
Undergraduate Topics in Computer Science

Advanced Guide
to Python 3
Programming

John Hunt

Second Edition

Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin , Department of Computing, Imperial College London, London,
UK

Mike Hinchey , Lero – The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson , Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University,
Stony Brook, NY, USA

Iain Stewart , Department of Computer Science, Durham University, Durham,
UK

Joseph Migga Kizza, College of Engineering and Computer Science, The
University of Tennessee-Chattanooga, Chattanooga, TN, USA

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instruc-
tional content for undergraduates studying in all areas of computing and information
science. From core foundational and theoretical material to final-year topics and
applications, UTiCS books take a fresh, concise, and modern approach and are ideal
for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and
contain numerous examples and problems, many of which include fully worked
solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275–300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

John Hunt

Advanced Guide to Python 3
Programming
Second Edition

John Hunt
Midmarsh Technology Ltd.
Chippenham, Wiltshire, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-40335-4 ISBN 978-3-031-40336-1 (eBook)

© Springer Nature Switzerland AG 2019, 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-40336-1

For Denise, my wife, my soulmate, my best
friend.

Preface to the Second Edition

This second edition represents a significant expansion of the material in the first
edition, as well as an update of that book from Python 3.7 to 3.12.

This book includes whole new sections on advanced language features, Reactive
Programming in Python and data analysts. New chapters on working with Tkinter,
on event handling with Tkinter and a simple drawing application using Tkinter have
been added. A new chapter on performance monitoring and profiling has also been
added. A chapter on pip and conda is included at the end of the book.

In all there are 18 completely new chapters that take you far further on your Python
journey. Enjoy the book and I hope you find it useful.

Chippenham, UK John Hunt

vii

Preface to the First Edition

Some of the key aspects of this book are

1. It assumes knowledge of Python 3 and of concepts such as functions, classes,
protocols, abstract base classes, decorators, iterables and collection types (such
as list and tuple).

2. However, the book assumes very little knowledge or experience of the topics
presented.

3. The book is divided into eleven topic areas: advanced language features,
Computer Graphics, games, testing, file input/output, database access, logging,
concurrency and parallelism, Reactive Programming, network programming and
data analytics.

4. Each topic in the book has an introductory chapter followed by chapters that
delve into that topic.

5. The book includes exercises at the end of most chapters.
6. All code examples (and exercise solutions) are provided on line in a GitHub

repository.

What You Need

You can of course just read this book; however following the examples in this book
will ensure that you get as much as possible out of the content. For this you will need
a computer.

Python is a cross-platform programming language, and as such you can use Python
on a Windows PC, a Linux box, an Apple Mac, etc. So you are not tied to a particular
type of operating system; you can use whatever you have available.

However you will need to install some software on that computer. At a minimum
you will need Python. The focus of this book is Python 3 so that is the version that
is assumed for all examples and exercises. As Python is available for a wide range

ix

x Preface to the First Edition

of platforms from Windows, to Mac OS and Linux, you will need to ensure that you
download the version for your operating system.

Python can be downloaded from the main Python website which can be found at
http://www.python.org/.

You will also need some form of editor to write your programs. There are numerous
generic programming editors available for different operating systems with VIM on
Linux, Notepad++ on Windows and Sublime Text on windows and Macs being
popular choices.

However, using an Integrated Development Environment (IDE) editor such as
PyCharm, Visual Studio Code or Spyder can make writing and running your programs
much easier.

However, this book does not assume any particular editor, IDE or environment
(other than Python 3 itself).

Conventions

Throughout this book you will find a number of conventions used for text styles.
These text styles distinguish between different kinds of information. Code words,
variable and Python values, used within the main body of the text, are shown using
a Courier font. A block of Python code is set out as shown here:

http://www.python.org/

Preface to the First Edition xi

def draw_koch(size, depth):
if depth > 0:
for angle in ANGLES:
draw_koch(size / 3, depth - 1)
turtle.left(angle)

else:
turtle.forward(size)

Draw three sides of snowflake
for_in range(3):
draw_koch(SIZE_OF_SNOWFLAKE, depth)
turtle.right(120)

Note that keywords and points of interest are shown in bold font.
Any command line or user input is shown in standard font as shown below, for

example:

Hello, world
Enter your name: John
Hello John

Example Code and Sample Solutions

The examples used in this book (along with sample solutions for the exercises at the
end of most chapters) are available in a GitHub repository. GitHub provides a web
interface to Git, as well as a server environment hosting Git.

Git is a version control system typically used to manage source code files (such
as those used to create systems in programming languages such as Python but also
Java, C#, C++ and Scala). Systems such as Git are very useful for collaborative
development as they allow multiple people to work on an implementation and to
merge their work together. They also provide a useful historical view of the code
(which also allows developers to roll back changes if modifications prove to be
unsuitable).

The GitHub repository for this book can be found at:

• https://github.com/johnehunt/advancedpython3_2nd

If you already have Git installed on your computer, then you can clone (obtain a
copy of) the repository locally using:

git clone https://github.com/johnehunt/advancedpyth
on3_2nd.git

If you do not have Git, then you can obtain a zip file of the examples using

https://github.com/johnehunt/advancedpython3_2nd/arc
hive/refs/heads/main.zip

https://github.com/johnehunt/advancedpython3_2nd
https://github.com/johnehunt/advancedpython3_2nd.git
https://github.com/johnehunt/advancedpython3_2nd.git
https://github.com/johnehunt/advancedpython3_2nd/archive/refs/heads/main.zip
https://github.com/johnehunt/advancedpython3_2nd/archive/refs/heads/main.zip

xii Preface to the First Edition

You can of course install Git yourself if you wish. To do this, see https://git-scm.
com/downloads. Versions of the Git client for Mac OS, Windows and Linux/Unix
are available here.

However, many IDEs such as PyCharm come with Git support and so offer another
approach to obtaining a Git repository.

For more information on Git see http://git-scm.com/doc. This Git guide
provides a very good primer and is highly recommended.

Acknowledgement I would like to thank Phoebe Hunt for creating the pixel images used for the
Starship Meteors game in Chap. 22.

https://git-scm.com/downloads
https://git-scm.com/downloads
http://git-scm.com/doc

Contents

1 Introduction . 1
1.1 Introduction . 1
1.2 Useful Python Resources . 3

Part I Advanced Language Features

2 Python Type Hints . 7
2.1 Introduction . 7
2.2 Pythons Type System . 7
2.3 The Challenge for Python Developers . 8
2.4 Static Typing . 9
2.5 Python Type Hints . 10
2.6 Type Hint Layout . 11
2.7 Type Hints for Multiple Types . 12
2.8 The Self Type . 12
2.9 The Benefits of Type Hints . 12
2.10 Summary . 13
2.11 Online Resources . 13

3 Class Slots . 15
3.1 Introduction . 15
3.2 The Problem . 15
3.3 Slots to the Rescue . 17
3.4 Performance Benefits . 19
3.5 Why Not Use Slots? . 20
3.6 Online Resource . 21

4 Weak References . 23
4.1 Introduction . 23
4.2 How Garbage Collection Works: Reference Counting 23
4.3 Weak References . 25
4.4 When to Use Weak References . 25

xiii

xiv Contents

4.5 The Weakref Module . 26
4.6 Creating Weak References . 26
4.7 Retrieving Objects from Weak References 28
4.8 The WeakValueDicitonary . 28
4.9 WeakKeyDictionary . 30
4.10 Proxy Objects . 30
4.11 Online Resources . 31

5 Data Classes . 33
5.1 Introduction . 33
5.2 A Traditional Class . 33
5.3 Defining Data Classes . 35
5.4 Defining Additional Behaviour . 36
5.5 The Dataclass Decorator . 37
5.6 Custom Factory for Fields . 38
5.7 Immutable Dataclasses . 40
5.8 Data Classes and Inheritance . 41
5.9 Post Initialisation . 43
5.10 Initialisation Variables . 44
5.11 Positional Attributes . 45
5.12 Exercise . 46

6 Structural Pattern Matching . 49
6.1 Introduction . 49
6.2 The Match Statement . 49
6.3 Matching Classes with Positional Attributes 50
6.4 Matching Against Standard Classes . 51
6.5 Online Resource . 52

7 Working with pprint . 53
7.1 Introduction . 53
7.2 The pprint Data Printer Module . 53
7.3 Basic pprint Usage . 54
7.4 Changing the Width . 56
7.5 Changing the Depth . 57
7.6 Managing the Indentation Level . 58
7.7 Reducing Line Breaks Using Compact . 59
7.8 The pformat Function . 60
7.9 The saferepr() Function . 62
7.10 Using the PrettyPrinter Class . 62
7.11 Online Resource . 63

8 Shallow v Deep Copy . 65
8.1 Introduction . 65
8.2 Copying a List of Lists . 65
8.3 The Problem with Copying . 66

Contents xv

8.4 The Copy Module to the Rescue . 68
8.5 Using the deepcopy() Function . 69
8.6 Online Resource . 70

9 The __init__ Versus __new__ and __call . 71
9.1 Introduction . 71
9.2 The __new__ and __init__ Methods . 71
9.3 The __new__ Method . 72
9.4 When to Use the __new__ Method . 73
9.5 Using __new__ to Create a Singleton Object 74
9.6 The __init__ Method . 75
9.7 Can __new__ and __init__ Be Used Together? 76
9.8 The __call__ Method . 77
9.9 Summary . 77

10 Python Metaclasses and Meta Programming . 79
10.1 Introduction . 79
10.2 Metaprogramming . 79
10.3 Decorators as a Form of Metaprogramming 81
10.4 Metaclasses for Metaprogramming . 83

10.4.1 Singleton Metaclass . 83
10.5 Exec and Eval for Metaprogramming . 85

10.5.1 The exec() Function . 85
10.5.2 The eval() Function . 86
10.5.3 eval Versus exec() . 86

Part II Computer Graphics and GUIs

11 Introduction to Computer Graphics . 91
11.1 Introduction . 91
11.2 Background . 92
11.3 The Graphical Computer Era . 92
11.4 Interactive and Non Interactive Graphics . 93
11.5 Pixels . 94
11.6 Bit Map Versus Vector Graphics . 96
11.7 Buffering . 96
11.8 Python and Computer Graphics . 96
11.9 References . 97
11.10 Online Resources . 97

12 Python Turtle Graphics . 99
12.1 Introduction . 99
12.2 The Turtle Graphics Library . 99

12.2.1 The Turtle Module . 99
12.2.2 Basic Turtle Graphics . 100
12.2.3 Drawing Shapes . 103
12.2.4 Filling Shapes . 104

xvi Contents

12.3 Other Graphics Libraries . 105
12.4 3D Graphics . 106

12.4.1 PyOpenGL . 106
12.5 Online Resources . 107
12.6 Exercises . 107

13 Computer Generated Art . 109
13.1 Creating Computer Art . 109
13.2 A Computer Art Generator . 111
13.3 Fractals in Python . 114
13.4 The Koch Snowflake . 114
13.5 Mandelbrot Set . 116
13.6 Online Resources . 119
13.7 Exercises . 119

14 Introduction to Matplotlib . 121
14.1 Introduction . 121
14.2 Matplotlib . 122
14.3 Plot Components . 123
14.4 Matplotlib Architecture . 125

14.4.1 Backend Layer . 125
14.4.2 The Artist Layer . 126
14.4.3 The Scripting Layer . 127

14.5 Online Resources . 128

15 Graphing with Matplotlib Pyplot . 129
15.1 Introduction . 129
15.2 The pyplot API . 129
15.3 Line Graphs . 130

15.3.1 Coded Format Strings . 132
15.4 Scatter Graph . 133

15.4.1 When to Use Scatter Graphs . 134
15.5 Pie Charts . 136

15.5.1 Expanding Segments . 137
15.5.2 When to Use Pie Charts . 138

15.6 Bar Charts . 139
15.6.1 Horizontal Bar Charts . 140
15.6.2 Coloured Bars . 141
15.6.3 Stacked Bar Charts . 141
15.6.4 Grouped Bar Charts . 143

15.7 Figures and Subplots . 144
15.8 3D Graphs . 146
15.9 Exercises . 148

Contents xvii

16 Graphical User Interfaces . 151
16.1 Introduction . 151
16.2 GUIs and WIMPS . 151
16.3 Windowing Frameworks for Python . 153

16.3.1 Platform-Independent GUI Libraries 154
16.3.2 Platform-Specific GUI Libraries 154

16.4 Online Resources . 154

17 Tkinter GUI Library . 155
17.1 Introduction . 155
17.2 Tkinter . 155
17.3 Windows as Objects . 156
17.4 Key Concepts . 156

17.4.1 The Tk Class . 157
17.4.2 TK Widgets . 157
17.4.3 The TopLevel Class . 158
17.4.4 The Frame Class . 159
17.4.5 Dialogs . 160
17.4.6 The Canvas Class . 161

