I/O it is often used to parse data read from files to screen out
unwanted information.

26.7 Online Resources

See the following online resources for information on the topics in this chapter:

e https://en.wikipedia.org/wiki/ASCII Wikipedia page on ASCII.
e https://en.wikipedia.org/wiki/Unicode Wikipedia page on Unicode.
e https://en.wikipedia.org/wiki/UTF-8 Wikipedia page on UTF-8.

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 27 ®)
Reading and Writing Files i

27.1 Introduction

Reading data from and writing data to a file are very common within many programs.
Python provides a large amount of support for working with files of various types.
This chapter introduces you to the core file IO functionality in Python.

27.2 Obtaining References to Files

Reading from, and writing to, text files in Python is relatively straightforward. The
built-in open () function creates a file object for you that you can use to read and/
or write data from and/or to a file.

The function requires as a minimum the name of the file you want to work with.

Optionally you can specify the access mode (e.g. read, write, append, etc.). If you
do not specify a mode then the file is open in read-only mode. You can also specify
whether you want the interactions with the file to be buffered which can improve
performance by grouping data reads together.

The syntax for the open () function is

file_object = open(file_name, access_mode, buffering)

where

file_name indicates the file to be accessed.

access_mode: The access_mode determines the mode in which the file is
to be opened, i.e. read, write, append, etc. A complete list of possible values is
given below in the table. This is an optional parameter, and the default file access
mode is read (r).

© Springer Nature Switzerland AG 2023 299
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_27

300

27 Reading and Writing Files

e buffering: If the buffering value is set to 0, no buffering takes place. If the
buffering value is 1, line buffering is performed while accessing a file.

The access_mode values are given in the following table.

Mode | Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This
is the default mode

rb Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of the
file

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at the
beginning of the file

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not
exist, it creates a new file for writing

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, it creates a new file for writing

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If
the file does not exist, it creates a new file for reading and writing

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file
if the file exists. If the file does not exist, it creates a new file for reading and writing

a Opens a file for appending. The file pointer is at the end of the file if the file exists. That
is, the file is in the append mode. If the file does not exist, it creates a new file for writing

ab Opens a file for appending in binary format. The file pointer is at the end of the file if
the file exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if
the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the

end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing

The file object itself has several useful attributes such as

e file.closed returns True if the file has been closed (can no longer be
accessed because the close () method has been called on it).

e file.mode returns the access mode with which the file was opened.

e file.name the name of the file.

The file.close () method is used to close the file once you have finished
with it. This will flush any unwritten information to the file (this may occur because
of buffering) and will close the reference from the file object to the actual underlying
operating system file. This is important to do as leaving a reference to a file open can
cause problems in larger applications as typically there are only a certain number of

27.3 Reading Files 301

file references possible at one time, and over a long period of time these may all be
used up resulting in future errors being thrown as files can no longer be opened.
The following short code snippet illustrates the above ideas:

file = open('myfile.txt', 'r+')
print('file.name:', file.name)
print('file.closed:', file.closed)
print('file.mode:', file.mode)
file.close()

print('file.closed now:', file.closed)

The output from this is:

file.name: myfile.txt
file.closed: False
file.mode: r+
file.closed now: True

27.3 Reading Files

Of course, having set up a file object we want to be able to either access the contents
of the file or write data to that file (or do both). Reading data from a text file is
supported by the read (), readline () and readlines () methods:

The read () method will return the entire contents of the file as a single string.
The readline () method reads the next line of text from a file. It returns all
the text on one line up to and including the newline character. It can be used to
read a file a line at a time.

o The readlines () method returns a list of all the lines in a file, where each
item of the list represents a single line.

Note that once you have read some text from a file using one of the above opera-
tions then that line is not read again. Thus using readlines () would result in a
further readlines () returning an empty list whatever the contents of the file.

The following illustrates using the readlines () method to read all the text in
a text file into a program and then print each line out in turn:

file = open('myfile.txt', 'r')
lines = file.readlines()
for line in lines:

print(line, end="")
file.close()

Notice that within the for loop we have indicated to the print function that we
want the end character to be ' ' rather than a newline; this is because the line string
already possesses the newline character read from the file.

302 27 Reading and Writing Files

27.4 File Contents Iteration

As suggested by the previous example, it is very common to want to process the
contents of a file one line at a time. In fact Python makes this extremely easy by
making the file object support iteration. File iteration accesses each line in the file
and makes that line available to the for loop. We can therefore write:

file = open('myfile.txt', 'r')
for line in file:

print(line, end="'")
file.close()

It is also possible to use the list comprehension to provide a very concise way to
load and process lines in a file into a list. It is similar to the effect of readlines ()
but we are now able to pre-process the data before creating the list:

file = open('myfile.txt', 'r')

lines = [line.upper () for line in file]
file.close()

print (lines)

27.5 Writing Data to Files

Writing a string to a file is supported by the write () method. Of course, the file
object we create must have an access mode that allows writing (such as ‘w’). Note
that the write method does not add a newline character (represented as' \n ') to the
end of the string—you must do this manually.

An example short program to write a text file is given below:

print ('Writing file')

f = open('my-new-file.txt', 'w')

f.write('Hello from Python!!\n')
f.write('Working with files is easy...\n')
f.write('It is cool ...\n')

f.close()

This creates a new file called my-new-file. txt. It then writes three strings
to the file each with a newline character on the end; it then closes the file.

27.7 The Fileinput Module 303

The effect of this is to create a new file called myfile. txt with three lines in
it:

Project = S = & — | & my-new-filetxt |
S Hello from Python!! ¥
= files3.py) Working with files is easy...)
= my-new-file.txt It is cool ...
= myfile.txt

=~ textfileexample.py
threars

27.6 Using Files and with Statements

Like several other types where it is important to shut down resources, the file object
class implements the Context Manager Protocol and thus can be used with the with
statement. It is therefore common to write code that will open a file using the with
as structure thus ensuring that the file will be closed when the block of code is
finished with, for example:

with open('my-new-file.txt', 'r') as f:
lines = file.readlines ()
for line in lines:
print(line, end="'")

27.7 The Fileinput Module

In some situations, you may need to read the input from several files in one go. You
could do this by opening each file independently and then reading the contents and
appending that contents to a list, etc. However, this is a common enough requirement
that the £i11einput module provides a function fileinput. input () thatcan
take a list of files and treat all the files as a single input significantly simplifying this
process, for example:

with fileinput.input (files=('spam.txt', 'eggs.txt')) as f:

for line in f:
process (line)

Features provided by the £ileinput module include

e Return the name of the file currently being read.
e Return the integer “file descriptor” for the current file.

304 27 Reading and Writing Files

Return the cumulative line number of the line that has just been read.
Return the line number in the current file. Before the first line has been read this
returns 0.

e A Boolean function that indicates if the current line just read is the first line of its
file.

Some of these are illustrated below:

with fileinput.input(files=('textfilel.txt',K 'textfile2.txt'))
as f:

line = f.readline ()

print ('f.filename():', f.filename())

print ('f.isfirstline():', f.isfirstline())
print ('f.lineno():', f.lineno())
print ('f.filelineno():', f.filelineno())

for line in f:
print(line, end="'")

27.8 Renaming Files

A file can be renamed using the os . rename () function. This function takes two
arguments, the current filename and the new filename. It is part of the Python os
module which provides methods that can be used to perform a range of file processing
operations (such as renaming a file). To use the module, you will first need to import
it. An example of using the rename function is given below:

import os
os.rename ('myfileoriginalname.txt', 'myfilenewname.txt')

27.9 Deleting Files

A file can be deleted using the os.remove () method. This method deletes the
file specified by the filename passed to it. Again, it is part of the os module, and
therefore this must be imported first:

import os
os.remove ('somefilename.txt')

27.10 Random Access Files 305

27.10 Random Access Files

All the examples presented so far suggest that files are accessed sequentially, with
the first line read before the second and so on. Although this is (probably) the most
common approach it is not the only approach supported by Python; it is also possible
to use a random access approach to the contents within a file.

To understand the idea of random file access it is useful to understand that we can
maintain a pointer into a file to indicate where we are in that file in terms of reading
or writing data. Before anything is read from a file the pointer is before the beginning
of the file, and reading the first line of text would, for example, advance the point to
the start of the second line in the file, etc. This idea is illustrated below:

Before readline()

File
pointer >
[Linel |
| Line2 |
| Line3 |
After readline()
File
pointer > -
[Line2 |
[Line3 |

When randomly accessing the contents of a file the programmer manually moves
the pointer to the location required and reads or writes text relative to that pointer.
This means that they can move around in the file reading and writing data.

The random access aspect of a file is provided by the seek method of the file
object:

e file.seek (offset, whence) this method determines where the next
read or write operation (depending on the mode used in the open () call) takes
place.

In the above the offset parameter indicates the position of the read/write pointer
within the file. The move can also be forwards or backwards (represented by a
negative offset).

The optional whence parameter indicates where the offset is relative to. The values
used for whence are:

306 27 Reading and Writing Files

e (indicates that the offset is relative to start of file (the default).
¢ 1 means that the offset is relative to the current pointer position.
e 2 indicates the offset is relative to end of file.

Thus, we can move the pointer to a position relative to the start of the file, to the
end of the file or to the current position.

For example, in the following sample code we create a new text file and write a
set of characters into that file. At this point the pointer is positioned after the ‘z’ in
the file. However, we then use seek () to move the point to the 10th character in
the file and now write ‘Hello’; next we reposition the pointer to the 6th character
in the file and write out ‘BOO’. We then close the file. Finally, we read all the lines
from the file using a with as statement and the open () function, and from this
we will see that the text is the file is now abcde fBOOJHELLOpPQYr S tUvwXy Z:

f =open('text.txt', 'w')
f.write('abcdefghijklmnopqgrstuvwxyz\n')
f.seek(10,0)

f.write('HELLO')

f.seek (6, 0)

f.write ('BOO"')

f.close()

with open('text.txt', 'r') as f:

for line in f:
print(line, end="")

27.11 Directories

Both Unix style and Windows operating systems are hierarchical structures
comprising directories and files. The os module has several functions that can help
with creating, removing and altering directories. These include:

e mkdir () This function is used to create a directory, and it takes the
name of the directory to create as a parameter. If the directory already
exists FileExistsError is raised.

e chdir () This function can be used to change the current working directory.
This is the directory that the application will read from/write to by default.

e getcwd () This function returns a string representing the name of the current
working directory.

e rmdir () This function is used to remove/delete a directory. It takes the name
of the directory to delete as a parameter.

e listdir () This function returns a list containing the names of the entries in the
directory specified as a parameter to the function (if no name is given the current
directory is used).

27.12 Temporary Files 307

A simple example illustrating the use of some of these functions is given below:

import os

print ('os.getcwd(:', os.getcwd())

print ('List contents of directory')

print (os.listdir())

print ('Create mydir')

os.mkdir ('mydir')

print ('List the updated contents of directory')
print (os.listdir())

print ('Change into mydir directory')

os.chdir ('mydir')

print ('os.getcwd(:', os.getcwd())

print ('Change back to parent directory')
os.chdir('..")

print ('os.getcwd(:', os.getcwd())

print ('Remove mydir directory')

os.rmdir ('mydir')

print ('List the resulting contents of directory')
print (os.listdir())

Note that ' .. "' is a short hand for the parent directory of the current directory
and ' . ' is short hand for the current directory.