17.5 The Class Inheritance Hierarchy . 162
17.5.1 Layout Management . 163

17.6 A Simple Example . 163
17.7 Tkinter Installation . 164

17.7.1 Mac Installation . 164
17.7.2 Windows Installation . 165

17.8 GUI Builders for Tkinter . 166
17.9 Online Resources . 166
17.10 Exercises . 167

18 Events in Tkinter User Interfaces . 169
18.1 Introduction . 169
18.2 Event Handling . 169
18.3 What is Event Handling? . 170
18.4 What Are Event Handlers? . 170
18.5 Event Binders . 172
18.6 Virtual Events . 173
18.7 Event Definitions . 173
18.8 What Types of Event Are There? . 174
18.9 Binding an Event to an Event Handler . 175
18.10 Implementing Event Handling . 175
18.11 An Interactive GUI Application . 178
18.12 Online Resources . 181
18.13 Exercises . 181

xviii Contents

19 PyDraw Tkinter Example Application . 185
19.1 Introduction . 185
19.2 The PyDraw Application . 185
19.3 The Structure of the Application . 186

19.3.1 Model, View and Controller Architecture 188
19.3.2 PyDraw MVC Architecture . 189
19.3.3 Additional Classes . 190
19.3.4 Object Relationships . 190

19.4 The Interactions Between Objects . 191
19.4.1 The PyDrawApp . 192

19.5 The PyDrawView Constructor . 192
19.5.1 Changing the Application Mode 193
19.5.2 Adding a Graphic Object . 193

19.6 The Classes . 194
19.6.1 The PyDrawConstants Class . 194
19.6.2 The PyDrawView Class . 195
19.6.3 The PyDrawMenuBar Class . 196
19.6.4 The PyDrawController Class . 196
19.6.5 The DrawingModel Class . 197
19.6.6 The DrawingView Class . 198
19.6.7 The DrawingController Class . 198
19.6.8 The Figure Class . 199
19.6.9 The Square Class . 200
19.6.10 The Circle Class . 200
19.6.11 The Line Class . 200
19.6.12 The Text Class . 201

19.7 Reference . 201
19.8 Exercises . 201

Part III Computer Games

20 Introduction to Games Programming . 205
20.1 Introduction . 205
20.2 Games Frameworks and Libraries . 205
20.3 Python Games Development . 206
20.4 Using Pygame . 207
20.5 Online Resources . 207

21 Building Games with Pygame . 209
21.1 Introduction . 209
21.2 The Display Surface . 210
21.3 Events . 211

21.3.1 Event Types . 211
21.3.2 Event Information . 212
21.3.3 The Event Queue . 213

Contents xix

21.4 A First pygame Application . 214
21.5 Further Concepts . 217
21.6 A More Interactive pygame Application . 219
21.7 Alternative Approach to Processing Input Devices 221
21.8 pygame Modules . 222
21.9 Online Resources . 223

22 StarshipMeteors Pygame . 225
22.1 Introduction . 225
22.2 Creating a Spaceship Game . 225
22.3 The Main Game Class . 226
22.4 The GameObject Class . 228
22.5 Displaying the Starship . 229
22.6 Moving the Spaceship . 230
22.7 Adding a Meteor Class . 233
22.8 Moving the Meteors . 235
22.9 Identifying a Collision . 236
22.10 Identifying a Win . 237
22.11 Increasing the Number of Meteors . 238
22.12 Pausing the Game . 238
22.13 Displaying the Game Over Message . 239
22.14 The StarshipMeteors Game . 240
22.15 Online Resources . 244
22.16 Exercises . 244

Part IV Testing

23 Introduction to Testing . 247
23.1 Introduction . 247
23.2 Types of Testing . 247
23.3 What Should Be Tested? . 248
23.4 Types of Testing . 249

23.4.1 Unit Testing . 250
23.4.2 Integration Testing . 251
23.4.3 System Testing . 251
23.4.4 Installation/Upgrade Testing . 252
23.4.5 Smoke Tests . 252

23.5 Automating Testing . 252
23.6 Test-Driven Development . 253

23.6.1 The TDD Cycle . 253
23.6.2 Test Complexity . 254
23.6.3 Refactoring . 255

23.7 Design for Testability . 255
23.7.1 Testability Rules of Thumb . 255

23.8 Online Resources . 255
23.9 Book Resources . 256

xx Contents

24 PyTest Testing Framework . 257
24.1 Introduction . 257
24.2 What is PyTest? . 257
24.3 Setting up PyTest . 258
24.4 A Simple PyTest Example . 258
24.5 Working with PyTest . 261
24.6 Parameterised Tests . 265
24.7 Online Resources . 267
24.8 Exercises . 267

25 Mocking for Testing . 269
25.1 Introduction . 269
25.2 Why Mock? . 271
25.3 What is Mocking? . 272
25.4 Common Mocking Framework Concepts 273
25.5 Mocking Frameworks for Python . 274
25.6 The Unittest.Mock Library . 274

25.6.1 Mock and Magic Mock Classes 275
25.6.2 The Patchers . 276
25.6.3 Mocking Returned Objects . 277
25.6.4 Validating Mocks Have Been Called 278

25.7 Mock and MagicMock Usage . 279
25.7.1 Naming Your Mocks . 279
25.7.2 Mock Classes . 279
25.7.3 Attributes on Mock Classes . 279
25.7.4 Mocking Constants . 280
25.7.5 Mocking Properties . 280
25.7.6 Raising Exceptions with Mocks 281
25.7.7 Applying Patch to Every Test Method 281
25.7.8 Using Patch as a Context Manager 281

25.8 Mock Where You Use It . 282
25.9 Patch Order Issues . 282
25.10 How Many Mocks? . 283
25.11 Mocking Considerations . 283
25.12 Online Resources . 284
25.13 Exercises . 284

Part V File Input/Output

26 Introduction to Files, Paths and IO . 289
26.1 Introduction . 289
26.2 File Attributes . 292
26.3 Paths . 293
26.4 File Input/Output . 295

Contents xxi

26.5 Sequential Access versus Random Access 296
26.6 Files and I/O in Python . 297
26.7 Online Resources . 297

27 Reading and Writing Files . 299
27.1 Introduction . 299
27.2 Obtaining References to Files . 299
27.3 Reading Files . 301
27.4 File Contents Iteration . 302
27.5 Writing Data to Files . 302
27.6 Using Files and with Statements . 303
27.7 The Fileinput Module . 303
27.8 Renaming Files . 304
27.9 Deleting Files . 304
27.10 Random Access Files . 305
27.11 Directories . 306
27.12 Temporary Files . 307
27.13 Working with Paths . 309
27.14 Online Resources . 312
27.15 Exercise . 313

28 Stream IO . 315
28.1 Introduction . 315
28.2 What is a Stream? . 315
28.3 Python Streams . 316
28.4 IOBase . 317
28.5 Raw IO/UnBuffered IO Classes . 318
28.6 Binary IO/Buffered IO Classes . 318
28.7 Text Stream Classes . 320
28.8 Stream Properties . 321
28.9 Closing Streams . 322
28.10 Returning to the Open() Function . 322
28.11 Online Resource . 323
28.12 Exercise . 323

29 Working with CSV Files . 325
29.1 Introduction . 325
29.2 CSV Files . 325

29.2.1 The CSV Writer Class . 326
29.2.2 The CSV Reader Class . 327
29.2.3 The CSV DictWriter Class . 328
29.2.4 The CSV DictReader Class . 329

29.3 Online Resources . 330
29.4 Exercises . 330

xxii Contents

30 Working with Excel Files . 333
30.1 Introduction . 333
30.2 Excel Files . 333
30.3 The Openpyxl. Workbook Class . 334
30.4 The Openpyxl. WorkSheet Objects . 334
30.5 Working with Cells . 334
30.6 Sample Excel File Creation Application . 335
30.7 Loading a Workbook from an Excel File . 336
30.8 Online Resources . 338
30.9 Exercises . 338

31 Regular Expressions in Python . 341
31.1 Introduction . 341
31.2 What Are Regular Expressions? . 341
31.3 Regular Expression Patterns . 342

31.3.1 Pattern Metacharacters . 342
31.3.2 Special Sequences . 343
31.3.3 Sets . 344

31.4 The Python re Module . 345
31.5 Working with Python Regular Expressions 345

31.5.1 Using Raw Strings . 345
31.5.2 Simple Example . 346
31.5.3 The Match Object . 346
31.5.4 The search() Function . 347
31.5.5 The match() Function . 348
31.5.6 The Difference Between Matching

and Searching . 349
31.5.7 The finadall() Function . 349
31.5.8 The finditer() Function . 349
31.5.9 The split() Function . 350
31.5.10 The sub() Function . 350
31.5.11 The compile() Function . 351

31.6 Online Resources . 353
31.7 Exercises . 354

Part VI Database Access

32 Introduction to Databases . 359
32.1 Introduction . 359
32.2 What Is a Database? . 359

32.2.1 Data Relationships . 360
32.2.2 The Database Schema . 361

32.3 SQL and Databases . 363
32.4 Data Manipulation Language . 364
32.5 Transactions in Databases . 365
32.6 Further Reading . 366

Contents xxiii

33 Python DB-API . 369
33.1 Accessing a Database from Python . 369
33.2 The DB-API . 369

33.2.1 The Connect Function . 370
33.2.2 The Connection Object . 370
33.2.3 The Cursor Object . 371
33.2.4 Mappings from Database Types to Python Types 372
33.2.5 Generating Errors . 372
33.2.6 Row Descriptions . 373

33.3 Transactions in PyMySQL . 374
33.4 Online Resources . 375

34 PyMySQL Module . 377
34.1 The PyMySQL Module . 377
34.2 Working with the PyMySQL Module . 377

34.2.1 Importing the Module . 378
34.2.2 Connect to the Database . 378
34.2.3 Obtaining the Cursor Object . 379
34.2.4 Using the Cursor Object . 379
34.2.5 Obtaining Information About the Results 380
34.2.6 Fetching Results . 380
34.2.7 Close the Connection . 381

34.3 Complete PyMySQL Query Example . 381
34.4 Inserting Data to the Database . 382
34.5 Updating Data in the Database . 384
34.6 Deleting Data in the Database . 385
34.7 Creating Tables . 386
34.8 Online Resources . 386
34.9 Exercises . 387

Part VII Logging

35 Introduction to Logging . 391
35.1 Introduction . 391
35.2 Why Log? . 391
35.3 What is the Purpose of Logging? . 392
35.4 What Should You Log? . 392
35.5 What not to Log . 393
35.6 Why not Just Use Print? . 394
35.7 Online Resources . 395

36 Logging in Python . 397
36.1 The Logging Module . 397
36.2 The Logger . 398
36.3 Controlling the Amount of Information Logged 399
36.4 Logger Methods . 401

xxiv Contents

36.5 Default Logger . 402
36.6 Module Level Loggers . 403
36.7 Logger Hierarchy . 404
36.8 Formatters . 405

36.8.1 Formatting Log Messages . 406
36.8.2 Formatting Log Output . 406

36.9 Online Resources . 408
36.10 Exercises . 408

37 Advanced Logging . 409
37.1 Introduction . 409
37.2 Handlers . 409

37.2.1 Setting the Root Output Handler 411
37.2.2 Programmatically Setting the Handler 412
37.2.3 Multiple Handlers . 413

37.3 Filters . 415
37.4 Logger Configuration . 416
37.5 Performance Considerations . 418
37.6 Exercises . 419

Part VIII Concurrency and Parallelism

38 Introduction to Concurrency and Parallelism . 423
38.1 Introduction . 423
38.2 Concurrency . 423
38.3 Parallelism . 425
38.4 Distribution . 426
38.5 Grid Computing . 427
38.6 Concurrency and Synchronisation . 428
38.7 Object Orientation and Concurrency . 428
38.8 Threads V Processes . 429
38.9 Some Terminology . 430
38.10 Online Resources . 430

39 Threading . 433
39.1 Introduction . 433
39.2 Threads . 433

39.2.1 Thread States . 433
39.2.2 Creating a Thread . 434
39.2.3 Instantiating the Thread Class . 435

39.3 The Thread Class . 436
39.4 The Threading Module Functions . 438
39.5 Passing Arguments to a Thread . 438
39.6 Extending the Thread Class . 440
39.7 Daemon Threads . 441

Contents xxv

39.8 Naming Threads . 442
39.9 Thread Local Data . 442
39.10 Timers . 444
39.11 The Global Interpreter Lock . 445
39.12 Online Resources . 446
39.13 Exercise . 446

40 MultiProcessing . 449
40.1 Introduction . 449
40.2 The Process Class . 449
40.3 Working with the Process Class . 451
40.4 Alternative Ways to Start a Process . 453
40.5 Using a Pool . 454
40.6 Exchanging Data Between Processes . 458
40.7 Sharing State Between Processes . 460

40.7.1 Process Shared Memory . 460
40.8 Online Resources . 461
40.9 Exercises . 462

41 Inter Thread/Process Synchronisation . 463
41.1 Introduction . 463
41.2 Using a Barrier . 463
41.3 Event Signalling . 467
41.4 Synchronising Concurrent Code . 469
41.5 Python Locks . 470
41.6 Python Conditions . 472
41.7 Python Semaphores . 475
41.8 The Concurrent Queue Class . 476
41.9 Online Resources . 478
41.10 Exercises . 478

42 Futures . 481
42.1 Introduction . 481
42.2 The Need for a Future . 481
42.3 Futures in Python . 482

42.3.1 Future Creation . 483
42.3.2 Simple Example Future . 483

42.4 Running Multiple Futures . 485
42.4.1 Waiting for All Futures to Complete 486
42.4.2 Processing Results as Completed 488

42.5 Processing Future Results Using a Callback 489
42.6 Online Resources . 490
42.7 Exercises . 490

xxvi Contents

43 Concurrency with AsyncIO . 493
43.1 Introduction . 493
43.2 Asynchronous IO . 493
43.3 Async IO Event Loop . 494
43.4 The Async and Await Keywords . 495

43.4.1 Using Async and Await . 496
43.5 Async IO Tasks . 498
43.6 Running Multiple Tasks . 500

43.6.1 Collating Results from Multiple Tasks 500
43.6.2 Handling Task Results as They Are Made

Available . 501
43.7 Online Resources . 502
43.8 Exercises . 502

44 Performance Monitoring and Profiling . 505
44.1 Introduction . 505
44.2 Why Monitor Performance and Memory? 505
44.3 Performance Monitoring and Profiling . 506
44.4 Performance Monitoring . 507

44.4.1 The Time Module . 507
44.4.2 The Timeit Module . 508
44.4.3 The Psutil Module . 510

44.5 Python Profiling . 511
44.5.1 The cProfile Module . 511
44.5.2 The Line_Profiler Module . 511
44.5.3 The Memory_Profiler Module . 512
44.5.4 Additional Third-Party Libraries 512

44.6 Profiling with cProfile . 512
44.7 Memory Profiling . 515
44.8 Online Resources . 517

Part IX Reactive Programming

45 Reactive Programming Introduction . 521
45.1 Introduction . 521
45.2 What Is a Reactive Application? . 521
45.3 The ReactiveX Project . 522
45.4 The Observer Pattern . 522
45.5 Hot and Cold Observables . 523
45.6 Differences Between Event Driven Programming

and Reactive Programming . 524
45.7 Advantages of Reactive Programming . 525
45.8 Disadvantages of Reactive Programming 525
45.9 The RxPy Reactive Programming Framework 526
45.10 Online Resources . 526

Contents xxvii

46 RxPy Observables, Observers and Subjects . 527
46.1 Introduction . 527
46.2 RxPy Library . 527
46.3 Observables in RxPy . 527
46.4 Observers in RxPy . 528
46.5 Multiple Subscribers/Observers . 530
46.6 Subjects in RxPy . 531
46.7 Observer Concurrency . 534

46.7.1 Available Schedulers . 535
46.8 Online Resources . 536
46.9 Exercises . 536

47 RxPy Operators . 537
47.1 Introduction . 537
47.2 Reactive Programming Operators . 537
47.3 Piping Operators . 538
47.4 Creational Operators . 539
47.5 Transformational Operators . 539
47.6 Combinatorial Operators . 541
47.7 Filtering Operators . 542
47.8 Mathematical Operators . 543
47.9 Chaining Operators . 544
47.10 Online Resources . 546
47.11 Exercises . 546

Part X Network Programming

48 Introduction to Sockets and Web Services . 551
48.1 Introduction . 551
48.2 Sockets . 551
48.3 Web Services . 552
48.4 Addressing Services . 552
48.5 Localhost . 553
48.6 Port Numbers . 554
48.7 IPv4 Versus IPv6 . 555
48.8 Sockets and Web Services in Python . 555
48.9 Online Resources . 556

49 Sockets in Python . 557
49.1 Introduction . 557
49.2 Socket to Socket Communication . 557
49.3 Setting up a Connection . 558
49.4 An Example Client Server Application . 558

49.4.1 The System Structure . 558
49.4.2 Implementing the Server Application 559

xxviii Contents

49.4.3 Socket Types and Domains . 560
49.4.4 Implementing the Client Application 561

49.5 The Socketserver Module . 562
49.6 Http Server . 565
49.7 Online Resources . 567
49.8 Exercises . 568

50 Web Services in Python . 571
50.1 Introduction . 571
50.2 RESTful Services . 571
50.3 A RESTful API . 572
50.4 Python Web Frameworks . 573
50.5 Online Resources . 574

51 Flask Web Services . 575
51.1 Introduction . 575
51.2 Flask . 575
51.3 Hello World in Flask . 576

51.3.1 Using JSON . 576
51.4 Implementing a Flask Web Service . 577

51.4.1 A Simple Service . 577
51.4.2 Providing Routing Information 577

51.5 Running the Service . 578
51.6 Invoking the RESTFul Service . 579

51.6.1 The Final Solution . 580
51.7 Online Resources . 580

52 Flask Bookshop Web Service . 583
52.1 Introduction . 583
52.2 Building a Flask Bookshop Service . 583
52.3 The Design . 583
52.4 The Domain Model . 585
52.5 Encoding Books into JSON . 586
52.6 Setting Up the GET Services . 588
52.7 Deleting a Book . 589
52.8 Adding a New Book . 590
52.9 Updating a Book . 592
52.10 What Happens if We Get It Wrong? . 593
52.11 Bookshop Services Listing . 594
52.12 Exercises . 596

Part XI Data Science: Data Analytics and Machine Learning

53 Introduction to Data Science . 601
53.1 Introduction . 601
53.2 Data Science . 601
53.3 Data Science Tools and Techniques . 602

Contents xxix

53.4 Data Analytics Process . 604
53.5 Python and Data Science . 606
53.6 Machine Learning for Data Science . 607
53.7 Online Resources . 608

54 Pandas and Data Analytics . 611
54.1 Introduction . 611
54.2 The Data . 611

54.2.1 The UK Government COVID Data Set 611
54.2.2 The Google Mobility Data Set . 613

54.3 Python Pandas . 614
54.3.1 Pandas Series and DataFrames . 615

54.4 Loading and Analysing UK COVID Data Set 616
54.5 Loading the Google Mobility Data Set . 621
54.6 Merging Two DataFrames . 622
54.7 Analysing the Combined Data . 623
54.8 Summary . 627

55 Alternatives to Pandas . 629
55.1 Introduction . 629
55.2 Comparing Pandas 2.0.0 . 629
55.3 Pandas 1.x v 2.x . 629
55.4 Pandas Versus Other Libraries and Tools . 630
55.5 Online Resources . 632

56 Machine Learning in Python . 633
56.1 Introduction . 633
56.2 The Data . 633
56.3 SciKitLearn . 634
56.4 The Problem . 635
56.5 Using Regression Supervised Learning Systems 636
56.6 K-Nearest Neighbour Regressor . 636
56.7 Decision Tree Regressor . 638
56.8 Random Forest Regressor . 639
56.9 Summary of Metrics Obtained . 640
56.10 Creating the Regressor Object . 640
56.11 Online Resources . 642

57 Pip and Conda Virtual Environments . 643
57.1 Introduction . 643
57.2 Virtual Environments . 643
57.3 Working with Pip . 644

57.3.1 Activating a Pip Environment . 644
57.3.2 Installing Modules Using Pip . 645
57.3.3 Deactivating a Pip Environment 646
57.3.4 Check Version of Pip . 646
57.3.5 Installing Modules into a Pip Environment 646

xxx Contents

57.3.6 Freezing Modules . 647
57.4 Conda . 648
57.5 Anaconda . 649

57.5.1 Installing Anaconda . 649
57.6 Working with Anaconda . 651

57.6.1 Checking the Conda Version . 651
57.6.2 Updating Conda . 651
57.6.3 Creating a Conda Environment 652
57.6.4 Listing Available Conda Environments 653
57.6.5 Activating a Conda Environment 654
57.6.6 Deactivating a Conda Environment 655
57.6.7 Listing the Modules Loaded into a Conda

Environment . 655
57.6.8 Removing an Anaconda Environment 656
57.6.9 Installing a Module into a Conda Environment 656

57.7 Anaconda in PyCharm . 658
57.8 Online Resources . 658

Chapter 1
Introduction

1.1 Introduction

I have heard many people over the years say that Python is an easy language to learn
and that Python is also a simple language.

To some extent both of these statements are true; but only to some extent.
While the core of the Python language is easy to lean and relatively simple (in

part thanks to its consistency), the sheer richness of the language constructs and
flexibility available can be overwhelming. In addition the Python environment, its
eco system, the range of libraries available, the often competing options available,
etc., can make moving to the next-level daunting.

Once you have learned the core elements of the language such as how classes
and inheritance work, how functions work, what are protocols and Abstract Base
Classes, etc. where do you go next?

The aim of this book is to delve into those next steps. The book is organised into
eleven different topics:

1. Advanced Language Features. The first section in the book covers topics
that are often missed out from introductory Python books such as slots, weak
references __init__() versus __new__() and metaclasses.

2. Computer Graphics. The book covers Computer Graphics and Computer
Generated Art in Python as well as graphical user interfaces and graphing/
charting via Matplotlib.

3. Games Programming. This topic is covered using the pygame library.
4. Testing and Mocking. Testing is an important aspect of any software develop-

ment; this book introduces testing in general and the PyTest module in detail.
It also considers mocking within testing including what and when to mock.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_1

2 1 Introduction

5. File Input/Output. The book covers text file reading and writing as well as
reading and writing CSV and Excel files. Although not strictly related to file
input, regulator expressions are included in this section as they can be used to
process textual data held in files.

6. Database Access. The book introduces databases and relational database in
particular. It then presents the Python DB-API database access standard and
one implementation of this standard, the PyMySQL module used to access a
MySQL database.

7. Logging. An often missed topic is that of logging. The book therefore introduces
logging the need for logging, what to log and what not to log as well as the Python
logging module.

8. Concurrency and Parallelism. The book provides extensive coverage of
concurrency topics including threads, processes and inter-thread or process
synchronisation. It also presents futures and AsyncIO.

9. Reactive Programming. This section of the book introduces Reactive Program-
ming using the PyRx Reactive Programming library.

10. Network Programming. The book introduces socket and web service commu-
nications in Python. It looks at both the Flask and the Django web service
libraries.

11. Data Analytics. A very hot topic for any potential Python programmer is data
analytics (and the related use of machine learning). The book concludes by
introducing these topics and there Pandas and scikit-learn (or SK-learn as it is
sometimes known) libraries.

Each section is introduced by a chapter providing the background and key concepts
of that topic. Subsequent chapters then cover various aspects of the topic.

For example, the second topic covered is on Computer Graphics. This section
has an introductory chapter on Computer Graphics in general. It then introduces the
Turtle Graphics Python library which can be used to generate a graphical display.

The following chapter considers the subject of Computer Generated Art and
uses the Turtle Graphics library to illustrate these ideas. Thus several examples
are presented that might be considered art. The chapter concludes by presenting the
well-known Koch Snowflake and the Mandelbrot Fractal set.

This is followed by a chapter presenting the Matplotlib library used for generating
2D and 3D charts and graphs (such as a line chart, bar chart or scatter graph).

The section concludes with a chapter on graphical user interfaces (or GUIs) using
the wxpython library. This chapter explores what we mean by a GUI and some of
the alternatives available in Python for creating a GUI.

Other topics follow a similar pattern.
Each programming or library-oriented chapter also includes numerous sample

programs that can be downloaded from the GitHub repository and executed. These
chapters also include one or more end of chapter exercises (with sample solutions
also in the GitHub repository).

1.2 Useful Python Resources 3

The topics within the book can be read mostly independently of each other. This
allows the reader to dip into subject areas as and when required. For example, the
File Input/Output section and the Database Access section can read independently
of each other (although in this case assessing both technologies may be useful in
selecting an appropriate approach to adopt for the long-term persistent storage of
data in a particular system).

Within each section there are usually dependencies; for example, it is neces-
sary to understand pygame library from the ‘Building Games with pygame’ intro-
ductory chapter, before exploring the worked case study presented by the chapter
on the StarshipMeteors game. Similarly it is necessary to have read the threading
and multiprocessing chapters before reading the inter-thread/process synchronisation
chapter.

1.2 Useful Python Resources

There are a wide range of resources on the web for Python; we will highlight a few
here that you should bookmark. We will not keep referring to these to avoid repetition
but you can refer back to this section whenever you need to:

• https://en.wikipedia.org/wiki/Python_Software_Foundation Python Software
Foundation.

• https://docs.python.org/3/ The main Python 3 documentation site. It contains
tutorials, library references, set up and installation guides as well as Python
how-tos.

• https://docs.python.org/3/library/index.html A list of all the built-in features for
the Python language—this is where you can find online documentation for the
various class and functions that we will be using throughout this book.

• https://pymotw.com/3/ the Python 3 Module of the week site. This site contains
many, many Python modules with short examples and explanations of what the
modules do. A Python module is a library of features that build on and expand
the core Python language. For example, if you are interested in building games
using Python then pygame is a module specifically designed to make this easier.

• https://www.fullstackpython.com/email.html is a monthly newsletter that
focusses on a single Python topic each month, such as a new library or module.

• http://www.pythonweekly.com/ is a free weekly summary of the latest Python
articles, projects, videos and upcoming events.