An example of the type of output generated by this program for a specific set up
on a Mac is given below:

os.getcwd (: /Users/Shared/workspaces/pycharm/pythonintro/
textfiles

List contents of directory

['my-new-file.txt"', 'myfile.txt"', 'textfilel.txt',

"textfile2.txt']

Create mydir

List the updated contents of directory

['my-new-file.txt"', 'myfile.txt', 'textfilel.txt',
'textfile2.txt', 'mydir']

Change into mydir directory

os.getcwd (: /Users/Shared/workspaces/pycharm/pythonintro/
textfiles/mydir

Change back to parent directory

os.getcwd (: /Users/Shared/workspaces/pycharm/pythonintro/
textfiles

Remove mydir directory

List the resulting contents of directory

['my-new-file.txt', 'myfile.txt"', 'textfilel.txt',
"textfile2.txt']

27.12 Temporary Files

During the execution of many applications it may be necessary to create a temporary
file that will be created at one point and deleted before the application finishes. It is of
course possible to manage such temporary files yourself; however, the tempfile

308 27 Reading and Writing Files

module provides a range of facilities to simplify the creation and management of
these temporary files.

Within the tempfile module TemporaryFile, NamedTemporaryFile,
TemporaryDirectory and SpooledTemporaryFile are high-level file
objects which provide automatic clean-up of temporary files and directories. These
objects implement the Context Manager Protocol.

The tempfile module also provides the lower-level functions mkstemp () and
mkdtemp () that can be used to create temporary files that require the developer to
manage them and delete them at an appropriate time.

The high-level features for the tempfile module are:

e TemporaryFile(mode = 'w + b') Returns an anonymous file-like
object that can be used as a temporary storage area. On completion of the managed
context (via a with statement) or destruction of the file object, the temporary file
will be removed from the filesystem. Note that by default all data is written to the
temporary file in binary format which is generally more efficient.

® NamedTemporaryFile(mode = 'w + b') This function operates
exactly as TemporaryFile () does, except that the file has a visible name in
the filesystem.

® SpooledTemporaryFile (max_size = 0, mode = 'w + b')
This function operates exactly as TemporaryFile () does, except that
data is spooled in memory until the file size exceeds max_size, or until the
file’s £ileno () method is called, at which point the contents are written to disc
and operation proceeds as with TemporaryFile ().

® TemporaryDirectory(suffix = None, prefix = None, dir
= None) This function creates a temporary directory. On completion of the
context or destruction of the temporary directory object the newly created
temporary directory and all its contents are removed from the filesystem.

The lower-level functions include:

e mkstemp () Creates a temporary file that is only readable or writable by the user
who created it.

e mkdtemp () Creates a temporary directory. The directory is readable, writable
and searchable only by the creating user ID.

e gettempdir () Returns the name of the directory used for temporary files. This
defines the default value for the default temporary directory to be used with the
other functions in this module.

An example of using the TemporaryFile function is given below. This code
imports the tempfile module then prints out the default directory used for tempo-
rary files. It then creates a TemporaryFile object and prints its name and mode
(the default mode is binary but for this example we have overwritten this so that plain
text is used). We have then written a line to the file. Using seek we are repositioning
ourselves at the start of the file and then reading the line we have just written.

27.13 Working with Paths 309

import tempfile

print ('tempfile.gettempdir():', tempfile.gettempdir())
temp = tempfile.TemporaryFile ('w+')

print ('temp.name:', temp.name)

print ('temp.mode:', temp.mode)

temp.write ('Hello world!')

temp.seek (0)

line = temp.readline()

print('line:', line)

The output from this when run on an Apple Mac is:

tempfile.gettempdir() :
/var/folders/6n/8nrnt9f93pn66ypg9s5dg8y80000gn/T
temp.name: 4

temp.mode: w+

line: Hello world!

Note that the file name is ‘4’ and that the temporary directory is not a meaningful
name!

27.13 Working with Paths

The pathlib module provides a set of classes representing filesystem paths, that
is paths through the hierarchy of directories and files within an operating systems
file structure. It was introduced in Python 3.4. The core class in this module is the
Path class.

A Path object is useful because it provides operations that allow you to manipu-
late and manage the path to a file or directory. The Path class also replicates some of
the operations available from the os module (such as mkdir, rename and rmdir)
which means that it is not necessary to work directly with the os module.

A path object s created using the Pa th constructor function; this function actually
returns a specific type of Path depending on the type of operating system being used
such as aWindowsPath or a PosixPath (for Unix style systems). The Path ()
constructor takes the path to create for example ‘D: /mydir’ (on Windows) or ‘/
Users/userl/mydir’ onaMac or ‘/var/temp’ on Linux, etc.

You can then use several different methods on the Path object to obtain information
about the path such as:

® exists () returns True of False depending on whether the path points to an
existing file or directory.

e is_dir () returns True if the path points to a directory. False if it references
a file. False is also returned if the path does not exist.

e is file() returns True of the path points to a file, it returns False if the
path does not exist or the path references a directory.

310 27 Reading and Writing Files

e absolute() A Path object is considered absolute if it has both a root and (if
appropriate) a drive.

e is_absolute() returns a Boolean value indicating whether the Path is
absolute or not.

An example of using some of these methods is given below:
from pathlib import Path
print ('Create Path object for current directory')

p ="Path('.")
print('p:', p)

print('p.exists():', p.exists())
print ('p.is_dir():', p.is_dir())
print('p.is_file():',6 p.is_file())
print ('p.absolute():', p.absolute())

Sample output produced by this code snippet is:

Create Path object for current directory

p: .
p.exists(): True
p.is_dir(): True
p.is_file(): False
p.absolute() : /Users/Shared/workspaces/pycharm/pythonintro/
textfiles

There are also several methods on the Path class that can be used to create and
remove directories and files such as:

e mkdir () isused to create a directory path if it does not exist. If the path already
exists, then a FileExistsError is raised.

e rmdir () removes this directory; the directory must be empty; otherwise an
error will be raised.
rename (target) renames this file or directory to the given target.
unlink () removes the file referenced by the path object.
joinpath (*other) appends elements to the path object, e.g. path.joinpath(‘/
temp’).
with_name (new_name) returns a new path object with the name changed.
The * / ’ operator can also be used to create new path objects from existing paths
for example path / ‘test’ / ‘output’ which would append the directories test and
out to the path object.

Two Path class methods can be used to obtain path objects representing key direc-
tories such as the current working directory (the directory the program is logically
in at that point) and the home directory of the user running the program:

e Path.cwd() returns a new path object representing the current directory.
e Path.home() returns a new path object representing the user’s home
directory.

27.13 Working with Paths 311

An example using several of the above features is given below. This example
obtains a path object representing the current working directory and then appends
‘text’ to this. The result path object is then checked to see if the path exists (on the
computer running the program), assuming that the path does not exist; it is created;
and the exists () method is rerun.

p = Path.cwd()

print ('Set up new directory')

newdir =p / 'test'

print ('Check to see if newdir exists')
print ('newdir.exists():', newdir.exists())
print ('Create new dir')

newdir.mkdir ()

print ('newdir.exists():', newdir.exists())

The effect of creating the directory can be seen in the output:

Set up new directory
Check to see if newdir exists

newdir.exists () : False
Create new dir
newdir.exists () : True

A very useful method in the Path object is the glob (pattern) method. This
method returns all elements within the path that meet the pattern specified.

For example path.glob (' *.py"') will return all the files ending . py within
the current path.

Note that ' ** /* . py ' would indicate the current directory and any subdirectory.
For example, the following code will return all files where the file name ends with
‘. txt’ for a given path:

print('-'* 10)

for file in path.glob('*.txt"'):
print ('file:', file)

print('='* 10)

An example of the output generated by this code is:

file: my-new-file.txt
file: myfile.txt
file: textfilel.txt
file: textfile2.txt

Paths that reference a file can also be used to read and write data to that file. For
example the open () method can be used to open a file that by default allows a file
to be read:

e open(mode='r') this can be used to open the file referenced by the path
object.

312 27 Reading and Writing Files

This is used below to read the contents of a file a line at a time (note that with
as statement is used here to ensure that the file represented by the Path is closed):

p = Path('mytext.txt')
with p.open() as f:
print (f.readline())

However, there are also some high-level methods available that allow you to easily
write data to a file or read data from a file. These include the Path methods write_
text and read_text methods:

e write_ text (data) opens the file pointed to in text mode and writes the data
to it and then closes the file.

e read_text () opens the file in read mode, reads the text and closes the file; it
then returns the contents of the file as a string.

These are used below.

dir = Path('./test")

print ('Create new file')

newfile = dir / 'text.txt'

print ('Write some text to file')
newfile.write_text ('Hello Python World!')
print ('Read the text back again')

print (newfile.read text())

print ('Remove the file')

newfile.unlink ()

which generates the following output:

Create new file

Write some text to file
Read the text back again
Hello Python World!
Remove the file

27.14 Online Resources

See the following online resources for information on the topics in this chapter:

e https://docs.python.org/3/tutorial/inputoutput.html for the Python Standard Tuto-
rial on file input and output.

e https://pymotw.com/3/os.path/index.html for platform independent manipulation

of filenames.

https://pymotw.com/3/pathlib/index.html for information filesystem Path objects.

https://pymotw.com/3/glob/index.html for filename pattern matching using glob.

https://pymotw.com/3/tempfile/index.html for temporary filesystem objects.

https://pymotw.com/3/gzip/index.html for information on reading and writing

GNU Zip files.

https://docs.python.org/3/tutorial/inputoutput.html
https://pymotw.com/3/os.path/index.html
https://pymotw.com/3/pathlib/index.html
https://pymotw.com/3/glob/index.html
https://pymotw.com/3/tempfile/index.html
https://pymotw.com/3/gzip/index.html

27.15 Exercise 313

27.15 Exercise

The aim of this exercise is to explore the creation of, and access to, the contents of
a file.
You should write two programs, and these programs are outlined below:

1. Create a program that will write todays date into a file—the name of the file can
be hard coded or supplied by the user. You can use the datetime. today ()
function to obtain the current date and time. You can use the str () function
to convert this date time object into a string so that it can be written out to a file.

2. Create a second program to reload the date from the file and convert the string into
a date object. You can use the datetime.strptime () function to convert
a string into a date time object (see https://docs.python.org/3/library/datetime.
html#datetime.datetime.strptime for documentation on this function). This func-
tions takes a string containing a date and time in it and a second string which
defines the format expected. If you use the approach outlined in step 1 above to
write the string out to a file then you should find that the following defines an
appropriate format to parse the date_str so that a date time object can be created:

datetime_object = datetime.strptime (date_str, '%Y-%m-%d
%H:%M:%S . %f ")

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime

Chapter 28 ®)
Stream 10 ot

28.1 Introduction

In this chapter we will explore the stream I/O model that under pins the way in which
data is read from and written to data sources and sinks. One example of a data source
or sink is a file but another might be a byte array.

This model is actually what sits underneath the file access mechanisms discussed
in the previous chapter.

It is not actually necessary to understand this model to be able to read and write
data to and from a file; however in some situations it is useful to have an understanding
of this model so that you can modify the default behaviour when necessary.

The remainder of this chapter first introduces the stream model, discusses Python
streams in general and then presents the classes provided by Python. It then considers
what is the actual effect of using the open() function presented in the last chapter.

28.2 What is a Stream?

Streams are objects which serve as sources or sinks of data. At first this concept can
seem a bit strange. The easiest way to think of a stream is as a conduit of data flowing
from or into a pool. Some streams read data straight from the “source of the data”,
and some streams read data from other streams. These latter streams then do some
“useful” processing of the data such as converting the raw data into a specific format.
The following figure illustrates this idea.

© Springer Nature Switzerland AG 2023 315
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_28

316 28 Stream IO

"-_--i-o.TEXtIOWrapper---_-_'

y /-""""-i_c;:ﬁufferedReacj;"“"""--»__ \\.

-

In the above figure the initial F11eIO stream reads raw data from the actual data
source (in this case a file). The Buf feredReader then buffers the data reading
process for efficiency. Finally the Text IOWrapper handles string encoding; that
is it converts strings from the typical ASCII representation used in a file into the
internal representation used by Python (which uses Unicode).

You might ask at this point why have a streams model at all, after all we read and
wrote data to files without needing to know about streams in the last chapter? The
answer is that a stream can read or write data to or from a source of data rather than
just from a file. Of course a file can be a source of data but so can a socket, a pipe, a
string, a web service, etc. It is therefore a more flexible data I/O model.