Each section of the book will provide additional online references relevant to the
topic being discussed.

https://en.wikipedia.org/wiki/Python_Software_Foundation
https://docs.python.org/3/
https://docs.python.org/3/library/index.html
https://pymotw.com/3/
https://www.fullstackpython.com/email.html
http://www.pythonweekly.com/

Part I
Advanced Language Features

Chapter 2
Python Type Hints

2.1 Introduction

Python is a dynamically typed language right—well yes it is however there is a
feature known as Type Hints that allows typing information to be provided when
functions and methods are defined. These Type Hints are extremely useful and can
help a developer understand what types are expected by a function or a method and
indeed what types are likely to be returned.

Recent versions of Python, including 3.10 and 3.11, have increased the support
for Type Hints so that they are now quite usable. These can be used by analysis tools
and IDEs to help developers create more stable and reliable applications.

2.2 Pythons Type System

Many people consider Python to be an untyped programming language. However,
that is not quite true. The type system in Python can be referred to as representing
a dynamically typed programming language. That is a variable holds a value and
the type of that value is known and understood by the language. At runtime Python
checks that what you are trying to do is valid given the types involved. For example,
you can use the type() function to find out what type of thing a variable holds at
any point in time:

a_variable = 42
print(f'a_variable type = {type(a_variable)} = {a_variable}')
a_variable = 1.345
print(f'a_variable type = {type(a_variable)} = {a_variable}')
a_variable = "Hello"
print(f'a_variable type = {type(a_variable)} = {a_variable}')
a_variable = True
print(f'a_variable type = {type(a_variable)} = {a_variable}')

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_2

8 2 Python Type Hints

This produces as output:

a_variable type = <class 'int'> = 42
a_variable type = <class 'float'> = 1.345
a_variable type = <class 'str'> = Hello
a_variable type = <class 'bool'> = True

Of course, as the above shows, a variable in Python can hold different types of
things at different types, hence the term dynamically typed.

As Python knows what types variables hold it can check at runtime that your
programs are valid/correct given the types involved for example in a particular oper-
ation. Thus, it is valid to add two integers together and indeed two strings together
(as this is string concatenation) but attempting to add an integer to a string will result
in a TypeError:

print(1 + 1)
print(1.2 + 3.4)
print("Hello" + "world")
print("Hello" + 1)

This code produced the following output including the TypeError:

2
4.6
Helloworld
Traceback (most recent call last):
File "/Users/jeh/temp/pythonProjects/course/main.py", line 15,

in <module>
print("Hello" + 1)

TypeError: can only concatenate str (not "int") to str

2.3 The Challenge for Python Developers

The challenge for Python developers comes when they need to understand what types
are required by, or work with, some API. As a very simple example, consider the
following function:

def add(x, y):
return x + y

What types can be used with this function?
In essence any type can be used for the parameter x that supports the plus operator

(+) with the type in y. From the above we know that integers and strings can be used,
but we can also use floating point numbers, for example:

print(add(1, 2))
print(add(1.2, 3.4))

2.4 Static Typing 9

print(add(1, 3.4))
print(add(5.5, 1))
print(add("Hi", "There"))

All of the above are valid parameters, and the output produced from the above
code is:

3
4.6
4.4
6.5
HiThere

Even custom types can be used if they implement the special __add__(self,
other) operator method, for example:

class Quantity:
def __init__(self, amount):

self.amount = amount
def __add__(self, other):

return Quantity(self.amount + other.amount)
def __str__(self):

return f"Quantity({self.amount})"

q1 = Quantity(5)
q2 = Quantity(4)
print(add(q1, q2))

The __add__()method allows the custom type (class) being defined to be used
with the add operator (‘+’). Thus this program generates the following output:

Quantity(9)

However, what was the intent of the designer of this add() function? What did
they expect you to add together? The only option in traditional Python code is for
the developer to provide some form of documentation, for example in the form of a
docstring:

def add(x, y):
"""adds two integers together and

returns the resulting integer."""
return x + y

2.4 Static Typing

Languages such as Java, C# and C are statically typed languages. That is when a
variable, object attribute, parameter or return type is defined then the type of that
element is specified statically a compile time.

10 2 Python Type Hints

Thus, an add() method on a Java class Calculator might be written as
follows:

package com.jjh;

public class Calculator {

public int add(int x, int y) {
return x + y;

}

}

This makes it clear to a Java programmer and to the Java compiler that the add()
method will only handle integers and will return as a result an integer type. Thus,
there is no possibility that a developer might try to add a number to a Boolean value,
etc. In fact the compiler will not even allow it!

The Java Calculator class can be used as shown below, note that this code
will not even compile if the developer tries to add two strings together. In this case
we are adding two integers together, so all is fine:

package com.jjh;

public class App {
public static void main(String[] args) {

System.out.println("Starting");
Calculator calc = new Calculator();
System.out.println(calc.add(4, 5));
System.out.println("Done");

}
}

As the above program uses valid integer types with the add() method, the output
from the compiled and executed program is:

Starting
9
Done

2.5 Python Type Hints

Python’s Type Hints are more like a half-way house between traditional Python’s
lack of typing information at all and the very strict string static typing approach of
languages such as Java.

A Type Hint is additional type information that can be used with a function
definition to indicate what types parameters should be and what type is returned.
This is illustrated below:

def add(x: int, y: int) -> int:

2.6 Type Hint Layout 11

return x + y

In this case it makes it clear that both x and y should be of type int (integer
types) and the returned result will be an int. However, adding Type Hints as shown
above has no effect on the runtime execution of the program; they are only hints and
are not enforced by Python per se. For example, it is still possible to pass a string
into the add() function as far as Python is concerned.

However, static analysis tools (such as MyPy) can be applied to the code to check
for such misuse. Some editors, such as the widely used PyCharm, already have such
tools integrated into their code checking behaviour.

If you want to use a tool such as mypy instead, or in addition to that available in
your IDE, then you can install it using

pip install mypy

Or if you want to use conda/Anaconda by using

conda install mypy

You can now analyse your code by applying MyPy to a Python file, for example:

% mypy main.py
main.py:3: error: Incompatible types in assignment (expression has
type "float", variable has type "int")
main.py:5: error: Incompatible types in assignment (expression has
type "str", variable has type "int")
main.py:24: error: Argument 1 to "add" has incompatible type "str";
expected "int"
main.py:24: error: Argument 2 to "add" has incompatible type "str";
expected "int"
main.py:44: error: Argument 1 to "add" has incompatible type
"Quantity"; expected "int"
main.py:44: error: Argument 2 to "add" has incompatible type
"Quantity"; expected "int"
Found 6 errors in 1 file (checked 1 source file)

2.6 Type Hint Layout

The Python Style Guide defined by Python Enhancement Proposal 8 (PEP 8) provides
some guidance for using Type Hints, for example:

• Use normal rules for colons, that is, no space before and one space after a colon:
text: str.

• Use spaces around the = sign when combining an argument annotation with a
default value: align: bool = True.

• Use spaces around the -> arrow: def headline(…) -> str.

12 2 Python Type Hints

2.7 Type Hints for Multiple Types

Of course our add() function could work with floating point numbers as well as it
works with integers. It would therefore be useful to be able to state this in terms of the
Type Hints. Prior to Python 3.10 this could be done using a Union type, for example
Union[int, float] which while it worked was a little unwieldy. Since Python
3.10 we can use the style syntax bar ‘|’ for example int | float as shown below:

def add(x: int | float, y: int | float) -> int:
return x + y

2.8 The Self Type

Python 3.11 introduced the Self type which is defined in PEP 673. This can be used
to indicate that a method returns a reference to itself, for example:

from typing import Self

class Shape:

def __init__(self):
self.scale = 0.0

def set_scale(self, scale: float) -> Self:
self.scale = scale
return self

2.9 The Benefits of Type Hints

There are a range of benefits to using Type Hints in Python, for example:

• They help catch some errors within programs. Obviously, the biggest benefit
is that Type Hints can help developers catch certain types of problems in their
code (assuming that some form of type checker is used).

• They provide documentation. Type Hints can also act as a level of document
that editors such as IDEs can pick up and display to other developers.

• They can be work with IDEs. They can help with code generation and IDE
auto-complete functionality.

• They can make developers stop and think. They can help ensure that developers
think about their code and what types should be supported.

• They can improve understanding of libraries. Although Type Hints may offer
little advantage in a single use script, or throw away program, they can be of
significant benefit when a library is being created. Such libraries will be used

2.11 Online Resources 13

by a range of different developers, and some may be released into the wild, for
example via PyPI, the Python Package Index. The use of Type Hints can greatly
enhance others understanding of the APIs provided by these libraries.

2.10 Summary

If you are just starting out with Python, or you are writing scripts that will only be used
once, then Type Hints may not be particularly useful. However, if you are creating
libraries or developing larger more complex applications with teams of developers,
then they can be very useful indeed.

2.11 Online Resources

• https://docs.python.org/3.10/ Python 3.10 documentation.
• https://docs.python.org/3.11/ Python 3.11 documentation.
• https://en.wikipedia.org/wiki/Type_system Wikipedia Type System page.
• https://en.wikipedia.org/wiki/Dynamic_programming_language Dynamically

typed languages.
• https://docs.python.org/3/library/exceptions.html Exception handling in Python.
• https://www.pythontutorial.net/python-basics/python-type-hints/ Tutorial on

Python Type Hints.
• https://pypi.org/project/mypy/ MyPy static type hint analysis tool.
• https://mypy.readthedocs.io/en/stable/ MyPy documentation.
• https://www.jetbrains.com/pycharm/ PyCharm IDE tool.
• https://peps.python.org/pep-0008/ Python (PEP 8) Style Guide including guid-

ance of how to layout Type Hints.
• https://peps.python.org/pep-0673/ Information on the Self type.
• https://pypi.org/ The Python package Index PyPi.

https://docs.python.org/3.10/
https://docs.python.org/3.11/
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://docs.python.org/3/library/exceptions.html
https://www.pythontutorial.net/python-basics/python-type-hints/
https://pypi.org/project/mypy/
https://mypy.readthedocs.io/en/stable/
https://www.jetbrains.com/pycharm/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0673/
https://pypi.org/

Chapter 3
Class Slots

3.1 Introduction

Python classes are very flexible, they allow data and behaviour to be defined when
the class is created, but also dynamically at any point in the lifetime of the class and
its instances. This technique is known as Monkey Patching and can be extremely
useful. However, in other situations, allowing the data or behaviour of a class to
change dynamically after the class has been defined, might be very confusing and
make the system harder to maintain. The issue is that a class’s attributes can be added
at any time, and there is no formal specification of the attributes—that is until we
look at slots. Slots allow us to specify what attributes a class will have and to ensure
that those attributes and only those attributes are used with the class and its instances.
This chapter introduces Python class slots.

3.2 The Problem

In many object-oriented languages it is necessary to define the attributes or fields
that a class will have explicitly within the class definition. For example, in Java we
might write the following:

public class Person {
private int age = 0;
private String name = "";
public Person (name String, int age) {

this.name = name;
this.age = age;

}
public int getAge () {
return age;

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_3

16 3 Class Slots

}
public void setAge (int newAge) {
age = newAge;

}
public String getName () {
return name;

}
public void birthday () {
int oldAge, newAge;
oldAge = getAge();
System.out.println("Happy birthday " + getName());
System.out.print("You were " + oldAge);
System.out.print(" but now you are ");
this.age = this.age + 1;
System.out.println(age);

}
}

In the above class the two lines:

private int age = 0;
private String name = "";

declare that the Java class Person will have two attributes (also known as instance
variables in Java) called name and age. It cannot have any dynamically added
additional attributes, and it is not possible to create on the fly within a method.

The equivalent class definition in Python might look like:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def birthday(self):
print(f'Happy birthday {self.name}',

f', you were {self.age}',
end = '')

self.age = self.age + 1
print(f' but now you are {self.age}')

This does essentially the same thing (although in a more concise format). Using
this class we can create instances of the class and print out the details associated with
the object, for example:

p1 = Person('Phoebe', 25)
print(f'p1: {p1.name} {p1.age}')

which produces:

p1: Phoebe 25

3.3 Slots to the Rescue 17

However there is nothing to stop us adding a new attribute address to the class,
for example:

p1.address = '10 High Street'
print(f'p1.address: {p1.address}')

When we run this we get:

p1.address: 10 High Street

This is not possible in Java as address was not defined within the scope of
the class and thus objects of class Person in Java can never have any additional
attributes such as address.

In Python not only is this legal, it is also sometimes quite useful.
However, how do you know that there is an attribute address on the object in

p1? Only be reading through the code using p1, you cannot see it by looking at the
Python class definition for Person.

Perhaps even more confusingly if we write:

p2 = Person('Gryff', 24)
print(f'p2: {p2.name} {p2.age}')
print(f'p2.address: {p2.address}')

That is we create a new instance of the class Person and try to access the
attributes name, age and address (which apparently all work for the instance in
p1), and we will raise a runtime AttributeError, for example:

p2: Gryff 24
Traceback (most recent call last):
File "/person.py", line 19, in <module>

print(f'p2.address: {p2.address}')
^^^^^^^^^^

AttributeError: 'Person' object has no attribute 'address'

This indicates that the Person object in p2 does not possess an attribute
address yet p1 did! Of course this is because we added the attribute only to
the object in p1 not to the class in general.

This can be very confusing and make maintaining code much more difficult!

3.3 Slots to the Rescue

There is a special class attribute called __slots__ which can be used to provide a
sequence of strings that define or specify the attributes that the class will hold. It is
a class attribute as it is part of the class not part of an instance of object of the class.
However, it defines the attributes any instance of the class can use.

Thus if an attribute is not included in the slots sequence then it cannot be defined
within the class. This means that to find out what attributes a class defines for its
objects all you have to do is look at the slots attribute and they will be listed there.

18 3 Class Slots

It also means that it is not possible to dynamically monkey patch a class with
additional attributes at runtime.

As an example, see the modified definition for the class Person below:

class Person:
__slots__ = ['name', 'age']

def __init__(self, name, age):
self.name = name
self.age = age

def __repr__(self):
return f'Person({self.name} is {self.age})'

This version of the class Person lists the attributes name and age in the _
_slots__ class attribute. Note that the names of the attributes are defined as
strings—so don’t forget the quotes around each attribute.

Then within the class an initialiser sets up the values for the attributes
self.name, self.age, etc.

We can now create an instance of this class and for example print out the age, the
name and use the __repr__() method to convert the object to a string for printing
purposes:

p1 = Person('Phoebe', 25)
print(p1)
print(f'p1: {p1.name} {p1.age}')

The output from this is:

Person(Phoebe is 25)
p1: Phoebe 25

So far so good, but what has this given us over the original version?
If we now try to dynamically add an attribute such as address to this version

of Person, for example:

p1.address = '10 High Street'

We will now generate a runtime AttributeError indicating that the object
does not have an attribute address, for example:

Traceback (most recent call last):
File "main.py", line 16, in <module>

p1.address = '10 High Street'
^^^^^^^^^^

AttributeError: 'Person' object has no attribute 'address'

We have now fixed the attributes defined within the class to be name and age
and only ever name and age.

3.4 Performance Benefits 19

This is actually true even if we tried to define an additional attribute within the
initialiser method, for example, in the following version of the Person class has
added the self.address attribute within the __init__() method:

class Person:
__slots__ = ['name', 'age']

def __init__(self, name, age):
self.name = name
self.age = age
self.address = None

def __repr__(self):
return f'Person({self.name} is {self.age})

When we try and use this class to create a new instance of the class Person we
again get an AttributeError raised:

Traceback (most recent call last):
File "main.py", line 13, in <module>

p1 = Person('Phoebe', 25)
^^^^^^^^^^^^^^^^^^^^

File "main.py", line 7, in __init__
self.address = None
^^^^^^^^^^^^

AttributeError: 'Person' object has no attribute 'address'

Thus we are guaranteed that the class Person and all instances of the class
Person, all work with just the name and age specified in the __slots__ class
attribute.

3.4 Performance Benefits

There are in fact additional benefits to be had from using the __slots__ class
attribute. These benefits relate to performance. This is because attributes defined
using slots are more efficient in terms of memory space and speed of access and a
bit safer than the default Python method of data access.

By default, when Python creates a new instance of a class, it creates a
__dict__ attribute for the class. The __dict__ attribute is a dictionary whose
keys are the variable names and whose values are the variable values. This allows
for dynamic variable creation but can also lead to uncaught errors.

The fact that under the hood a simple dict is used for attribute storage and lookup
as a few implications:

• Dictionaries are memory expensive objects. While this may not be a problem for
a small class or for a class with only a few instances it can become far more
significant with millions of objects as they will use a lot of memory.

20 3 Class Slots

• Dictionaries are based on a hash map. In the worst-case scenarios the time
complexity of the get and set options on a hash map is of O(n) that is of Order(n).
This means that when the time taken to access a value is measured as the number
of elements in the dictionary increases so does the access time and that it increases
linearly.

When using slots the attributes are created directly as properties of the class and
by pass the default dict-based implementation. This is both more efficient in terms
of access times and in terms of memory usage.

To illustrate this we can compare the size of the object created for the first version
and the second version of the Person class.

The size of the object created without using slots is:

print(f'sys.getsizeof(p1) noslots - {sys.getsizeof(p1)}')

which generates:

sys.getsizeof(p1) noslots - 56

And if we run the version using slots:

print(f'sys.getsizeof(p1) slots - {sys.getsizeof(p1)}')

This produces:

sys.getsizeof(p1) slots - 48

which is 8 bytes less. This may not sound like much but multiple this by a million
times and it starts becoming significant!

3.5 Why Not Use Slots?

So if slots are so good why doesn’t everyone use them for all classes? In short although
many people consider them a very useful features there as many who consider them
poorly understood, difficult to get right and restrictive.

The main issue comes down to flexibility—do you want or need to be able to
dynamically update the attributes in your class? If the answer is yes then slots are
not for you, if you don’t then slots may well be advantageous. Although the counter-
argument is that you are making this design decision which will impact anyone who
uses your class at any time in future!

Additionally by default slots cannot be used with weak references. Thus if you
want your class to use weak references you can’t use __slots__.

Although it should be noted that if you want to use slots with dynamic attributes
or indeed with weak references then you can do so by adding ‘__dict__’ or ‘__
weakref__’ as the last element in the __slots__ declaration.

3.6 Online Resource 21

The final issue might be that a library you are using might rely on the pres-
ence of a __dict__ for attributes for it to function correctly. For example, the
functools.cached_property() is an example of a function that requires an
instance __dict__ to function correctly.

3.6 Online Resource

• https://wiki.python.org/moin/UsingSlots Tutorial on using slots.

https://wiki.python.org/moin/UsingSlots

Chapter 4
Weak References

4.1 Introduction

In this chapter we will look at weak references. Most of the time an object has one or
more strong references associated with it. As long as at least one strong reference is
associated with an object it cannot be automatically garbage collected. However, in
some situations it may be useful to allow an object to be garbage collected (removed
from memory) while a program is still using it, particularly if the available memory
is becoming limited. To allow this to happen we can use weak references; weak
references do not stop an object being removed from memory and can be very useful
when used with a data cache, etc.

4.2 How Garbage Collection Works: Reference Counting

Before we go any further it is worth considering how the traditional Python garbage
collector determines if an object can be removed or not from memory.

To do this the Python runtime keeps a record of the number of references to an
object. If there is at least one (strong) reference to an object, then that object cannot
be garbage collected. However, if an object has no (strong) references to it then the
garbage collector can safely reclaim the memory used by the object.

In fact all Python objects include a reference count, which counts how many
things are referencing it. If an object is referenced by another object, then its counter
is incremented, if a variable references an object then the objects reference counter
will again be incremented. If a variable or another object dereferences the object then
the objects’ reference counter is decremented, etc.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_4

24 4 Weak References

By a reference we mean a variable or an attribute in another object is currently
referencing, pointing at, the object.

As an example, we will define a simple class Data that will hold some sort of
value:

class Data:
def __init__(self, value):

self.value = value
def __repr__(self):

return f'Data({self.value})'

We can create a simple program to create an instance of this class and store it into
a variable called data. Using the id of the object we can then find out how many
references there are to the data object:

import ctypes

print('Create data item')
data = Data(1)
print('Obtain the id of list object')
data_id = id(data)
print('Find the reference count of data')
ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is: {ref_count}")

The above code uses the ctypes.c_long.from_address value attribute
to find the number of (strong) references.

When we run this code we will see:

Create data item
Obtain the id of list object
Find the reference count of data
Reference count for data is: 1

That is, there is one reference to the Data object. This reference is currently held
in the variable data. If we now make another two variables reference the object
held in data we will increment the reference count:

print('Add some more references')
other_data1 = data
other_data2 = data
print('Find the reference count of data now')
ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is now: {ref_count}")

The output from this is:

Add some more references
Find the reference count of data now
Reference count for data is now: 3

4.4 When to Use Weak References 25

As you can see there are now 3 things referencing the Data object.
And finally if we reset the data variable to None and check the number of

references we will see that there are 2:

print('Reset data to None')
data = None
print('Find the reference count of data now')
ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is now: {ref_count}")

The output from this is:

Reset data to None
Find the reference count of data now
Reference count for data is now: 2

Notice that setting the data variable to None has no effect on the other_
data1 and other_data2 variables, all it does is reduce the number of references
to the Data instance from 3 down to 2.

4.3 Weak References

Unlike strong or normal references, a weak reference is a reference that does not
protect the object from being garbage collected.

A weak reference is not included in the main count for an objects’ reference.
Thus if an object has no (strong) references to it but only weak references, then if the
garbage collector needs to free up memory it can remove a weak reference object
from memory. The result is that the weak reference no long references an object and
any attempt to do so will return None.

That is to say that if the object is available in memory, calling the weak reference
returns it, otherwise if the object has been garbage collected, then None is returned.

In terms of terminology, we say that the object that is the target of a reference is
called the referent. Therefore, we can say that a weak reference does not prevent the
referent from being garbage collected.

4.4 When to Use Weak References

Why do we want weak references as a thing in the first place?
There are two main applications of weak references:

• Implement caches for large objects (weak dictionaries).
• Handling circular references.

To create weak references Python has provided us with a module named
weakref. We will explore the weakref module in the next section.

26 4 Weak References

Note that some of the built-in types do not support weak references such astuple
and int.

4.5 The Weakref Module

The weakref module is a built-in module, and it is therefore provided as part of
the reference implementation of Python. However, it is not made available to your
code by default, and thus you must import weakref to use the module.

The following classes and methods are provided by the weakref module:

• class weakref.ref(object[, callback])—This returns a weak reference to the
object.

• weakref.proxy(object[, callback])—This returns a proxy to object which uses a
weak reference.

• weakref.getweakrefcount(object)—Return the number of weak references and
proxies which refer to object.

• weakref.getweakrefs(object)—Return a list of all weak reference and proxy
objects which refer to object.

4.6 Creating Weak References

Theref() function, in theweakref module, can be used to create a weak reference
to an object. In turn the weakref.getweakrefcount() function can be used
to obtain the number of weak references associated with an object. Both of these
functions are illustrated below:

import ctypes
import weakref

print('Create data item')
data = Data(1)
print('Obtain the id of list object')
data_id = id(data)
print('Find the reference count of data')
ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is: {ref_count}")

print('Initial weak ref count')
weak_ref_count = weakref.getweakrefcount(data)
print(f"Number of weak references: {weak_ref_count}")

print('Add a weakref reference')
weakref_data = weakref.ref(data)
print('Find the reference count of data now')

4.6 Creating Weak References 27

ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is now: {ref_count}")

print('Find the weak ref count')
weak_ref_count = weakref.getweakrefcount(data)
print(f"Number of weak references: {weak_ref_count}")

In the above code the Data object has a strong reference to it via the data
variable but a weak reference held in theweakref_data variable. The code uses the
types.c_long.from_address value attribute to find the number of (strong)
references and the weakref.getweakrefcount() to find the number of weak
references.

The output from this code is:

Create data item
Obtain the id of list object
Find the reference count of data
Reference count for data is: 1
Initial weak ref count
Number of weak references: 0
Add a weakref reference
Find the reference count of data now
Reference count for data is now: 1
Find the weak ref count
Number of weak references: 1

This shows that the Dataobject has one (strong) reference and one weak reference
to it.

If we now run the following code (after running the above) we will see that the
data object no longer has a strong reference to it, and thus it can be (and in this
case may have been) garbage collected:

print('Set data to None')
data = None
print('Find the reference count of data now')
ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is now: {ref_count}")

print('Find the weak ref count')
weak_ref_count = weakref.getweakrefcount(data)
print(f"Number of weak references: {weak_ref_count}")

The output is:

Set data to None
Find the reference count of data now
Reference count for data is now: 0
Find the weak ref count
Number of weak references: 0

which shows that the Data object has no strong references and now also does not
have a weak reference either.

If we subsequently try and print out the weakref we will see that the associated
object is dead:

28 4 Weak References

print(weakref_data)

Generates:

<weakref at 0x10c84d2b0; dead>

4.7 Retrieving Objects from Weak References

Once we have created a weak reference, if you print it out, you see the output
indicates that you have a weakref to an object of a specific type. To actually access
the object being referenced, you need to apply the execution operator to invoke
the weak reference (using the call operator ()) and return the actual object being
referenced.

For example the following code creates a weak reference and the accesses that
weak reference directly before invoking it:

print('Create data item')
data = Data(1)
print('Add a weakref reference')
weakref_data = weakref.ref(data)
print(weakref_data)
print(weakref_data())

The output from this code is:

Create data item
Add a weakref reference
<weakref at 0x1020a91c0; to 'Data'at 0x1020b3c10>
Data(1)

As you can see we only access the Data object via the weakref_data() call,
and the previous print accesses the weak reference wrapper.

4.8 The WeakValueDicitonary

The most common situation in which you might want to use weak references is with a
cache. In such a situation you might want the cache to release cached values when the
applications memory becomes used up. Fortunately, the weakref module provides
a class called WeakValueDictionary which is a dictionary that associates keys
with weak references. It is thus a very good basis for a simple weak reference style
cache.