28.3 Python Streams

The Python io module provides Python’s main facilities for dealing with data input
and output. There are three main types of input/output; these are text I/O, binary I/O
and raw I/.0. These categories can be used with various types of data source/sinks.

Whatever the category, each concrete stream can have a number of properties such
as being read-only, write-only or read-write. It can also support sequential access or
random access depending on the nature of the underlying data sink. For example,
reading data from a socket or pipe is inherently sequential whereas reading data from
a file can be performed sequentially or via a random access approach.

Whichever stream is used, however, they are aware of the type of data they can
process. For example, attempting to supply a string to a binary write-only stream
will raise a TypeError. As indeed will be presenting binary data to a text stream,
etc.

As suggested by this there are a number of different types of stream provided by
the Python 1o module, and some of these are presented below:

28.4 10Base 317

io.|0Base
¥

[io.RawiOBase | io.BufferediOBase | io.TextIOBase |

¥ ¥ ¥

]

io.FilelO io.ByteslO io.BufferedRWPair i0.StringlO | | io.TextlOWrapper |
io.BufferedReader io.BufferedWriter

io.BufferedRandom

The abstract ITOBase class is at the root of the stream IO class hierarchy. Below

this class are stream classes for unbuffered and buffered 10 and for text-oriented IO.

28.4 1I0Base

This is the abstract base class for all I/O stream classes. The class provides many
abstract methods that subclasses will need to implement.

The IOBase class (and its subclasses) all supports the iterator protocol. This

means that an TOBase object (or an object of a subclass) can iterate over the input
data from the underling stream.

IOBase also implements the Context Manager Protocol, and therefore it can be

used with the with and with-as statements.

The TOBase class defines a core set of methods and attributes including:

close () flush and close the stream.

closed an attribute indicating whether the stream is closed.

flush () flush the write buffer of the stream if applicable.

readable () returns True if the stream can be read from.

readline (size=-1) return aline from the stream. If size is specified at most
size bytes will be read.

readline (hint=-1) read a list of lines. If hint is specified then it is used to
control the number of lines read.

seek (offset[, whence]) Thismethod moves the currentthe stream posi-
tion/pointer to the given offset. The meaning of the offset depends on the whence
parameter. The default value for whence is SEEK_SET.

SEEK_SET or 0: seek from the start of the stream (the default); offset must
either be a number returned by TextIOBase.tell(), or zero. Any other offset value
produces undefined behaviour.

SEEK_CUR or 1: “seek” to the current position; offset must be zero, which is a
no-operation (all other values are unsupported).

SEEK_END or 2: seek to the end of the stream; offset must be zero (all other
values are unsupported).

seekable () does the stream support seek().

tell () return the current stream position/pointer.

318 28 Stream IO

e writeable () returns true if data can be written to the stream.
e writelines (lines) write a list of lines to the stream.

28.5 Raw I0/UnBuffered IO Classes

Raw IO or unbuffered IO is provided by the RawIOBase and FileIO classes.

RawlIOBase This class is a subclass of TOBase and is the base class for raw
binary (aka unbuffered) I/O. Raw binary I/O typically provides low-level access to
an underlying OS device or API and does not try to encapsulate it in high-level
primitives (this is the responsibility of the Buffered I/O and Text I/O classes that can
wrap a raw I/O stream). The class adds methods such as:

e read (size=-1) This methodreads up to size bytes from the stream and returns
them. If size is unspecified or — 1 then all available bytes are read.

e readall () This method reads and returns all available bytes within the stream.

e readint (b) This method reads the bytes in the stream into a pre-allocated,
writable bytes-like object b (e.g. into a byte array). It returns the number of bytes
read.

e write (b) This method writes the data provided by b (a bytes -like object such
as a byte array) into the underlying raw stream.

FileIO The Fi1leIO class represents a raw unbuffered binary IO stream linked to
an operating system level file. When the Fi1leIO class is instantiated it can be given
a file name and the mode (such as ‘r’ or ‘w’). It can also be given a flag to indicate
whether the file descriptor associated with the underlying OS level file should be
closed or not.

This class is used for the low-level reading of binary data and is at the heart of all
file-oriented data access (although it is often wrapped by another stream such as a
buffered reader or writer).

28.6 Binary 10/Buffered 10 Classes

Binary 10 aka Buffered IO is a filter stream that wraps a lower-level RawIOBase
stream (such as a FilelO stream). The classes implementing buffered IO all extend
the Buf feredIOBase class and are:

BufferedReader When reading data from this object, a larger amount of data
may be requested from the underlying raw stream and kept in an internal buffer. The
buffered data can then be returned directly on subsequent reads.

BufferedWriter When writing to this object, data is normally placed into an
internal buffer. The buffer will be written out to the underlying RawlOBase object
under various conditions, including:

28.6 Binary IO/Buffered 10 Classes 319

e When the buffer gets too small for all pending data.
e When flush () is called.
e When the Buf feredWriter object is closed or destroyed.

BufferedRandom A buffered interface to random access streams. It
supports seek () and tell () functionality.

BufferedRWPair A buffered I/O object combining two unidirec-
tional RawlOBase objects—one readable, the other writeable—into a single
bidirectional endpoint.

Each of the above classes wraps a lower-level byte-oriented stream class such as
the 10.FileIO class, for example:

f =io0.FileIO('data.dat’)
br = io.BufferedReader (f)
print (br.read())

This allows data in the form of bytes to be read from the file ‘data.dat’. You can
of course also read data from a different source, such as an in memory BytesIO
object:

binary_stream_ from_file =

io.BufferedReader (io.BytesIO(b'starship.png'))
bytes = binary_stream_from_file.read(4)

print (bytes)

In this example the data is read from the BytesIO object by the
BufferedReader. The read () method is then used to read the first 4 bytes,
and the output is:

b'star’

Note the ‘b’ in front of both the string’starship.png’ and the result ‘star’. This
indicates that the string literal should become a bytes literal in Python 3. Bytes
literals are always prefixed with ‘b’ or ‘B’; they produce an instance of the bytes
type instead of the str type. They may only contain ASCII characters.

The operations supported by buffered streams include, for reading:

e peek(n) returns up to n bytes of data without advancing the stream pointer.
The number of bytes returned may be less or more than requested depending on
the amount of data available.

e read(n) returns n bytes of data as bytes, if n is not supplied (or is negative) the
read all available data.

e readl (n) reads up to n bytes of data using a single call on the raw data stream.

The operations supported by buffered writers include:

e write(bytes) writes the bytes-like data and returns the number of bytes
written.
e flush () This method forces the bytes held in the buffer into the raw stream.

320 28 Stream IO

28.7 Text Stream Classes

The text stream classes are the TextIOBase class and its two subclasses
TextIOWrapper and StringIO.

TextIOBase This is the root class for all Text Stream classes. It provides a char-
acter and line-based interface to stream 1/O. This class provides several additional
methods to that defined in its parent class:

e read(size=-1) This method will return at most size characters from the
stream as a single string. If size is negative or None, it will read all remaining
data.

e readline (size=-1) Thismethod will return a string representing the current
line (up to a newline or the end of the data whichever comes first). If the stream
is already at EOF, an empty string is returned. If size is specified, at most size
characters will be read.

e seek(offset, [, whence]) changes the stream position/pointer by the
specified offset. The optional whence parameter indicates where the seek should
start from:

— SEEK_SET or 0: (the default) seek from the start of the stream.

— SEEK_CUR or 1: seek to the current position; offset must be zero, which is a
no-operation.

— SEEK_END or 2: seek to the end of the stream; offset must be zero.

e tell () Returns the current stream position/pointer as an opaque number. The
number does not usually represent a number of bytes in the underlying binary
storage.

e write (s) This method will write the string s to the stream and return the number
of characters written.

TextlIOWrapper. This is a buffered text stream that wraps a buffered binary
stream and is a direct subclass of TextlOBase. When a TextIOWrapper is created
there are a range of options available to control its behaviour:

io.TextIOWrapper (buffer, encoding=None, errors=None, newline=None,
line_buffering=False, write_through=False)

where

1. buffer is the buffered binary stream.

2. encoding represents the text encoding used such as UTF-8.

3. errors defines the error handling policy such as strict or ignore.

4. newline controls how line endings are handled for example should they be

ignored (None) or represented as a linefeed, carriage return or a newline/carriage
return, etc.

5. line_buffering if True then flush () is implied when a call to write
contains a newline character or a carriage return.

28.8 Stream Properties 321

6. write_through if True then a call to write is guaranteed not to be buffered.

The TextIOWrapper is wrapped around a lower-level binary buffered I/O
stream, for example:
f =io0.FileIO('data.txt')

br = io.BufferedReader (f)
text_stream = io.TextIOWrapper (br, 'utf-8')

StringlO This is an in memory stream for text I/O. The initial value of the buffer
held by the StringIO object can be provided when the instance is created, for
example:

in_memory_text_stream = io0.StringIO('to be or not to be that is
the question')

print ('in memory text_ stream',K in_memory_text_stream)

print (in_memory_text_stream.getvalue())

in_memory_ text_stream.close()

This generates:

in_memory_text_stream <_io.StringIO object at 0x10fdfaee8>
to be or not to be that is the question

Note that the underlying buffer (represented by the string passed into the
StringIO instance) is discarded when the close () method is called.

The getvalue () method returns a string containing the entire contents of the
buffer. If it is called after the stream was closed then an error is generated.

28.8 Stream Properties

It is possible to query a stream to determine what types of operations it supports.
This can be done using the readable, seeable and writable methods. For example:
f =10.FileIO('myfile.txt")

br = io.BufferedReader (f)
text_stream = io.TextIOWrapper (br, encoding='utf-8"')

print ('text_stream',6 text_stream)

print ('text_stream.readable():', text_stream.readable())
print ('text_stream.seekable()', text_stream.seekable())
print ('text_stream.writeable()', text_stream.writable())

text_stream.close()

The output from this code snippet is:

text_stream <_io.TextIOWrapper name='myfile.txt'encoding='utf-
8'>

text_stream.readable() : True

text_stream.seekable() True

text_stream.writeable() False

322 28 Stream IO

28.9 Closing Streams

All opened streams must be closed. However, you can close the top-level stream, and
this will automatically close lower-level streams, for example:

f =io.FileIO('data.txt’)

br = io.BufferedReader (f)

text_stream = io.TextIOWrapper (br, 'utf-8')
print (text_stream.read())
text_stream.close()

28.10 Returning to the Open() Function

If streams are so good then why don’t you use them all the time? Well actually in
Python 3 you do! The core open function (and indeed the io.open () function)
both return a stream object. The actual type of object returned depends on the file
mode specified, whether buffering is being used, etc. For example:

import io

Text stream
fl = open('myfile.txt', mode='r', encoding="utf-8")
print (£1)

Binary IO aka Buffered IO
f2 = open('myfile.dat', mode='rb"')
print (£2)

f3 = open('myfile.dat', mode='wb"')
print (£3)

Raw IO aka Unbufferedf IO
f4 = open('starship.png', mode="rb', buffering=0)
print (£f4)

When this short example is run the output is:

<_ilo.TextIOWrapper name='myfile.txt ' 'mode="'r'encoding="'utf-8'>
<_io.BufferedReader name="myfile.dat'>

<_io.BufferedWriter name='myfile.dat'>

<_10.FileIO name='starship.png'mode="rb'closefd=True>

As you can see from the output, four different types of object have been
returned from the open () function. The first is a Text IOWrapper, the second
a Buf feredReader, the third a BufferedWriter and the final one is a F11eIO
object. This reflects the differences in the parameters passed into the open(0 func-
tion. For example, f1 references an io.TextIOWrapper because it must encode
(convert) the input text into Unicode using the UTF-8 encoding scheme. While 2

28.12 Exercise 323

holds an io.Buf feredReader because the mode indicates that we want to read
binary data while f3 holds aio.Buf feredwri ter because the mode used indicates
we want to write binary data. The final call to open returns a Fi1leIO because we
have indicated that we do not want to buffer the data and thus we can use the lowest
level of stream object.

In general the following rules are applied to determine the type of object returned
based on the modes and encoding specified:

Class Mode Buffering
FileIO binary no
BufferedReader ‘b’ yes
BufferedWriter ‘wb’ yes
BufferedRandom ‘rb+ * ‘wb + “ ‘ab + yes
TextIOWrapper Any text yes

Note that not all mode combinations make sense, and thus some combinations
will generate an error.

In general you don’t therefore need to worry about which stream you are using
or what that stream does; not least because all the streams extend the TOBase class
and thus have a common set of methods and attributes.

However, it is useful to understand the implications of what you are doing so that
you can make better informed choices. For example, binary streams (that do less
processing) are faster than Unicode-oriented streams that must convert from ASCII
into Unicode.

Also understanding the role of streams in input and output can also allow you to
change the source and destination of data without needing to rewrite the whole of
your application. You can thus use a file or stdin for testing and a socket for reading
data in production.

28.11 Online Resource

See the following online resource for information on the topics in this chapter:

1. https://docs.python.org/3/library/io.html This provides the Python Standard
Library Guide to the core tools available for working with streams.

28.12 Exercise

Use the underlying streams model to create an application that will write binary data
to a file. You can use the ‘b’ prefix to create a binary literal to be written, for example
b’Hello World’.

https://docs.python.org/3/library/io.html

324 28 Stream IO

Next create another application to reload the binary data from the file and print it
out.

Chapter 29 ®)
Working with CSV Files ez

29.1 Introduction

This chapter introduces a module that supports the generation of Comma Separated
Values (CSV) files.

29.2 CSV Files

The Comma Separated Values (CSV) format is the most common import and export
format for spreadsheets and databases. However, CSV is not a precise standard with
multiple different applications having different conventions and specific standards.

The Python csv module implements classes to read and write tabular data in CSV
format. As part of this it supports the concept of a dialect which is a CSV format
used by a specific application or suite of programs; for example, it supports an Excel
dialect.

This allows programmers to say, “write this data in the format preferred by Excel”,
or “read data from this file which was generated by Excel”, without knowing the
precise details of the CSV format used by Excel.

Programmers can also describe the CSV dialects understood by other applications
or define their own special-purpose CSV dialects.

The csv module provides a range of functions including:

e csv.reader (csvfile, dialect = ’'excel’, **fmtparams)
Returns a reader object which will iterate over lines in the given csvfile.
An optional dialect parameter can be given. This may be an instance of a
subclass of the Dialect class or one of the strings returned by the 1ist_
dialects () function. The other optional fmtparams keyword arguments
can be given to override individual formatting parameters in the current dialect.

© Springer Nature Switzerland AG 2023 325
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_29

326 29 Working with CSV Files

csv.writer (csvfile, dialect = ’'excel’, **fmtparams)
Returns a writer object responsible for converting the user’s data into delim-
ited strings on the given csvfile. An optional dialect parameter provided.
The fmtparams keyword arguments can be given to override individual
formatting parameters in the current dialect.

csv.list_dialects () Return the names of all registered dialects. For
example on a macOS X the default list of dialects is [‘excel’, ‘excel-tab’, ‘unix’].

29.2.1 The CSV Writer Class

A CSV Writer is obtained from the csv.writer () function. The csvwriter
supports two methods used to write data to the CSV file:

csvwriter.writerow (row) Writes the row parameter to the writer’s file
object, formatted according to the current dialect.

csvwriter.writerows (rows) Write all elements in rows (an iterable
of row objects as described above) to the writer’s file object, formatted according
to the current dialect.

Writer objects also have the following public attribute:
csvwriter.dialect A read-only description of the dialect in use by the
writer.

The following program illustrates a simple use of the csv module which creates

a file called sample.csv.

As we have not specified a dialect, the default ‘excel’ dialect will be used. The

writerow () method is used to write each comma separate list of strings to the

CSV file.
print (’Crearting CSV file’)
with open(’'sample.csv’, 'w’, newline=") as csvfile:
writer = csv.writer(csvfile)
writer.writerow([’She Loves You’, ’'Sept 1963'])
writer.writerow([’I Want to Hold Your Hand’, ’'Dec 1963'])

([
writer.writerow([’Cant Buy Me Love’, 'Apr 1964'])
writer.writerow([’A Hard Days Night’, 'July 1964'])

The resulting file can be viewed as shown below:

e Sample.csv

She Loves You,Sept 1963

I Want to Hold Your Hand,Dec 1963
Cant Buy Me Love,Apr 1964

A Hard Days Night,July 1964

29.2 CSV Files 327

However, as it is a CSV file, we can also open it in Excel:

® ® » R Q- ©-v
Home Insert Draw Page Layout Formulas & Share
i — (o] @ Conditional Formatting v
o =L E
@ Format as Table »
Clipboard Font Alignment Number @ Cell Styles v
Al = fx She Loves You v
A B C D E F
1 |She Loves You _| Sep-63
2 | Want to Hold Your Hand Dec-63
3 Cant Buy Me Love Apr-64
4 A Hard Days Night Jul-64
5
A
sample +
Ready i H] = c— —t 100%

29.2.2 The CSV Reader Class

A CSV Reader object is obtained from the csv . reader () function. It implements
the iteration protocol.

If a csv reader object is used with a for loop then each time round the loop it
supplies the next row from the CSV file as a list, parsed according to the current CSV
dialect.

Reader objects also have the following public attributes:

® csvreader.dialect A read-only description of the dialect in use by the
parser.

o csvreader.line_numThe number of lines read from the source iterator. This
is not the same as the number of records returned, as records can span multiple
lines.

The following provides a very simple example of reading a CSV file using a csv
reader object:

print (’Starting to read csv file’)
with open(’sample.csv’, newline=") as csvfile:
reader = csv.reader(csvfile)
for row in reader:
print (*row, sep=', ')

print ('Done Reading’)

328 29 Working with CSV Files

The output from this program based on the sample.csv file created earlier is:

Starting to read csv file

She Loves You, Sept 1963

I Want to Hold Your Hand, Dec 1963
Cant Buy Me Love, Apr 1964

A Hard Days Night, July 1964

Done Reading

29.2.3 The CSV DictWriter Class

In many cases the first row of a CSV file contains a set of names (or keys) that
define the fields within the rest of the CSV. That is the first row gives meaning to
the columns and the data held in the rest of the CSV file. It is therefore very useful
to capture this information and to structure the data written to a CSV file or loaded
from a CSV file based on the keys in the first row.

The csv.DictWriter returns an object that can be used to write values into
the CSV file based on the use of such named columns. The file to be used with the
DictWriter is provided when the class is instantiated.

import csv

with open(’'names.csv’, 'w’, newline=") as csvfile:
fieldnames = [’'first_name’, ’'last_name’, 'result’]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader ()
writer.writerow({’'first_name’: 'Denise’,
'last_name’: 'Smith’,
‘result’ : 54})
writer.writerow({’'first_name’: 'Natalia’,
'last_name’: 'Lewis’,
‘result’ : 63})
writer.writerow({’'first_name’: 'Adam’,
'last_name’: 'Davies’,

‘result’ : 72})

Note that when the DictWriter is created a list of the keys must be provided
that are used for the columns in the CSV file.

The method writeheader () is then used to write the header row out to the
CSV file.

The method writerow () takes a dictionary object that has keys based on the
keys defined for the DictWriter. These are then used to write data out to the CSV
(note the order of the keys in the dictionary is not important).

In the above example code the result of this is that a new file called names . csv
is created which can be opened in Excel:

29.2 CSV Files 329

first_name,last_name,result
Denise,Smith, 54
Natalia, Lewis, 63

Adam,Davies, 72

Of course, as this is a CSV file it can also be opened in a plain text editor as well.

29.2.4 The CSV DictReader Class

As well as the csv.DictWriter there is a csv.DictReader. The file to be
used with the DictReader is provided when the class is instantiated. As with
the DictReader the DictWriter class takes a list of keys used to define the
columns in the CSV file. If the headings to be used for the first row can be provided
although this is optional (if a set of keys are not provided, then the values in the first
row of the CSV file will be used as the fieldnames).

The DictReader class provides several useful features including the
fieldnames property that contains a list of the keys/headings for the CSV file
as defined by the first row of the file.

The DictReader class also implements the iteration protocol, and thus it can
be used in a for loop in which each row (after the first row) is returned in turn as a
dictionary. The dictionary object representing each row can then be used to access
each column value based on the keys defined in the first row.

An example is shown below for the CSV file created earlier:

import csv
print (’Starting to read dict CSV example’)

with open(’'names.csv’, newline=") as csvfile:
reader = csv.DictReader(csvfile)
for heading in reader.fieldnames:
print (heading, end="' ')

for row in reader:
print (row[’first_name’], row[’last_name’], row[’'result’])

print (’Done’)
This generates the following output:

Starting to read dict CSV example
first _name last_name result

Denise Smith 54

330 29 Working with CSV Files

Natalia Lewis 63
Adam Davies 72
Done

29.3 Online Resources

See the following online resources for information on the topics in this chapter:

e https://docs.python.org/3/library/csv.html for the Python Standard documentation
on CSV file reading and writing.

e https://pymotw.com/3/csv/index.html for the Python Module of the Week page
on CSV files.

e https://pythonprogramming.net/reading-csv-files-python-3 for a tutorial on
reading CSV files.

29.4 Exercises

In this exercise you will create a CSV file based on a set of transactions stored in a
current account.

1. To do this first define a new Account class to represent a type of bank account.

2. When the class is instantiated you should provide the account number, the name
of the account holder, an opening balance and the type of account (which can
be a string representing ‘current’, ‘deposit’, ‘investment’, etc.). This means that
there must be a __init__ method, and you will need to store the data within the
object.

3. Provide three instance methods for the Account: deposit(amount), with-
draw(amount) and get_balance(). The behaviour of these methods should be as
expected, deposit will increase the balance, withdraw will decrease the balance,
and get_balance() returns the current balance.

Your Account class should also keep a history of the transactions it is involved
in.

A Transaction is a record of a deposit or withdrawal along with an amount.

Note that the initial amount in an account can be treated as an initial deposit.

The history could be implemented as a /ist containing an ordered sequence to
transactions. A Transaction itself could be defined by a class with an action (deposit
or withdrawal) and an amount.

Each time a withdrawal or a deposit is made a new transaction record should be
added to a transaction history list.

Next provide a function (which could be called something like write_
account_transactions_ to_csv()) that can take an account and then

https://docs.python.org/3/library/csv.html
https://pymotw.com/3/csv/index.html
https://pythonprogramming.net/reading-csv-files-python-3

29.4 Exercises 331

write each of the transactions it holds out to a CSV file, with each transaction type
and the transaction amount separated by a comma.
The following sample application illustrates how this function might be used:

print (’Starting’)

acc = accounts.CurrentAccount (71237, ’John’, 10.05, 100.0)
acc.deposit (23.45)

acc.withdraw(12.33)

print (’Writing Account Transactions’)
write_account_transaction_to_csv(’accounts.csv’, acc)

print (’Done’)

The contents of the CSV file would then be:

g accounts.csv

1 transaction_type, amount

2 deposit,10.05

' deposit,23.45
withdraw,12.33

Chapter 30 ®)
Working with Excel Files i

30.1 Introduction

This chapter introduces the openpyx1 module that can be used when working with
Excel files. Excel is a software application developed by Microsoft that allows users
to work with spreadsheets. It is a very widely used tool, and files using the Excel
file format are commonly encountered within many organisations. It is in effect the
industry standard for spreadsheets and as such is a very useful tool to have in the
developers’ toolbox.

30.2 Excel Files

Although CSV files are a convenient and simple way to handle data; it is very
common to need to be able to read or write Excel files directly. To this end there are
several libraries available in Python for this purpose. One widely used library is the
OpenPyXL library. This library was originally written to support access to Excel
2010 files. It is an open-source project and is well documented.