The WeakValueDictionary can be used in exactly the same was as a normal
dictionary via the index accessor ([]) and via methods such as get(). For example:

4.8 The WeakValueDicitonary 29

import weakref

print('Create data item')
data = Data(1)
creates a Weak Value Dictionary
weak_dict = weakref.WeakValueDictionary()
inserting value into the dictionary
weak_dict['info'] = data
getting the weak ref count
print(f'Weak reference count is: ',

f'{weakref.getweakrefcount(weak_dict)}')
print(f'weak_dict: {weak_dict}')

print(f"weak_dict['info']: {weak_dict['info']}")

In this code a WeakValueDictionary is created and the data object is stored
into the dictionary using the key ‘info’. Various checks are then made to see the
number of weak reference counts it has and what the weak_dict contains. We then
access the dictionary to retrieve the value associated with the key ‘info’.

The output from this program is:

Create data item
Weak reference count is: 1
weak_dict: <WeakValueDictionary at 0x10f2c5b90>
weak_dict['info']: Data(1)

If the memory used by the program becomes limited, then the garbage collector
could reclaim the memory associated with the Data object. We can simulate
this by setting the original data variable to None and then attempt to access the
WeakValueDictionary for the object:

data = None
if 'info'in weak_dict.keys():

print(f"weak_dict['info']: {weak_dict['info']}")

However, we have to protect the access to the key behind and if statement. This
is because if we access the key directly we would generate a KeyError as the entry
would have been removed from the dictionary. For example:

Traceback (most recent call last):
File “main3.py”, line 22, in <module>
print(f"weak_dict[‘info’]: {weak_dict[‘info’]}”)

~~~~~~~~~^^^^^^^^ 
File “weakref.py”, line 136, in __getitem__ 
o = self.data[key]() 
~~~~~~~~~^^^^^ 

KeyError: ‘info’

30 4 Weak References

4.9 WeakKeyDictionary

The WeakKeyDictionary is an alternative to the WeakValueDictionary in
that in this version it is the keys that are weak references. The Python documentation
says that the WeakKeyDictionary can be used to associate additional data with
an object owned by other parts of an application without adding attributes to those
objects. This can be especially useful with objects that override attribute accesses.

4.10 Proxy Objects

A proxy object is another type of weak reference. The difference between a proxy
object and a weak reference is that the proxy object tries to act as a proxy for the
original object as much as it can.

An example of using a proxy object is shown below:

print('Create data item')
data = Data(1)
print('Obtain the id of list object')
data_id = id(data)
print('Find the reference count of data')
ref_count = ctypes.c_long.from_address(data_id).value
print(f"Reference count for data is: {ref_count}")

print('Add a weakref reference')
weakref_data = weakref.ref(data)
print('Find the weak ref count')
weak_ref_count = weakref.getweakrefcount(data)
print(f"Number of weak references: {weak_ref_count}")

print('Create a proxy of original object')
proxy_object = weakref.proxy(data)
print(f"This is a proxy object: {proxy_object}”)

print('Find the weak ref count')
weak_ref_count = weakref.getweakrefcount(data)
print(f"Number of weak references: {weak_ref_count}")

Notice that we have created both a proxy object and a weak reference to the Data
object. When we run this we will see that both the weak reference and the proxy
object are considered weak in terms of the weakrefcount() function. The output
is:

Create data item
Obtain the id of the object
Find the reference count of data
Reference count for data is: 1

4.11 Online Resources 31

Add a weakref reference
Find the weak ref count
Number of weak references: 1
Create a proxy of original object
This is a proxy object: Data(1)
Find the weak ref count
Number of weak references: 2

The advantage in using the Proxy Object is that it tries to look like the original
object as much as possible, thus we don’t need to call the proxy object to return the
Data object being referenced. Instead we can treat the proxy object as if it was the
actual data object, for example:

print(proxy_object)
print(proxy_object.value)

This code prints the proxy object directly and accesses the value attribute
directly—although in actual fact it goes via the proxy to the wrapped Data object.
The output from the code is:

Data(1)
1

4.11 Online Resources

• https://docs.python.org/3/library/weakref.html Python weak reference documen-
tation.

• https://www.educative.io/answers/what-is-weak-reference-in-python Short tuto-
rial on weak references.

https://docs.python.org/3/library/weakref.html
https://www.educative.io/answers/what-is-weak-reference-in-python

Chapter 5
Data Classes

5.1 Introduction

Python 3.7 introduced a special type of class called a data class. Data classes can
be used to represent data-oriented concepts. That is, concepts that represent data
but tend not to have much related functionality. Such a class might contain several
properties but other than member functions for equality or string conversions they
do not contain any behaviour. They are often used in larger applications as they are a
useful way to group associated attributes together using a named concept and as such
have far more semantic meaning than say a simple dictionary. This chapter presents
such data classes.

5.2 A Traditional Class

We will start off by defining a typical Python class. This class represents a (very
simplified) Equity Trade. That is, one person or organisation wishes to sell some
equity (e.g. shares) to another person or organisation. Those involved in the trade are
referred to as counter parties. The equity or shares in an organisation are represented
by a symbol, and there will be some number of shares involved in the sale.

A simple definition of such as class in Python might look like:

class Trade:
"""Class for representing Equity Trades"""

def __init__(self,
counter_party1,
counter_party2,
symbol,
amount=0):

self.counter_party1 = counter_party1

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_5

34 5 Data Classes

self.counter_party2 = counter_party2
self.symbol = symbol
self.amount = amount

def __repr__(self):
return f'Trade(counter_party1={self.counter_party1}, ' \

f'counter_party_2={self.counter_party2}, ' \
f'symbol={self.symbol}, ' \
f'amount={self.amount})'

def __eq__(self, other):
if not isinstance(other, Trade):

return False
return self.counter_party1 == other.counter_party1 and \

self.counter_party2 == other.counter_party2 and \
self.symbol == other.symbol and \
self.amount == other.amount

We can use this class as shown below:

trade1 = Trade('John', 'Denise', 'IBM', 100)
print(trade1)
trade2 = Trade('John', 'Gryff', 'MSFT', 50)
print(trade2)
print(trade1 == trade2)
trade3 = Trade('John', 'Denise', 'IBM', 100)
print(trade1 == trade3)

The output from this code is:

Trade(counter_party1=John, counter_party_2=Denise, symbol=IBM,
amount=100)
Trade(counter_party1=John, counter_party_2=Adam, symbol=MSFT,
amount=50)
False
True

If we look at the class definition for the Trade type we can see that:

• It defines a new class Trade.
• A Trade contains two counter parties, a symbol and an amount attribute. That

we have defined an initialiser to set up these attributes and that the amount has
a default value of zero.

• The Trade class defines a __repr__ method that can be used to represent this
type as a string (note we are not defining a __str__ method here as if it is not
present __repr__ will be used instead).

• TheTrade class also defines an equals methods (__eq__) to allow two instances
of the Trade class to be compared by value rather than by reference. Thus
above trade1 and trade3 are equivalent by value although they are different
instances of the Trade class.

5.3 Defining Data Classes 35

This pattern is actually not that uncommon. Many classes in an application will
start off like this. Some will have significant additional behaviour defined for them
but many others will not.

So is there a problem here? Well from one aspect no; as this is just a Python class
and it does what it sets out to do, it associated a group of attributes together within
a named type (class); that is it represents a Trade.

However, there is a lot of boiler plate code here. If we were to define a Book class
or a Person class or a Temperature class then all those classes might look very
similar to the above and that a lot of very similar repetitive code to write. Indeed if
you look at the initialise (__init__) then that itself is a repetitive structure with a
lot of repeated patterns to take in some parameters and record them as attributes.

As you might suspect, as this is such a common pattern, there is a feature within
Python that allows you to define such data-oriented classes in a much more concise
and simpler way; these are data classes.

5.3 Defining Data Classes

Data classes can be used to represent data-oriented concepts. That is concepts that
represent data, but tend not to have much related functionality (although there is no
reason that they cannot have additional functionality).

Such a class might contain several attributes but other than methods for equality
or string conversions they do not contain any (much) behaviour.

To define a data class, a class is annotated with the @dataclass decorator
followed by a set of attributes (known as fields in a data class) with Type Hints
associated with them. The definitions are thus:

from dataclasses import dataclass

@dataclass
def <classname>:

"""Docstring"""
<fieldname>: type annotation
<fieldname>: type annotation
…

When a data class is defined it automatically receives:

• An initialiser, that is __init__(self, …) method.
• A __repr__(self) method that uses the information held in the attributes.
• A __eq__(self, other) method which compares values held in the

attributes.

This is what we manually wrote in the previous section.

36 5 Data Classes

The Trade class can therefore be rewritten as a data class as shown below:

from dataclasses import dataclass

@dataclass
class Trade:

"""Class for representing Equity Trades"""
counter_party1: str
counter_party2: str
symbol: str
amount: int = 0

As you can see this is far shorter and much more concise and by default includes
type information. Thus if you use a tool such as mypy it can ensure that you are
using the correct types with the fields in the data class.

Note that the amount field has a default value provided this is used to make
this field an optional field. A Trade can be created with or with the amount being
specified. However any fields defined after the amount field must also have a default
value.

This data class is used in exactly the same way as the original Trade class, and
thus we can run the same application code with it, that is:

trade1 = Trade('John', 'Denise', 'IBM', 100)
print(trade1)
trade2 = Trade('John', 'Gryff', 'MSFT', 50)
print(trade2)
print(trade1 == trade2)
trade3 = Trade('John', 'Denise', 'IBM', 100)
print(trade1 == trade3)
The output from this code is exactly the same as that generated in the previous

section:

Trade(counter_party1='John', counter_party2='Denise', symbol=
'IBM', amount=100)
Trade(counter_party1='John', counter_party2='Adam', symbol=
'MSFT', amount=50)
False
True

The difference is that we have written far less code, and a developer looking at
our class will immediately see that it is a data class and that it holds a set of fields
and will have a __repr__ and an __eq__ method defined. This means that will
not have to scroll through a lot of code to determine that for themselves.

5.4 Defining Additional Behaviour

As mentioned at the start of this chelater, data classes often only hold data (excluding
methods such as __repr__ and __eq__). However, there is nothing stopping a
data class having additional behaviour defined for them. For example, the following

5.5 The Dataclass Decorator 37

version of Trade has a method defined called calculate_value (of the trade).
This takes a parameter indicating the price of each share and multiples it by the
amount of shares being sold:

from dataclasses import dataclass

@dataclass
class Trade:

"""Class for representing Equity Trades"""
counter_party1: str
counter_party2: str
symbol: str
amount: int = 0
dataclasses can still have methods defined for them
def calculate_value(self, price):

return self.amount * price

We can invoke the calculate_value() method in exactly the same way as
any method on any class:

trade1 = Trade('John', 'Denise', 'IBM', 100)
print(trade1)

print(f'The value of this trade at 1.55 per share =
{trade1.calculate_value(1.55)}')

The output from this code is:

Trade(counter_party1='John', counter_party2='Denise', symbol=
'IBM', amount=100)
The value of this trade at 1.55 per share = 155.0

In this case, this method makes perfect sense as we might want to hold the trade
back until the value of the trade meets our objectives, and this might depend on the
current stock market share price.

5.5 The Dataclass Decorator

The data class decorator itself has a set of parameters that can be used to configure
how Python actually creates the data class implementation. There are numerous
parameters as shown below:

@dataclass(init=True, repr=True, eq=True, order=False,
unsafe_hash=False, frozen=False,
match_args=True, kw_only=False, slots=False,
weakref_slot=False)

38 5 Data Classes

The meaning of these parameters is outlined below:

• init: If True (the default), a __init__() method will be generated. If the
class already defines __init__(), this parameter is ignored.

• repr: If True (the default), a __repr__() method will be generated. The
generated repr string will have the class name and the name and repr of each field,
in the order they are defined in the class. Fields that are marked as being excluded
from the repr are not included. If the class already defines __repr__(), this
parameter is ignored.

• eq: If True (the default), an __eq__() method will be generated. This method
compares the class as if it were a tuple of its fields, in order. Both instances
in the comparison must be of the identical type. If the class already defines
__eq__(), this parameter is ignored.

• order: If True (the default is False), __lt__(), __le__(), __gt__()
and __ge__() methods will be generated. If the class already defines any of
__lt__(), __le__(), __gt__() or __ge__(), then TypeError is
raised.

• unsafe_hash: If False (the default), a __hash__() method is generated
according to how eq and frozen are set.

• frozen: If True (the default is False), assigning to fields will generate an
exception. This emulates read-only immutable instances.

• match_args: If True (the default is True), the __match_args__ tuple will
be created from the list of parameters to the generated __init__() method
(even if __init__() is not generated, see above). If false, or if __match_
args__ is already defined in the class, then __match_args__ will not be
generated.

• kw_only: If True (the default value is False), then all fields will be marked as
keyword-only. If a field is marked as keyword-only, then the only effect is that the
__init__() parameter generated from a keyword-only field must be specified
with a keyword when __init__() is called.

• slots: If True (the default isFalse), __slots__ attribute will be generated.
If __slots__ is already defined in the class, then TypeError is raised.

• weakref_slot: If True (the default is False), add a slot named
“__weakref__”, which is required to make an instance weakref-able. It is an
error to specify weakref_slot=True without also specifying slots=True.

Some of the above were added in Python 3.10 and 3.11 so if you are using an
older version of Python not all of the decorator parameters may be available.

5.6 Custom Factory for Fields

Providing a default value for a field using a literal is straightforward, all you need to
do is to provide that value, for example:

5.6 Custom Factory for Fields 39

amount: int = 0

However, if you want to use a function to generate a value for a field, there is a
subtle but important consideration to consider.