The OpenPyXL library provides facilities for

Reading and writing Excel workbooks.
Creating/accessing Excel worksheets.

Creating Excel formulas.

Creating graphs (with support from additional modules).

As OpenPyXL is not part of the standard Python distribution you will need to
install the library yourself using a tool such as Anaconda or pip (e.g. pip install
openpyxl). Alternatively, if you are using PyCharm you will be able to add the
OpenPyXL library to your project.

© Springer Nature Switzerland AG 2023 333
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_30

334 30 Working with Excel Files

30.3 The Openpyxl. Workbook Class

The key element in the OpenPyXL library is the Workbook class. This can be
imported from the module:

from openpyxl import Workbook

A new instance of the (in memory) Workbook can be created using the
Workbook class (note at this point it is purely a structure within the Python program
and must be saved before an actual Excel file is created).

wb = Workbook ()

30.4 The Openpyxl. WorkSheet Objects

A workbook is always created with at least one worksheet. You can get hold of the
currently active worksheet using the Workbook . active property:

ws = wb.active

You can create additional worksheets using the workbooks’ create_
sheet () method:

ws = wb.create_sheet ('Mysheet ')
You can access or update the title of the worksheet using the title property:

ws.title = 'New Title’

The background colour of the tab holding this title is white by default. You
can change this providing an RRGGBB colour code to the worksheet . sheet__
properties.tabColor attribute, for example:

ws .sheet_properties.tabColor = "1072BA"

30.5 Working with Cells

It is possible to access the cells within a worksheet. A cell can be accessed directly
as keys on the worksheet, for example:

ws[’Al’'] = 42
or

cell =ws[’Al’]

30.6 Sample Excel File Creation Application 335
This returns a cell object; you can obtain the value of the cell using the value
property, for example.

print (cell.value)

There is also the Worksheet.cell () method. This provides access to cells
using row and column notation:

d =ws.cell (row=4, column=2, value=10)

A row of values can also be added at the current position within the Excel file
using append:

ws.append([1, 2, 3])

This will add a row to the Excel file containing 1, 2 and 3.
Ranges of cells can be accessed using slicing:

cell_range = ws[’Al’:'C2']

Ranges of rows or columns can also be obtained:
col =ws['C"’]

col_range = ws[’C:D’]

rowl0 = ws[10]
row_range = ws[5:10]

The value of a cell can also be an Excel formula such as

ws[’A3’] = '=SUM(Al, A2)’

A workbook is actually only a structure in memory; it must be saved to a file for
permanent storage. These workbooks can be saved using the save () method. This
method takes a filename and writes the Workbook out in Excel format.

workbook = Workbook ()

workbook.save (’balances.xlsx’)

30.6 Sample Excel File Creation Application

The following simple application creates a Workbook with two worksheets. It also
contains a simple Excel formula that sums the values held in to other cells:

from openpyxl import Workbook

def main() :
print (’Starting Write Excel Example with openPyXL’)
workbook = Workbook ()

Get the current active worksheet

336 30 Working with Excel Files

ws = workbook.active
ws.title = ‘my worksheet’
ws.sheet_properties.tabColor = “1072BA’

ws[’Al’] = 42
ws[’A2'] =12
ws[’A3’] = '=SUM(Al, A2)’

ws2 = workbook.create_sheet (title="my other sheet’)
ws2[’Al’] = 3.42

ws2.append([1, 2, 3])

ws2.cell (column=2, row=1, value=15)

workbook.save (’sample.xlsx’)

print (/Done Write Excel Example’)

if name_ == "'__main ’:
main ()

The Excel file generated from this can be viewed in Excel as shown below:

() ® » @{ a- ©-~
; Home Insert Draw Page Layout Formulas ¥? Share
A ﬁ — O/ [El Conditional Formatting + [
|:| — (o] [Format as Table ~ o
Clipboard Font Alignment Number @ Cell Styles ~
A3 - fx =SUM(A1, A2) v
A B c D E F G H I
42
2 12
? | sa_l
6
7
my worksheet my other sheet +
| i m - + 100%

30.7 Loading a Workbook from an Excel File

Of course, in many cases it is necessary not just to create Excel files for data export but
also to import data from an existing Excel file. This can be done using the OpenPyXL
load_workbook () function. This function opens the specified Excel file (in
read-only mode by default) and returns a Workbook object.

from openpyxl import load_workbook

workbook = load_workbook (filename='sample.xlsx’)

30.7 Loading a Workbook from an Excel File 337

You can now access a list of sheets and their names and obtain the currently active
sheet, etc. using properties provided by the workbook object:

workbook.active returns the active worksheet object.
workbook . sheetnames returns the names (strings) of the worksheets in this
workbook.

e workbook.worksheets returns a list of worksheet objects.

The following sample application reads the Excel file created earlier in this
chapter:

from openpyxl import load_workbook

def main () :
print (’Starting reading Excel file using openPyXL’)

workbook = load_workbook (filename='sample.xlsx’)
print (workbook.active)

print (workbook.sheetnames)

print (workbook.worksheets)

print (/-7 * 10)
ws = workbook[’my worksheet’]
print(ws[’Al’])

]
print (ws[’Al’] .value)
print (ws[’A2’] .value)
print (ws[’A3’] .value)

print (=7 * 10)
for sheet in workbook:
print (sheet.title)

print (/-7 * 10)

cell_range = ws[’Al’:’A3’]

for cell in cell_range:
print(cell[0].value)

print (/-7 * 10)

print (/Finished reading Excel file using openPyXL’)

if name_ == ’__main__ ’:
main ()

The output from this application is illustrated below:

Starting reading Excel file using openPyXL

<Worksheet "my worksheet">

['my worksheet’, 'my other sheet’]

[<Worksheet "my worksheet">, <Worksheet "my other sheet">]
<Cell 'my worksheet’ .Al>

42

12

=SUM (A1, A2)

338 30 Working with Excel Files

my worksheet
my other sheet

Finished reading Excel file using openPyXL

30.8 Online Resources

See the following online resources for information on the topics in this chapter:

e https://openpyxl.readthedocs.io/en/stable for documentation on the OpenPyXL
Python to Excel library.

30.9 Exercises

Using the Account class that you created in the last chapter; write the account
transaction information to an Excel file instead of a CSV file.

To do this create a function called write_account_transaction_to_
excel () that takes the name of the Excel file and the account to store. The function
should then write the data to the file using the excel format.

The following sample application illustrates how this function might be used:

print (’Starting’)

acc = accounts.CurrentAccount (71237, John’, 10.05, 100.0)

acc.deposit (23.45)
acc.withdraw(12.33)

print (‘Writing Account Transactions’)
write_account_transaction_to_excel (‘accounts.xlsx’, acc)

print (’Done’)

The contents of the Excel file would then be:

https://openpyxl.readthedocs.io/en/stable

30.9 Exercises 339

Home Insert Draw Page Layout & Share CJ Comments
’-\ﬂr . A . — ., Cy . [Ed] conditional Formatting v E
._D — 0 [i7i Format as Table v »
li F i

Clipboard ont Alignment Number Coll Stylos v

| A6 = Jx v
A B Cc D E

1 transaction type amount

2 deposit 10.05

3 deposit 23.45

4 withdraw 12.33

» transactions +

oo -—

+ 150%

Chapter 31 ®)
Regular Expressions in Python i

31.1 Introduction

Regular expression is a very powerful way of processing text while looking for
recurring patterns; they are often used with data held in plain text files (such as log
files), CSV files as well as Excel files. This chapter introduces regular expressions,
discusses the syntax used to define a regular expression pattern and presents the
Python re module and its use.

31.2 What Are Regular Expressions?

A regular expression (also known as a regex or even justre) is a sequence of characters
(letters, numbers and special characters) that form a pattern that can be used to search
text to see if that text contains sequences of characters that match the pattern.

For example, you might have a pattern defined as three characters followed by
three numbers. This pattern could be used to look for such a pattern in other strings.
Thus, the following strings either match (or contain) this pattern or they do not:

Abcl123 Matches the pattern
Al123A Does not match the pattern
123AAA Does not match the pattern

Regular expression is very widely used for finding information in files, for
example.

¢ Finding all lines in a log file associated with a specific user or a specific operation.
e For validating input such as checking that a string is a valid email address or
postcode/ZIP code, etc.

© Springer Nature Switzerland AG 2023 341
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_31&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_31

342 31 Regular Expressions in Python

e Support for regular expressions is wide spread within programming languages
such as Java, C#, PHP and particularly Perl. Python is no exception and has
the built-in module re (as well as additional third-party modules) that supports
regular expressions.

31.3 Regular Expression Patterns

You can define a regular expression pattern using any ASCII character or number.
Thus, the string ‘John’ can be used to define a regex pattern that can be used to match
any other string that contains the characters ‘J’, ‘0’, ‘h’ and ‘n’. Thus each of the
following strings will match this pattern:

‘John Hunt’

‘John Jones’

‘Andrew John Smith’

‘Mary Helen John’

‘John John John’

‘T am going to visit the John’

‘T once saw a film by John Wayne’

But the following strings would not match the pattern:

‘Jon Davies’ in this case because the spelling of John is different.
‘John williams’ in this case because the capital J does not match the lowercase j.
‘David James’ in this case because the string does not contain the string John!

Regular expressions (regexs) use special characters to allow more complex
patterns to be described. For example, we can use the special characters ‘[]’° to
define a set of characters that can match. For example, if we want to indicate that the
J may be a capital or a lowercase letter then we can write ‘[Jj]’—this indicates that
either ‘J’ or ‘j° can match the first.

e [Jjlohn—this states that the pattern starts with either a capital J or a lowercase j
followed by ‘own’.

Now both ‘john williams’ and ‘John Williams’ will match this regex pattern.

31.3.1 Pattern Metacharacters

There are several special characters (often referred to as metacharacters) that have a
specific meaning within a regex pattern; these are listed in the following table:

31.3 Regular Expression Patterns

343

Character

Description

Example

[l

A set of characters

[a—d] characters in the sequence ‘a’ to ‘d’

\ Indicates a special sequence ‘\d’ indicates the character should be an integer
(can also be used to escape
special characters)
Any character with the ‘J.hn’ indicates that there can be any character after
exception of the newline the ‘J* and before the ‘h’
character

A Indicates a string must start “hello” indicates the string must start with ‘hello’
with the following pattern

$ Indicates a string must end “world$” indicates the string must end with ‘world’
with the preceding pattern

* Zero or more occurrences of | “Python*” indicates we are looking for zero or
the preceding pattern more times Python is in a string

+ One or more occurrences of “info+* indicates that we must find info in the
preceding pattern string at least once

? Indicates zero or 1 occurrences | “John?” indicates zero or one instance of the ‘John’
of the preceding pattern

{} Exactly the specified number | “John{3}” indicates we expect to see the ‘John’ in
of occurrences the string three times. “X{1,2}” indicates that there

can be one or two Xs next to each other in the string
| Either or “TruelOK” indicates we are looking for either True
or OK
0 Groups together a regular “(abclxyz){2}” indicates that we are looking for the

expression; you can then apply
another operator to the whole

group

string abc or xyz repeated twice

31.3.2 Special Sequences

A special sequence is a combination of a ‘\’ (backslash) followed by a character
combination which then has a special meaning. The following table lists the common
special sequences used in regular expressions:

Sequence | Description Example

\A Returns a match if the following characters are at the “\AThe” must start
beginning of the string with ‘The’

\b Returns a match where the specified characters are at the | “\bon” or “on\b”

beginning or at the end of a word

indicates a string must
start or end with ‘on’

(continued)

344

31 Regular Expressions in Python

(continued)
Sequence | Description Example
\B Indicates that the following characters must be present in | r”\Bon” or r’on\B”

a string but not at the start (or at the end) of a word

must not start or end
with ‘on’

\d Returns a match where the string contains digits (numbers | “\d”
from 0 to 9)

\D Returns a match where the string DOES NOT contain “AD”
digits

\s Returns a match where the string contains a white space | “\s~”
character

\S Returns a match where the string DOES NOT contain a “\S”
white space character

\w Returns a match where the string contains any word “Aw”
characters (characters from a to Z, digits from O to 9, and
the underscore _ character)

\W Returns a match where the string DOES NOT contain any | “\W”
word characters

\Z Returns a match if the following characters are present at | “Hunt\Z”

the end of the string

31.3.3 Sets

A set is a sequence of characters inside a pair of square brackets which have specific
meanings. The following table provides some examples.

Set Description

[jeh] Returns a match where one of the specified characters (j, e or h) is present
[a—x] Returns a match for any lowercase character, alphabetically between a and x
[rzxc] Returns a match for any character EXCEPT z, x and ¢

[0123] Returns a match where any of the specified digits (0, 1, 2 or 3) is present
[0-9] Returns a match for any digit between 0 and 9

[0-91[0-9] Returns a match for any two-digit numbers from 00 and 99

[a—zA-Z] Returns a match for any character alphabetically between a and z or A and Z

31.5 Working with Python Regular Expressions 345

31.4 The Python re Module

The Python re module is the built-in module provided by Python for working with
regular expressions.

You might also like to examine the third-party regex module (see https://pypi.
org/project/regex) which is backwards compatible with the default re module but
provides additional functionality.

31.5 Working with Python Regular Expressions

31.5.1 Using Raw Strings

An important point to note about many of the strings used to define the regular
expression patterns is that they are preceded by an ‘r’ for example r ' /bin/sh$”’.
The ‘r’ before the string indicates that the string should be treated as a raw string.
A raw string is a Python string in which all characters are treated as exactly that
individual characters. It means that backslash (°\’) is treated as a literal character
rather than as a special character that is used to escape the next character.
For example, in a standard string ‘\n’ is treated as a special character representing
a newline, thus if we wrote the following:

s = 'Hello \n world’
print(s)

We will get as output:

Hello
World

However, if we prefix the string with an ‘r’ then we are telling Python to treat it
as a raw string. For example:

s = r'Hello \n world’
print(s)

The output is now
Hello \n world

This is important for regular expression as characters such as backslash (‘\’) are
used within patterns to have a special regular expression meaning, and thus we do
not want Python to process them in the normal way.

https://pypi.org/project/regex
https://pypi.org/project/regex

346 31 Regular Expressions in Python

31.5.2 Simple Example

The following simple Python program illustrates the basic use of the re module. It
is necessary to import the re module before you can use it.

import re

textl = 'John williams’
pattern = ‘[Jjlohn’
print (’'looking in’, textl, ’'for the pattern’, pattern)

if re.search(pattern, textl):
print (‘Match has been found’)

When this program is run, we get the following output:

looking in John williams for the pattern [Jj]ohn
Match has been found

If we look at the code, we can see that the string that we are examining contains
‘John williams” and that the pattern used with this string indicates that we are looking
for a sequence of ‘J’ or ‘j° followed by ‘ohn’. To perform this test we use the
re.search () function passing the regex pattern, and the text to test, as param-
eters. This function returns either None (which is taken as meaning False by the
If statement) or a Match object (which always has a Boolean value of True). As
of course ‘John’ at the start of textl does match the pattern, the re. search ()
function returns a match object and we see the ‘Match has been found’ message is
printed out.

Both the Match object and search () method will be described in more
detail below; however, this short program illustrates the basic operation of a regular
expression.

31.5.3 The Match Object

Match objects are returned by the search () and match () functions.

They always have a Boolean value of True.

The functions match () and search () return None when there is no match
and a Match object when a match is found. It is therefore possible to use a match
object with an i f statement:

import re

match = re.search(pattern, string)
if match:
process (match)

31.5 Working with Python Regular Expressions 347

Match objects support a range of methods and attributes including:

e match.re Theregularexpressionobject whosematch () or search () method
produced this match instance.
match. string The string passed tomatch () or search().
match.start ([group]) / match.end([group]) Returns the
indices of the start and end of the substring matched by group.

e match.group () Returns the part of the string where there was a match.

31.5.4 The search() Function

The search () function searches the string for a match and returns a Match object if
there is a match. The signature of the function is:

re.search (pattern, string, flags=0)

The meaning of the parameters is:

e pattern: This is the regular expression pattern to be used in the matching

process.

string: This is the string to be searched.
flags: These (optional) flags can be used to modify the operation of the search.

The re module defines a set of flags (or indicators) that can be used to indicate
any optional behaviours associated with the pattern. These flags include:

Flag

Description

re.IGNORECASE

Performs case-insensitive matching

re.LOCALE

Interprets words according to the current locale. This interpretation affects
the alphabetic group (\w and \W), as well as word boundary behaviour (\b
and \B)

re .MULTILINE

Makes $ match the end of a line (not just the end of the string) and makes
match the start of any line (not just the start of the string)

re.DOTALL Makes a period (dot) match any character, including a newline

re.UNICODE Interprets letters according to the Unicode character set. This flag affects
the behaviour of \w, \W, \b, \B

re.VERBOSE Ignores whitespace within the pattern (except inside a set [] or when

escaped by a backslash) and treats unescaped # as a comment marker

If there is more than one match, only the first occurrence of the match will be

returned:

348 31 Regular Expressions in Python

import re

linel = 'The price is 23.55°’
containsIntegers = r’'\d+’

if re.search(containsIntegers, linel):
print (‘Line 1 contains an integer’)
else:
print (‘Line 1 does not contain an integer’)

In this case the output is

Line 1 contains an integer

Another example of using the search () function is given below. In this case
the pattern to look for defines three alternative strings (that is the string must contain
either Beatles, Adele or Gorillaz):

import re

Alternative words
music = r’Beatles|Adele|Gorillaz’
request = 'Play some Adele’

if re.search(music, request) :
print ('Set Fire to the Rain’)
else:
print ('No Adele Available’)

In this case we generate the output:

Set Fire to the Rain

31.5.5 The match() Function

This function attempts to match a regular expression pattern at the beginning of a
string. The signature of this function is given below:

re.match(pattern, string, flags=0)

The parameters are:

pattern: This is the regular expression to be matched.
string: This is the string to be searched.
flags: Modifier flags that can be used.

The re.match () function returns a Ma tch object on success, None on failure.

31.5 Working with Python Regular Expressions 349

31.5.6 The Difference Between Matching and Searching

Python offers two different primitive operations based on regular expressions:

e match () checks for a match only at the beginning of the string.
e search() checks for a match anywhere in the string.

31.5.7 The finadall() Function

The £indall () function returns a list containing all matches. The signature of this
function is:

re.findall (pattern, string, flags=0)

This function returns all non-overlapping matches of pattern in string, as
a list of strings.

The string is scanned left to right, and matches are returned in the order found.
If one or more groups are present in the pattern, then a list of groups is returned;
this will be a list of tuples if the pattern has more than one group. If no matches are
found, an empty list is returned.

Anexample of usingthe findall () functionis given below. This example looks
for a substring starting with two letters and followed by ‘ai’ and a single character.
It is applied to a sentence and returns only the substring ‘Spain’ and ‘plain’.

import re

str = 'The rain in Spain stays mainly on the plain’
results = re.findall (' [a-zA-Z]{2}ai.’, str)
print (results)
for s in results:
print(s)

The output from this program is
['Spain’, ’'plain’]

Spain
plain

31.5.8 The finditer() Function

This function returns an iterator yielding matched objects for the regular expres-
sion pattern inthe string supplied. The signature for this function is:

350 31 Regular Expressions in Python

re.finditer (pattern, string, flags=0)

The string is scanned left to right, and matches are returned in the order found.
Empty matches are included in the result. Flags can be used to modify the matches.

31.5.9 The split() Function

The split () function returns a list where the string has been split at each match.
The syntax of the split () function is

re.split(pattern, string, maxsplit=0, flags=0)

The result is to split a string by the occurrences of pattern. If capturing parentheses
are used in the regular expression pattern, then the text of all groups in the
pattern is also returned as part of the resulting list. If maxsplit is nonzero,
at most maxsplit splits occur, and the remainder of the string is returned as the
final element of the list. Flags can again be used to modify the matches.

import re

str = "It was a hot summer night’
x =re.split(’\s’, str)
print (x)

The output is

["It’, 'was’, 'a’, 'hot’, 'summer’, 'night’]

31.5.10 The sub() Function

The sub () function replaces occurrences of the regular expression pattern in the
string with the repl string.

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the regular expres-
sion pattern in string with repl, substituting all occurrences unless max is
provided. This method returns the modified string.

import re

pattern = ' (England|Wales|Scotland) '’

input = ‘England for football, Wales for Rugby and Scotland for
the Highland games’

print (re.sub(pattern, 'England’, input))

which generates:

31.5 Working with Python Regular Expressions 351

England for football, England for Rugby and England for the Highland
games

You can control the number of replacements by specifying the count parameter:
The following code replaces the first 2 occurrences:

import re

pattern = ' (England|Wales|Scotland) '’
input = ‘England for football, Wales for Rugby and Scotland for
the Highland games’

x = re.sub(pattern, 'Wales’, input, 2)
print (x)

which produces

Wales for football, Wales for Rugby and Scotland for the Highland
games

You can also find out how many substitutions were made using the subn ()
function. This function returns the new string and the number of substitutions in a
tuple:

import re

pattern = ' (England|Wales|Scotland) '’
input = 'England for football, Wales for Rugby and Scotland for
the Highland games’

print (re.subn (pattern, 'Scotland’, input))
The output from this is:

("Scotland for football, Scotland for Rugby and Scotland for the
Highland games’, 3)

31.5.11 The compile() Function

Most regular expression operations are available as both module-level functions (as
described above) and as methods on a compiled regular expression object.

352 31 Regular Expressions in Python

The module-level functions are typically simplified or standardised ways to use
the compiled regular expression. In many cases these functions are sufficient but if
finer grained control is required then a compiled regular expression may be used.

re.compile (pattern, flags=0)

The compile() function compiles a regular expression pattern into
a regular expression object, which can be used for matching using
itsmatch (), search() and other methods as described below.

The expression’s behaviour can be modified by specifying a flags value. V

The statements:

prog = re.compile (pattern)
result = prog.match(string)

are equivalent to.

result = re.match(pattern, string)

but using re.compile () and saving the resulting regular expression object for
reuse is more efficient when the expression will be used several times in a single
program.

Compiled regular expression objects support the following methods and attributes:

® Pattern.search(string, pos, endpos) Scan
through string looking for the first location where this regular expres-
sion produces a match and returns a corresponding Match object. Return None if
no position in the string matches the pattern. Starting at pos if provided and
ending at endpos if this is provided (otherwise process the whole string).

® Pattern.match(string, pos, endpos)If zero or more characters
at the beginning of string match this regular expression, return a corre-
sponding match object. Return None if the string does not match the pattern.
The pos and endpos are optional and specify the start and end positions within
which to search.

® Pattern.split(string, maxsplit = 0)Identical to
the split () function, using the compiled pattern.

e Pattern.findall(string[, pos[, endpos]])Similar to
the findall () function, but also accepts
optional pos and endpos parameters that limit the search region like
for search().

e Pattern.finditer(string[, pos([, endpos]])Similarto
the finditer () function, but also accepts
optional pos and endpos parameters that limit the search region like
for search ().

e Pattern.sub(repl, string, count = 0)Identical to
the sub () function, using the compiled pattern.
® Pattern.subn(repl, string, count = 0)Identical to

the subn () function, using the compiled pattern.

31.6 Online Resources 353

® Pattern.pattern the pattern string from which the pattern object was

compiled.