If you were to write:

market: StockExchange = make_stock_exchange()

This will indeed initialise the market field to a new StockExchange. However,
the important point to note is when the make_stock_exchange() function
would run. It would run when the class is first loaded, thus a new stock exchange
instance would be created and used to initialise the definition for the whole class.
This definition would then be shared amongst all instances of the class. That is, all
instances of the trade would share the same StockMarket instance. This is fine
if that is what you want! However, if you wanted different trades to be handled by
different Stock Markets then it would not work.

If you need each instance to have their own StockExchange instance then the
answer is to use a default factory configuration for your field. This allows a function
to be referenced rather than invoked or executed, when the definition of the class is
parsed by the Python runtime. This function reference will actually only be executed
when a new instance of the class is generated. As such each new instance will run
the function and create a new instance of the StockMarket class.

This can be done using the field function and specifying a default_factory
which takes a reference to a named (or indeed a lambda) function. For example,
updating the Trade class to have a StockMarket field using the make_stock_
exchange() function can be defined as shown below:

from dataclasses import dataclass, field

class StockExchange:
def __init__(self, name):

self.name = name
def __repr__(self):

return f'StockExchange({self.name}'

def make_stock_exchange():
return StockExchange('London Stock Exchange')

@dataclass
class Trade:

"""Class for representing Equity Trades"""
counter_party1: str
counter_party2: str
symbol: str
amount: int = 0
market: StockExchange =

field(default_factory=make_stock_exchange)

trade1 = Trade('John', 'Denise', 'IBM', 100)
print(trade1)

40 5 Data Classes

In this example each Trade instance will have their own instance of the Stock-
Market class held in the market field. Note that the StockMarket class could also
have been a data class but is defined here as a plain old Python class to avoid any
confusion.

Running this code generates the following output:

Trade(counter_party1='John', counter_party2='Denise', symbol=
'IBM', amount=100, market=StockExchange(London Stock Exchange)

5.7 Immutable Dataclasses

It is possible to indicate that a data class should be immutable using the frozen
parameter to the @dataclass decorator. This ensures that all the fields within the
data class are treated as read-only, and any attempt at modifying a value will generate
a runtime error.

For example, the following data class Book is marked as frozen and is thus
immutable:

from dataclasses import dataclass

@dataclass(frozen=True)
class Book:

title: str
author: str = 'Anonymous'

book1 = Book('Python for ever!', 'Gryff Smith')
print(book1)

Note that from a creation perspective, nothing has changed. The data class instance
is created in exactly the same way as a normal class or indeed data class. Fields can
also be accessed in the normal manner. If we run this code we see:

Book(title='Python for ever!', author='Gryff Smith')

However, if an attempt is made to modify either of the fields in the Book instance
then a runtime error will be generated. For example:

book1.author = 'Adam Davies'

If we try and run the above line we will generate a
dataclasses.FrozenInstanceError indicating that the author field
cannot be assigned to:

5.8 Data Classes and Inheritance 41

Traceback (most recent call last):
File "/Users/Shared/workspaces/pycharm/advancedpython3_2nd/

chapter2_dataclasses/main5.py", line 14, in <module>
book1.author = 'Adam Davies'
^^^^^^^^^^^^

File "<string>", line 4, in __setattr__
dataclasses.FrozenInstanceError: cannot assign to field 'author'

5.8 Data Classes and Inheritance

Data classes can extend any other class including other data classes. As usual this
means that they will inherit all the fields and methods defined in the parent class.
They can also override any fields or methods, etc. A simple example is given below:

from dataclasses import dataclass

@dataclass
class Trade:

"""Class for representing Equity Trades"""
counter_party1: str
counter_party2: str

@dataclass
class EquityTrade(Trade):

symbol: str
amount: int = 0

trade1 = EquityTrade('John', 'Denise', 'IBM', 100)
print(trade1)
trade2 = EquityTrade('John', 'Gryff', 'MSFT', 50)
print(trade2)
print(trade1 == trade2)
trade3 = EquityTrade('John', 'Denise', 'IBM', 100)
print(trade1 == trade3)

In this case the EquityTrade data class extends the Trade data class.
This means that the EquityTrade has four fields counter_party1,

counter_party2, symbol and amount. The EquityTrade class also has an
__init__ methods that takes four parameters (with amount being an optional
parameter with a default value of zero), a __repr__ method that prints an
EquityTrade with all four fields and an __eq__ method that compares two
instance of EquityTrade base don’t he value of all four fields.

If we run the above code we see:

EquityTrade(counter_party1='John', counter_party2='Denise',
symbol= 'IBM', amount=100)
EquityTrade(counter_party1='John', counter_party2='Adam',
symbol= 'MSFT', amount=50)
False

42 5 Data Classes

True

However, there is one subtlety associated with inheritance that should be noted.
When the hidden methods are created for you by Python the __init__ initialiser is
created by concatenating the definitions for the fields together to create the parameter
list. This means that in the above example, the resulting initialised parameters look
like:

def __init__(self,
counter_party1,
counter_party2,
symbol,
amount = 0)

This may not look like an issue but it becomes an issue if the parent class defines
a default value for any of the fields. All subsequent fields must also have a default
value; otherwise when the initialiser is generated the parameter list would be invalid
(as all parameters to the right of a parameter with a default value must also have a
default value).

This means the following is illegal:

from dataclasses import dataclass

@dataclass
class Location:

name: str
longitude: float = 0.0
latitude: float = 0.0

@dataclass
class City(Location):

country: str # Does NOT work

city = City('Dublin', country='Ireland')
print(city)

The above is invalid because the resulting initialiser for the City class would be:

def __init__(self, name, longitude = 0.0, latitude=0.0, country)

This is illegal because the country parameter comes after the longitude and
latitude parameters, and these have a default value. It is caused by the simple
listing of the fields in the order they are defined within the class inheritance hierarchy.

Thus if the parent class has a default value for a field, all fields in the subclass
must have default values as well.

If you tried to run the above code you would get a runtime error:

Traceback (most recent call last):
File "main7.py", line 9, in <module>
@dataclass
^^^^^^^^^

File "dataclasses.py", line 1223, in dataclass

5.9 Post Initialisation 43

return wrap(cls)
^^^^^^^^^

File "dataclasses.py", line 1213, in wrap
return _process_class(cls, init, repr, eq, order, unsafe_hash,

^^^
File "dataclasses.py", line 1027, in _process_class
_init_fn(all_init_fields,

File "dataclasses.py", line 545, in _init_fn
raise TypeError(f'non-default argument {f.name!r} '

TypeError: non-default argument 'country' follows default argument

The valid definition of the City class should look something like:

from dataclasses import dataclass

@dataclass
class Location:

name: str
longitude: float = 0.0
latitude: float = 0.0

@dataclass
class City(Location):

country: str = None # Does work

city = City('Dublin', country='Ireland')
print(city)

Now when we run this code we see:

City(name='Dublin', longitude=0.0, latitude=0.0, country=
'Ireland')

5.9 Post Initialisation

One thing that may be a problem is what happens if you want to perform some
initialisation behaviour of your own. By default a data class generates its own
__init__ initialisation method.

You can of course override this yourself and define your own __init__ method
as the processor won’t generate an __init__ method if one is manually defined by
the programmer. However, this means that you have to include a lot of boiler plate
code for each of the parameters, which was one of the benefits of having a data class
in the first place!

Another option is to define a __post_init__(self) method. This method
is run after the __init__ method and can be used to perform any initialisation
that you want to execute after all the fields have been set up—such as logging the
fact, reading a preferences file, accessing a database and setting up further non-field
attributes.

44 5 Data Classes

As a simple example, the following Trade class has had a __post_init__
method added:

from dataclasses import dataclass

@dataclass
class Trade:

"""Class for representing Equity Trades"""
counter_party1: str
counter_party2: str
symbol: str
amount: int = 0
def __post_init__(self):

print('In __post_init__() method')

print('Starting')
trade1 = Trade('John', 'Denise', 'IBM', 100)
print(trade1)
print('Done')

When this class is run the output is:

Starting
In __post_init__() method
Trade(counter_party1='John', counter_party2='Denise', symbol=
'IBM', amount=100)
Done

As you can see from this the __post_init__() method is run after the instance
is created but before the following code can access the trade instance.

5.10 Initialisation Variables

A final option is to mark a field as being something that the __post_init__
() method should receive. That is a field can effectively be made into a parameter
passed to the __post_init__() and not be added to the class __repr__()
and __eq__() methods. This is done using the InitVar type. This type takes a
parameter to indicate the actual type to be held by the attribute but passes the field
along to the __post_init__() method to handle.

5.11 Positional Attributes 45

For example:

from dataclasses import dataclass, InitVar

@dataclass
class Trade:

"""Class for representing Equity Trades"""
counter_party1: str
counter_party2: str
symbol: str
amount: int = 0
status: InitVar[str] = 'Live'
def __post_init__(self, status):

print('In __post_init__() method')
print(f'status = {status}')

print('Starting')
trade1 = Trade('John', 'Denise', 'IBM', 100)
print(trade1)
print('Done')

When we run this code we can see that the output from the __repr__() method
(when it is connected to a string for printing purposes) does not include the status:

Starting
In __post_init__() method
status = Live
Trade(counter_party1='John', counter_party2='Denise', symbol=
'IBM', amount=100)
Done

5.11 Positional Attributes

Traditional classes have no concept of a natural or default ordering to the attributes
they hold. However, for data classes, there is a default ordering to the attributes, this
ordering is the order in which they are defined in the data class. Thus for the data
class Book presented below the ordering is title followed by author:

@dataclass
class Book:

title: str
author: str = 'Anonymous'

How important is this? This is mainly of interest for Structural Pattern matching
where the values can be extracted from the data class instance. This is discussed in
the next chapter.

46 5 Data Classes

5.12 Exercise

The aim of this exercise is to create a data class to represent a Customer for a fintech
system.

In this simple example, the Customer data class will have a name, an address and
an email. All three of these properties will be read-only fields and will hold strings.

You should be able to create a Customer using:

customer1 = Customer('John',
'10 High Street',
'john@gmail.com')

Next create an Account data class and subclasses for CurrentAccount and
DepositAccount. The Account class should have an account number, a customer
and an opening balance.

The CurrentAccout class should additionally have an overdraft_limit
property. This can be set when an instance of a class is created and altered during
the lifetime of the object.

The CurrentAccount withdraw() member function should verify that the
balance never goes below the overdraft limit. If it does then the withdraw()
member function should not reduce the balance instead it should raise a ValueError.

The DepositAccount should have an interest _rate associated with it
which is included when the account is converted to a string.

You will now need to create a customer for each account instance, for example:

customer1 = Customer('John',
'10 High Street',
'john@gmail.com')

acc1 = CurrentAccount("123", customer1, 10.0, -100.00)
print(acc1)
acc1.withdraw(1)
print(acc1)

customer2 = Customer('Denise',
'11 Main Street',
'denise@gmail.com')

acc2 = DepositAccount("345", customer2, 23.55, 0.5)
print(acc2)

try:
acc1.withdraw(200)

except ValueError as err:
print(err)

An example of the sort of output this code might generate is given below:

CurrentAccount(number='123', customer=Customer(name='John',
address='10 High Street', email='john@gmail.com'), balance=10.0,
overdraft_limit=-100.0)

mailto:john@gmail.com
mailto:john@gmail.com
mailto:denise@gmail.com
mailto:john@gmail.com

5.12 Exercise 47

CurrentAccount(number='123', customer=Customer(name='John',
address='10 High Street', email='john@gmail.com'), balance=9.0,
overdraft_limit=-100.0)
DepositAccount(number='345', customer=Customer(name='Denise',
address='11 Main Street', email='denise@gmail.com'),
balance=23.55, interest_rate=0.5)
-191.0 Exceeds Overdraft Limit of -100.0

Note that the overdraft is presented as a negative number in this example.

mailto:john@gmail.com
mailto:denise@gmail.com

Chapter 6
Structural Pattern Matching

6.1 Introduction

Structural pattern matching was introduced into Python in version 3.10. Although
the basic form of structural pattern matching looks very much like pattern matching
in other languages, there are some specific features that relate to data classes. In this
chapter we will look at how data classes can be used with structural pattern matching.

6.2 The Match Statement

As a simple example of using the match statement in Python consider the following
code:

def get_status_message(status):
match status:

case 400:
return 'Bad request'

case 404:
return 'Not found'

case 418:
return "I'm a teapot"

case _:
return 'Something is wrong'

print(get_status_message(404))
print(get_status_message(401))

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_6

50 6 Structural Pattern Matching

The output from this example is:

Not found
Something is wrong

This illustrates the basic structure and behaviour of the match statement. The
value to be matched against is compared with literal values specified in a series of
case conditions. If the value in status is the same as one of the case statements
then the associated body of the case statement is executed. Thus if the value of status
is 404 then the string ‘Not found’ will be returned. The case _: option is a default
or wild card case statement which will run if none of the others match. It is optional
but is a common feature. Note only one car condition will run and that will be the
first one found that can run.