An example of using the compile () function is given below. The pattern to be

compiled is defined as containing 1 or more digits (0 to 9):

import re

linel = 'The price is 23.55°’
containsIntegers = r’'\d+’
rePattern = re.compile (containsIntegers)

matchLinel = rePattern.search(linel)
if matchLinel:
print (‘Line 1 contains a number’)
else:
print (‘Line 1 does not contain a number’)

The compiled pattern can then be used to apply methods such as search () to

a specific string (in this case held in 1inel). The output generated by this is:

Line 1 contains a number

Of course the compiler pattern object supports a range of methods in addition to

search () as illustrated by the spilt method:

p = re.compile(r’\W+')
s = ‘20 High Street’
print (p.split(s))

The output from this is

["20", '"High’, 'Street’]

31.6 Online Resources

See the Python Standard Library documentation for:

https://docs.python.org/3/howto/regex.html Standard Library regular expression
how to.

https://pymotw.com/3/re/index.html the Python Module of the Week page for the
re module.

Other online resources include

https://regexone.com An introduction to regular expressions.
https://www.regular-expressions.info/tutorial.html a regular expressions tutorial.
https://www.regular-expressions.info/quickstart.html regular expressions quick
start.

https://pypi.org/project/regex A well-known third-party regular expression
module that extends the functionality offered by the built-in re module.

https://docs.python.org/3/howto/regex.html
https://pymotw.com/3/re/index.html
https://regexone.com
https://www.regular-expressions.info/tutorial.html
https://www.regular-expressions.info/quickstart.html
https://pypi.org/project/regex

354 31 Regular Expressions in Python

31.7 Exercises

Write a Python function to verify that a given string only contains letters (uppercase
or lowercase) and numbers. Thus spaces and underbars (‘_’) are not allowed. An
example of the use of this function might be:

print (contains_only characters_and_numbers (’John’)) # True
print (contains_only characters_and_numbers (‘John_Davies’)) #
False

print (contains_only characters_and_numbers (’42’)) # True

print (contains_only_characters_and_numbers (‘Johnd42’)) # True
print (contains_only characters_and_numbers (’John 42’)) # False

Write a function to verify a UK Postcode format (call it verify_postcode).
The format of a postcode is two letters followed by 1 or 2 numbers, followed by
a space, followed by one or two numbers and finally two letters. An example of a
postcode is SY23 4Z7Z; another postcode might be BB1 3PO; and finally we might
have AA1 56NN (note this is a simplification of the UK Postcode system but is
suitable for our purposes).

Using the output from this function you should be able to run the following test
code:

True

print ("verify_postcode(’SY23 3AA’):", verify_postcode(’'SY23
33AA7))

True

print ("verify postcode(’SY23 477’):", verify_postcode(’SY23
477"))

True

print ("verify_postcode(’BBl 3PO’):", verify_ postcode(’BB1l 3P0O'))
False

print ("verify postcode(’AAl111 NN56’):", verify postcode(’'AAlll
NN56'))

True

print ("verify_postcode(’AAl 56NN’):", verify_ postcode(’'AAl
56NN’))

False

print ("verify postcode(’AA156NN’):", verify

postcode (’'AA156NN"))

False

print ("verify postcode('AANN’):", verify_ postcode(’'AA NN’))

Write a function that will extract the value held between two strings or characters
such as ‘<’ and ‘>’. The function should take three parameters, the start character,
the end character and the string to process. For example, the following code snippet:

r<r, >, r<John>’))

rgr, I>r, I<42>I))

r<r, >, r<John 42>7))

r<’, '>’, 'The <town> was in the

print (extract_values
print (extract_values
print (extract_values
print (extract_values
<valley>’))

(
(
(
(

31.7 Exercises

355
should generate output such as:

["John']
[742"]
["John 42"]
["to

‘town’, ‘valley’]

Part VI
Database Access

Chapter 32 ®)
Introduction to Databases Geda

32.1 Introduction

There are several different types of database system in common use today including
Object databases, NoSQL databases and (probably the most common) Relational
databases. This chapter focusses on Relational databases as typified by database
systems such as Oracle, Microsoft SQL Server and MySQL. The database we will
use in this book is MySQL.

32.2 What Is a Database?

A database is essentially a way to store and retrieve data.

Typically, there is some form of query language used with the database to help
select the information to retrieve such as SQL or Structured Query Language.

In most cases there is a structure defined that is used to hold the data (although
this is not true of the newer NoSQL or non-relational unstructured databases such as
CouchDB or MongoDB).

In Relational database the data is held in tables, where the columns define the
properties or attributes of the data and each row defines the actual values being held,
for example:

© Springer Nature Switzerland AG 2023 359
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_32&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_32

360 32 Introduction to Databases

attribute

id name surname subject email
raw cs_18 Phoebe Cooke Animation pc@my.com
cs_21 Gryff Jones Games gj@my.com
cs_27 Adam Fosh Music af@my.com '
cs_29 Jasmine Smith Games js@my.com |

students

In this diagram there is a table called students; it is being used to hold infor-
mation about students attending a meeting. The table has 5 attributes (or columns)
defined for id, name, surname, subject and email.

In this case, the 1d is probably what is known as a primary key. The primary key
is a property that is used to uniquely identify the student row; it cannot be omitted
and must be unique (within the table). Obviously names and subjects may well be
duplicated as there may be more than one student studying Animation or Games
and students may have the same first name or surname. It is probable that the email
column is also unique as students probably don’t share an email address but again
this may not necessarily be the case.

You might at this point wonder why the data in a Relational database is called
relational and not tables or tabular? The reason is because of a topic known as rela-
tional algebra that underpins Relational database theory. Relational Algebra takes its
name from the mathematical concept known as a relation. However, for the purposes
of this chapter you don’t need to worry about this and just need to remember that
data is held in tables.

32.2.1 Data Relationships

When the data held in one table has a link or relationship to data held in another
table then an index or key is used to link the values in one table to another. This
is illustrated below for a table of addresses and a table of people who live in that
address. This shows for example, that ‘Phoebe Gates’ lives at address ‘addr2’ which
is 12 Queen Street, Bristol, BS42 6YY.

32.2 What Is a Database? 361

id Name Surname Address |
pl John Jones addrl
p2 Adam Smith addr2

p3 Phoebe Gates (_addr2 D

people

id Number Street City Postcode |

[addr1 10 HighStreet Cardiff CFS9 722
[addr2 12 Queen Street Bristol B542 6YY
[addr3 8 Charlotte Street Bath BA916TT .
addresses

This is an example of a many to one (often written as many: 1) relationship; that
is there are many people who can live at one address (in the above Adam Smith also
lives at address ‘addr2’). In Relational databases there can be several different types
of relationship such as:

e One: one where only one row in one table references one and only one row in
another table. An example of a one to one relationship might be from a person to
an order for a unique piece of jewellery.

e One: many this is the same as the above address example; however in this case
the direction of the relationship is reversed (that is to say that one address in the
addresses table can reference multiple persons in the people table).

e Many: many this is where many rows in one table may reference many rows
in a second table. For example, many students may take a particular class and a
student may take many classes. This relationship usually involves an intermediate
(join) table to hold the associations between the rows.

32.2.2 The Database Schema

The structure of a Relational database is defined using a Data Definition Language
or Data Description Language (a DDL).

Typically, the syntax of such a language is limited to the semantics (meaning)
required to define the structure of the tables. This structure is known as the
database schema. Typically, the DDL has commands such as CREATE TABLE,
DROP TABLE (to delete a table) and ALTER TABLE (to modify the structure of an
existing table).

362 32 Introduction to Databases

Many tools provided with a database allow you to define the structure of the
database without getting too bound up in the syntax of the DDL; however, it is useful
to be aware of it and to understand that the database can be created in this way. For
example, we will use the MySQL database in this chapter. The MySQL Workbench
is a tool that allows you to work with MySQL databases to manage and query the
data held within a particular database instance. For references for MySQL and the
MySQL Workbench see the links at the end of this chapter.

As an example, within the MySQL Workbench we can create a new table using a
menu option on a database:

¥ | uni-database

£ Create Table...]
¥ [st Create Table Like... >
(&)

, Search Table Data...
Table Data Import Wizard
]

« Refresh Al

Using this we can interactively define the columns that will comprise the table:

| F Queryl x| / new table - Table x

‘ ; Mame: students Schema: students
|
Column Datatype PK NN UQ BIN UN ZF Al G Default/Expression

id INT &
name VARCHAR(45) &
sumame VARCHAR(45) &
subject VARCHAR(48) &

[l + email VARCHAR(45) |+ - B 8888

| o

Column details ‘email’

Column Name: email Datatype: VARCHAR(45) n
Collation: Table Default B Default
Comments: Storage:

Primary Key Not NULL Unique
Binary

Here each column name, its type and whether it is the primary key (PK), not
empty (or Not Null NN) or unique (UQ) have been specified. When the changes are
applied, the tool also shows you the DDL that will be used to create the database:

CREATE TABLE "students’ . students’ (
id INT NOT NULL,
; VARCHAR(45) NOT NULL,
»" VARCHAR{45) NOT NULL,
L] VARCHAR(5) NOT NULL,
mail’ VARCHAR(45) NOT NULL,
PRIMARY KEY ('id’),
UNIQUE INDEX “email UNIQUE™ (‘email’ ASC)});

(- R T SR

32.3 SQL and Databases 363

When this is applied a new table is created in the database as shown below:

v = students
v Tables
¥ [students
v [#) Columns
¢ id
name

L

¢ surname
+ subject
*

email

The tool also allows us to populate data into the table; this is done by entering
data into a grid and hitting apply as shown below:

Result Grid | [{l] 4% Filter Rows: Q Edit: &
id name surname subject email
cs_18 Phoebe Cooke Animation pc@my.com
oL | [y i | [y [y
students 1 Apply

32.3 SQL and Databases

We can now use query languages to identify and return data held in the database
often using specific criteria.

For example, let us say we want to return all the people who have the surname
Jones from the following table:

| id name surname subject email

cs_18 Phoebe Coocke Animation pc@my.com

cs_21 Gryff lones Games gj@my.com
cs_27 Adam Fosh Music af@my.com
cs_29 Jasmine Smith Games js@my.com
cs_31 Tom Jones Music tj@my.com

student_table

364 32 Introduction to Databases

We can do this by specifying that data should be returned where the surname
equals ‘Jones’; in SQL this would look like:

SELECT * FROM students where surname='Jones’ ;

The above SELECT statement states that all the properties (columns or attributes)
in a row in the table students are to be returned where the surname equals ‘Jones’.
The result is that two rows are returned:

| id name surname subject email

I 2 Gryff Jones Games gi@my.com
| |5 Tom Jones Music tj@my.com

Note we need to specify the table we are interested in and what data we want
to return (the “*’ after the select indicated we want all the data). If we were only
interested in their first names then we could use:

SELECT name FROM students where surname='Jones’ ;

This would return only the names of the students:

name

Giryff

Tom

32.4 Data Manipulation Language

Data can also be inserted into a table or existing data in a table can be updated. This
is done using the Data Manipulation Language (DML).

For example, to insert data into a table we merely need to write an INSERT SQL
statement providing the values to be added and how they map to the columns in the
table:

INSERT INTO 'students’ (’'id’, ’'mname’, ’'surname’, ’'subject’,
‘email’) VALUES (’6’, 'James’, 'Andrews’, 'Games’, 'ja@my.com’) ;

This would add the row 6 to the table students with the result that the table
would now have an additional row:

mailto:ja@my.com

32.5 Transactions in Databases 365

| id name surname subject email

| > Phoebe Cooke Animation pc@my.com

| 2 Gryff Jones Games gi@my.com
3 Adam Fosh Music af@my.com
4 Jasmine Smith Games js@my.com
5 Tom Jones Music fj@my.com
6 James Andrews Games ja@my.com

Updating an existing row is a little more complicated as it is first necessary to iden-
tify the row to be updated and then the data to modify. Thus an UPDATE statement
includes a where clause to ensure the correct row is modified:

UPDATE ’'students’ SET ‘email’=’grj@my.com’ WHERE 'id’'='2";

The effect of this code is that the second row in the students table is modified with
the new email address:

id name surname subject email

1 Phoebe Cooke Animation pc@my.com
2 Giryff Jones Games grj@my.com
3 Adam Fosh Music af@my.com
4 Jasmine Smith Games js@my.com
5 Tom Jones Music tj@my.com
6 James Andrews Games ja@my.com

32.5 Transactions in Databases

Another important concept within a database is that of a Transaction. A Transaction

represents a unit of work performed within a database management system (or similar

system) against a database instance and is independent of any other transaction.
Transactions in a database environment have two main purposes.

e To provide a unit of work that allows recovery from failures and keeps a database
consistent even in cases of system failure, when execution stops (completely
or partially). This is because either all the operations within a transaction are
performed or none of them are. Thus, if one operation causes an error then all the
changes being made by the transaction thus far are rolled back and none of them
will have been made.

e To provide isolation between programs accessing a database concurrently. This
means that the work being done by one program will not interact with another
programs work.

A database transaction, by definition, must be atomic, consis-
tent, isolated and durable:

mailto:grj@my.com

366 32 Introduction to Databases

Atomic This indicates that a transaction represents an atomic unit of work; that
is either all the operations in the transaction are performed or none of them are
performed.

Consistent Once completed the transaction must leave the data in a consistent
state with any data constraints met (such as a row in one table must not reference
a non-existent row in another table in a one to many relationship, etc.).

Isolated This relates to the changes being made by concurrent transactions; these
changes must be isolated from each other. That is, one transaction cannot see the
changes being made by another transaction until the second transaction completes
and all changes are permanently saved into the database.

Durable This means that once a transaction completes then the changes it has
made are permanently stored into the database (until some future transaction
modifies that data).

Database practitioners often refer to these properties of database transactions

using the acronym ACID (for Atomic, Consistent, Isolated, Durable).

Not all databases support transactions although all commercial, production quality

databases such as Oracle, Microsoft SQL Server and MySQL do support transactions.

32.6 Further Reading

If you want to know more about databases and database management systems here
are some online resources:

https://en.wikipedia.org/wiki/Database which is the Wikipedia entry for databases
and thus acts as a useful quick reference and jumping off point for other material.
https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Sys
tems/Database which provides a short introduction to databases.
https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-dat
abases another useful starting point for delving deeper into databases.
https://en.wikipedia.org/wiki/Object_database for information on Object
databases.

https://en.wikipedia.org/wiki/NoSQL for an introduction to No SQL or non-
relational databases.

e https://www.mysql.com/ for the MySQL database.
e https://dev.mysql.com/downloads/workbench The MySQL Workbench home

page.

e https://www.mongodb.com/ for the home page of the MongoDB site.
e http://couchdb.apache.org/ for the Apache Couch database.

If you want to explore the subject of database design (that is design of the tables

and links between tables in a database) then these references may help:

https://en.wikipedia.org/wiki/Database_design the Wikipedia entry for database
design.

https://en.wikipedia.org/wiki/Database
https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Systems/Database
https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Systems/Database
https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-databases
https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-databases
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/NoSQL
https://www.mysql.com/
https://dev.mysql.com/downloads/workbench
https://www.mongodb.com/
http://couchdb.apache.org/
https://en.wikipedia.org/wiki/Database_design

32.6 Further Reading 367

e https://www.udemy.com/cwdatabase-design-introduction/which covers most of
the core ideas within database design.

e http://en.tekstenuitleg.net/articles/software/database-design-tutorial/intro.html
which provides another tutorial that covers most of the core elements of database
design.

If you wish to explore SQL more then see:

e https://en.wikipedia.org/wiki/SQL the Wikipedia site for SQL
e https://www.w3schools.com/sql/sql_intro.asp which is the W3 school material on
SQL and as such an excellent resource.

e https://www.codecademy.com/learn/learn-sql which is a codecademy site for
SQL.

https://www.udemy.com/cwdatabase-design-introduction/which
http://en.tekstenuitleg.net/articles/software/database-design-tutorial/intro.html
https://en.wikipedia.org/wiki/SQL
https://www.w3schools.com/sql/sql_intro.asp
https://www.codecademy.com/learn/learn-sql

Chapter 33 ®)
Python DB-API i

33.1 Accessing a Database from Python

The standard for accessing a database in Python is the Python DB-API. This specifies
a set of standard interfaces for modules that wish to allow Python to access a specific
database. The standard is described in PEP 249 (https://www.python.org/dev/peps/
pep-0249)—a PEP is a Python Enhancement Proposal.

Almost all Python database access modules adhere to this standard. This means
that if you are moving from one database to another, or attempting to port a Python
program from using one database to another, then the APIs you encounter should
be very similar (although the SQL processed by different database can also differ).
There are modules available for most common databases such as MySQL, Oracle
and Microsoft SQL Server.

33.2 The DB-API

There are several key elements to the DB-API; these are:

e The connect function. The connect () function that is used to connect to a
database and returns a Connection Object.

e Connection Objects. Within the DB-API access to a database is achieved through
connection objects. These connection objects provide access to cursor objects.

e Cursor objects are used to execute SQL statements on the database.

e The result of an execution. These are the results that can be fetched as a sequence
of sequences (such a tuple of tuples). The standard can thus be used to select, insert
or update information in the database.

© Springer Nature Switzerland AG 2023 369
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_33&domain=pdf
https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-0249
https://doi.org/10.1007/978-3-031-40336-1_33

370 33 Python DB-API

These elements are illustrated below:

connect() -

Connection
object

l cursor()
Cursor
object DBMS

l execute(query)

)

(—) results

(==l

Y

The standard specifies a set of functions and objects to be used to connect to
a database. These include the connection function, the Connection Object and the
Cursor object.

The above elements are described in more detail below.

33.2.1 The Connect Function

The connection function is defined as:

1. connect (parameters...)

It is used to make the initial connection to the database. The connection returns a
Connection Object. The parameters required by the connection function are database
dependent.

33.2.2 The Connection Object

The Connection Object is returned by the connect () function. The Connection
object provides several methods including:

e close () usedtoclose the connection once you no longer need it. The connection
will be unusable from this point onwards.

33.2 The DB-API 371

commit () used to commit a pending transaction.

rollback () used torollback all the changes made to the database since the last
transaction commit (optional as not all databases provide transaction support).
cursor () returns a new Cursor object to use with the connection.

33.2.3 The Cursor Object

The Cursor object is returned from the connection. cusor () method. A Cursor
Object represents a database cursor, which is used to manage the context of a fetch
operation or the execution of a database command. Cursors support a variety of
attributes and methods:

cursor.execute (operation, parameters) Prepare and execute a
database operation (such as a query statement or an update command). Parameters
may be provided as a sequence or mapping and will be bound to variables in the
operation. Variables are specified in a database-specific notation.

cursor . rowcount A read-only attribute providing the number of rows that the
last cursor.execute () call returned (for select style statements) or affected
(for update or insert style statements).

cursor.description A read-only attribute providing information on the
columns present in any results returned from a SELECT operation.
cursor.close () Closes the cursor. From this point on the cursor will not be
usable.

In addition, the Cursor object also provides several fetch style methods. These

methods are used to return the results of a database query. The data returned is made
up of a sequence of sequences (such as a tuple of tuples) where each inner sequence
represents a single row returned by the SELECT statement. The fetch methods defined
by the standard are:

cursor. fetchone () Fetch the next row of a query result set, returning a
single sequence, or None when no more data is available.

cursor. fetchall () Fetch all (remaining) rows of a query result, returning
them as a sequence of sequences.

cursor.fetchman (size) Fetch the next set of rows of a query result,
returning a sequence of sequences (e.g. a tuple of tuples). An empty sequence
is returned when no more rows are available. The number of rows to fetch per call
is specified by the parameter.

372

33 Python DB-API

33.2.4 Mappings from Database Types to Python Types

The DB-API standard also specifies a set of mappings from the types used in a
database to the types used in Python. For a full listing see the DB-API standard itself
but the key mappings include:

Date (year, month,
day)

Represents a database date

Time (hour, minute,
second)

Represents a time database value

Timestamp (year,
month, day, hour,
minute, second)

Holds a database timestamp value

String

Used to represent string like database data (such as VARCHARSs)

33.2.5 Generating Errors

The standard also specifies a set of Exceptions that can be thrown in different
situations. These are presented below and in the following table:

| Exception ‘

Warning

[y

l DatabaseError |7—| InterfaceError

Y

| DataError

| OperationalError

| IntegrityError

| InternalError

| ProgrammingError |

| NotSupportedError Ii

33.2 The DB-API 373

The above diagram illustrates the inheritance hierarchy for the errors and warning
associated with the standard. Note that the DB-API Warning and Error both
extend the Exception class from standard Python; however, depending on the
specific implementation there may be one or more additional classes in the hier-
archy between these classes. For example, in the PyMySQL module there is
a MySQLError class that extends Exception and is then extended by both
Warning and Error.

Also note that Warning and Error have no relationship with each other. This is
because Warnings are not considered Errors and thus have a separate class hierarchies.
However, the Error is the root class for all database Error classes.

A description of each Warning or Error class is provided below.

Warning Used to warn of issues such as data truncations during inserting, etc

Error The base class of all other error exceptions

InterfaceError Exception raised for errors that are related to the database interface
rather than the database itself

DatabaseError Exception raised for errors that are related to the database

DataError Exception raised for errors that are due to problems with the data

such as division by zero and numeric value out of range

OperationalError |Exception raised for errors that are related to the database’s
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, etc

IntegrityError Exception raised when the relational integrity of the database is
affected
InternalError Exception raised when the database encounters an internal error, e.g.

the cursor is not valid anymore, the transaction is out of sync, etc

ProgrammingError | Exception raised for programming errors, e.g. table not found,
syntax error in the SQL statement, wrong number of parameters
specified, etc

NotSupportedError | Exception raised in case a method or database API was used which is
not supported by the database, e.g. requesting a .rol1lback () ona
connection that does not support transactions or has transactions
turned off

33.2.6 Row Descriptions

The Cursor object has an attribute description that provides a sequence of
sequences; each subsequence provides a description of one of the attributes of the
data returned by a SELECT statement. The sequence describing the attribute is made
up of up to seven items, these include:

374 33 Python DB-API

e name representing the name of the attribute.

type_code which indicates what Python type this attribute has been mapped
to.

display_size the size used to display the attribute.

internal_size the size used internally to represent the value.

precision if a real numeric value the precision supported by the attribute.
scale indicates the scale of the attribute.

null_ok indicates whether null values are acceptable for this attribute.

The first two items (name and type_code) are mandatory; the other five are
optional and are set to None if no meaningful values can be provided.

33.3 Transactions in PyMySQL

Transactions are managed in PyMySQL via the database connection object. This
object provides the following method:

e connection.commit () This causes the current transaction to commit all
the changes made permanently to the database. A new transaction is then started.

e connection.rollback () Thiscauses all changes that have been made so far
(but not permanently stored in to the database, i.e. not committed) to be removed.
A new transaction is then started.

The standard does not specify how a database interface should manage turning
on and off transaction (not least because not all databases support transactions).
However, MySQL does support transactions and can work in two modes; one supports
the use of transactions as already described; the other uses an autocommit mode. In
autocommit mode each command sent to the database (whether a SELECT statement
or an INSERT/UPDATE statement) is treated as an independent transaction, and any
changes are automatically committed at the end of the statement. This autocommit
mode can be turned on in PyMySQL using:

e connection.autocommit (True) turns on autocommit (False to turn off
autocommit which is the default).

Other associated methods include

e connection.get_autocommit () which returns a Boolean indicating
whether autocommit is turned on or not.
e connection.begin () to explicitly begin a new transaction.

33.4 Online Resources 375

33.4 Online Resources

See the following online resources for more information on the Python Database
API:

1. https://www.python.org/dev/peps/pep-0249/ Python Database API