6.3 Matching Classes with Positional Attributes

Structural pattern matching can also be used with data classes. Such classes provide
the concept of positional attributes. These attributes can be extracted from a data
class instance using the structural pattern matcher and the values used within a case
condition block. For example, given the following simple data class Click:

from dataclasses import dataclass

@dataclass
class Click:

x: int
y: int

We can write a function that takes a Click as a parameter and then can extract
the values for x and y from the Click instance and make them available for use
within the body of the case condition. This is illustrated below:

def handle_click(point):
match point:

case Click(x, y):
print(f'Click x={x}, y={y}')

case _:
print('Not a click')

In this example, if the value held in point is a Click instance, then it will match
against the first case condition and the positional values x and y will be extracted
from the instance and stored into the local variables x and y which can then be used
within the body of the case condition—that is in the print statement.

If the value held in point is not a Click instance then the wildcard will trigger
and a message that the value is not a click will be printed.

6.4 Matching Against Standard Classes 51

To illustrate this we will use a simple program which will call the handle_
click() function twice, once with a Click instance and once with a string:

cursor = Click(10, 5)
handle_click(cursor)
handle_click('john')

The output from this code snippet is:

Click x=10, y=5
Not a click

6.4 Matching Against Standard Classes

In most user-defined classes there is no natural or default ordering for the attributes
held. However, this issue can be overcome by defining a __match_args__ class
property which contains a tuple with the names of the attributes and their order.

For example, a plain class Person does not have a natural ordering to its prop-
erties; however it does have a name and an age attributes. Thus by adding the __
match_args__ class property to the definition, it can now be used with a case
condition extraction.

Thus we can define the class Person as:

class Person:
__match_args__ = ("name", "age")
def __init__(self, pos, age):

self.name = pos
self.age = age

We can now define a function that takes an instance of the class Person and uses
the structural matcher to extract the values for name and age and print them out. If
the value provided when the function is called is not a Person then an appropriate
message will be printed.

For example:

def print_person(person):
match person:

case Person(name, age):
print(f'Person name={name}, age={age}')

case _:
print('Not a person')

To illustrate the use of the Person class and this function we will use the following
three lines that create a Person and call the print_person() function, once
with the Person instance and once with an integer 42:

52 6 Structural Pattern Matching

p = Person('Adam', 21)
print_person(p)
print_person(42)

The output generated by this code is:

Person name=Adam, age=21
Not a person

6.5 Online Resource

• https://peps.python.org/pep-0636/ Structural Pattern Matching Tutorial.

https://peps.python.org/pep-0636/

Chapter 7
Working with pprint

7.1 Introduction

It is common to need to print containers/collections in Python. This is often done to
the standard output stream which in most cases is the terminal window from which
Python is being run. The problem with this is that lists of lists or dictionaries of
key-value pairs can become long and difficult to read if merely printed across the
screen. The built-in pprint module is designed to help with this. The pprint
module provides functions that can be used to print out collections with options to
control how the data contained within the collection should be displayed. It is a very
useful module which is often overlooked when learning Python.

7.2 The pprint Data Printer Module

The pprint module is a built-in in module; it is provided as part of the Python
reference implementation but is not made available by default, and thus it must be
imported.

The module supports pretty-printing lists, tuples and dictionaries recursively. Thus
it can pretty-print a dictionary containing keys and values where the values are
themselves dicts, lists, tuples, etc.

It is a very simple, but useful, module especially when you need to debug
applications with nested (and potentially large) data collections.

It provides three functions:

• pprint() This function will pretty-print a Python object to an output stream
(the default is the standard output).

• pformat() This function formats a Python object into a pretty-printed
representation.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_7

54 7 Working with pprint

• saferepr() This function will create a ‘standard’ __repr__()-like value,
but protect against recursive data structures.

The most commonly used of these functions is the pprint() function.

7.3 Basic pprint Usage

To illustrate why we might want to use the pprint module, consider the following
list of list:

data = [[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9]]

print(data)

This is not a particularly large list, but it contains three inner lists, each of which
is made up of 10 values. In many cases the data structures you might want to create
may be much bigger and more complex. However, this simple example will illustrate
the idea behind the pprint module.

If we run this code we will generate output laid out as shown below:

[[1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4, 5, 6, 7, 8, 9], [1, 2, 3, 4,
5, 6, 7, 8, 9]]

This is not too difficult to read but it is laid out across the screen (or page) as one
long line. On the page this becomes distributed across two lines (or more).

However, there is an inherent structure here, as illustrated by the way that the
source code was laid out. Wouldn’t it be nice if the print function understood this
and laid the data out in a similar way?

This is exactly what the pprint() function from the pprintmodule does. To
use this function we will need to import the built-in module pprint. For example
using:

import pprint

If we now rewrite the earlier code to use the pprint() function we can see how
the output changes:

import pprint

data = [[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9]]

pprint.pprint(data)

7.3 Basic pprint Usage 55

The output generated by this revised code is now:

[[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 2, 3, 4, 5, 6, 7, 8, 9]]

As you can see the list of lists has been printed in a way that makes it much easier
to read as the inner lists are each printed on a separate line down the screen (or page
in this case). The pprint() function determines where to break the lines based on
a default screen width of 80 characters.

To illustrate the idea further we can see how the pprint() function works with
a dictionary (dict) in Python.

The following code creates a structure containing a list of dictionaries, and each
dictionary has three entries called ‘Name’, ‘Grades’ and ‘Course’. The ‘Grades’ key
relates to a value that is itself a list of integer values.

The structure we are using is illustrated below along with the plain old print
function:

grades = [{'Name': 'John',
'Grades': [55, 34, 76],
'Course': 'Csi'},

{'Name': 'Adam',
'Grades': [71, 55, 64],
'Course': 'MedPharm'},

{'Name': 'Natalia',
'Grades': [85, 91, 78],
'Course': 'BioSci'},

{'Name': 'Denise',
'Grades': [68, 71, 82],
'Course': 'Chem'}]

print(grades)

Notice the way that we have laid out the code so that it is easy to read for the
programmer. However, the output from this is

[{'Name': 'John', 'Grades': [55, 34, 76], 'Course': 'Csi'},
{'Name': 'Adam', 'Grades': [71, 55, 64], 'Course': 'MedPharm'},
{'Name': 'Natalia', 'Grades': [85, 91, 78], 'Course': 'BioSci'},
{'Name': 'Denise', 'Grades': [68, 71, 82], 'Course': 'Chem'}]

Again it has laid the output out in a single line which has been broken up across
the screen.

Depending on the size of the terminal or the command prompt being used this
may or may not be that readable.

If we now use the pprint() function on the same structure:

pprint.pprint(grades)

56 7 Working with pprint

The output is now:

[{'Course': 'Csi', 'Grades': [55, 34, 76], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [71, 55, 64], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [85, 91, 78], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [68, 71, 82], 'Name': 'Denise'}]

Notice that again the pprint() function tries to lay the data structures out in
a meaningful way based not the contents of the lists and dictionary and the default
line length (which is 80 characters).

7.4 Changing the Width

The pprint() function has numerous parameters available, all of which have
default values provided and all of which can be used to control how pprint()
generates its output. One of these parameters is the width parameter. This has a
default value of 80 and has been used above to determine where and how to break
each line in the output. We will use the named parameter passing style with the
width parameter as there are several parameters available, and we need to indicate
which the width value relates to. The syntax is thus

pprint.pprint(<data>, width=<an int>)

We can rerun the above grades example using different integer width values. For
example, if we override the default value of 80 with 60 as shown below:

pprint.pprint(grades, width=40)

The output generated from this is changed to:

[{'Course': 'Csi',
'Grades': [55, 34, 76],
'Name': 'John'},

{'Course': 'MedPharm',
'Grades': [71, 55, 64],
'Name': 'Adam'},

{'Course': 'BioSci',
'Grades': [85, 91, 78],
'Name': 'Natalia'},

{'Course': 'Chem',
'Grades': [68, 71, 82],
'Name': 'Denise'}]

As you can see from this the inner dictionary is now laid out down the page as
the maximum width of 60 characters is no longer enough to display the contents.

To illustrate this further we can change the width down to just 20 characters:

pprint.pprint(grades, width=20)

7.5 Changing the Depth 57

Now the output is further compressed across the page:

[{'Course': 'Csi',
'Grades': [55,

34,
76],

'Name': 'John'},
{'Course': 'MedPharm',
'Grades': [71,

55,
64],

'Name': 'Adam'},
{'Course': 'BioSci',
'Grades': [85,

91,
78],

'Name': 'Natalia'},
{'Course': 'Chem',
'Grades': [68,

71,
82],

'Name': 'Denise'}]

Now the inner list is also displayed down the screen.

7.5 Changing the Depth

By default the pprint() function prints out all nested collections down to whatever
depth exists. That is, if a list contains a dictionary that contains a list it will print
all 3 collections (as illustrated for the grades examples above). However, this can be
overridden. There is another parameter to the pprint() function called depth.
By default this parameter is set to the value None which indicates that all nested
sequences should be printed. However, you can set this to an integer to indicate the
depth of nesting to be printed.

In the grades example we could say that we have a depth of nesting of 3, as there
is a list containing a dictionary containing a list. We could thus set to depth to 2 to
see what happens:

pprint.pprint(grades, depth=2)

When this code is run the output generated is:

[{'Course': 'Csi', 'Grades': [...], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [...], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [...], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [...], 'Name': 'Denise'}]

58 7 Working with pprint

As you can see the inner most list (the value element associated with the key
‘Grades’) is shown as a list with three dots inside it. This illustrates that there is a
data present here but we are not displaying the contents of this list. This is useful
if you don’t need to know what the values are just that there is a list here, and the
output takes up less space on the screen, for example during debugging.

It is of course possible to mix the width and the depth parameters in the same
call to control how the data is laid out across the screen, for example:

pprint.pprint(grades, depth=2, width=40)

This will print out the grades to a depth of 2 but within only 40 characters
horizontally across the screen, for example:

[{'Course': 'Csi',
'Grades': [...],
'Name': 'John'},
{'Course': 'MedPharm',
'Grades': [...],
'Name': 'Adam'},
{'Course': 'BioSci',
'Grades': [...],
'Name': 'Natalia'},
{'Course': 'Chem',
'Grades': [...],
'Name': 'Denise'}]

7.6 Managing the Indentation Level

A third parameter for thepprint() function is theindent parameter. This param-
eter has a default value of 1. The indent value determines by how much a nested
value is indented in the output relative to the containing collection when printed on
a different line.

For example to change the indentation level from 1 to 6 with the grades example,
we could write:

pprint.pprint(grades, indent=6)

The output from this is now:

[{'Course': 'Csi', 'Grades': [55, 34, 76], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [71, 55, 64], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [85, 91, 78], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [68, 71, 82], 'Name': 'Denise'}]

As you can see there is a big gap between the outer most square brackets and the
inner dictionary.

7.7 Reducing Line Breaks Using Compact 59

It is of course possible to use the indent parameter with both the width and/
or the depth parameters. For example:

pprint.pprint(grades, depth=2, width=40, indent=6)

This line will generate output that is displayed only to depth 2 and is laid out
across 40 characters on the screen with each subsequent line indented by 6 spaces:

[{ 'Course': 'Csi',
'Grades': [...],
'Name': 'John'},

{ 'Course': 'MedPharm',
'Grades': [...],
'Name': 'Adam'},

{ 'Course': 'BioSci',
'Grades': [...],
'Name': 'Natalia'},

{ 'Course': 'Chem',
'Grades': [...],
'Name': 'Denise'}]

7.7 Reducing Line Breaks Using Compact

One problem with using the width parameter is that it looks at the contents of a
collection and tries to determine whether it can print the whole contents out within
the specified width. If not then it defaults to printing each value on a separate line.
This was fine for the grades example as it only held three values, but what about a list
containing say just a collection of integers. For example, the following code creates
a list of 25 integers:

marks_range = list(range(0, 25))
print(marks_range)

The use of the basic print() function prints out the integers across the screen:
The output from this is:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24]

which is probably ok in most situations. However, if we do decide to use the
pprint() function and specify a width of 20 (which is 5 less than the number of
values in the list) something odd happens:

pprint.pprint(marks_range, width=20)

60 7 Working with pprint

This produces an output where each integer is printed down the screen:

[0,
1,
2,
3,
4,

..

Due to space we are not including all 25 values but hopefully you get the idea.
Note that the two dots here are added by us to indicate that there is more data that
would be displayed if you ran this program yourself.

However, Python 3.4 added another parameter to the pprint() function,
compact (which is set to False) by default. If compact is set to True, then
elements that fit into the width are printed on a single line. It is therefore considered
best practice to use compact=True for lists with many elements.

For example:

pprint.pprint(marks_range, width=20, compact=True)

generates the following output:

[0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 24]

which is probably more desirable than the default behaviour.

7.8 The pformat Function

The pprint.pformat() function is used to convert a container such as a list,
dict or tuple into a string. Unlike the str() conversion function, the pformat()
function uses the same layout options and behaviour as the pprint.pprint()
function. Thus a string can be generated that is based on the same width, depth
and indent options as pprint() can be generated.

To illustrate this, let us again use the grade structure and convert this into a string
using the basic str() function:

grades = [{'Name': 'John',
'Grades': [55, 34, 76],
'Course': 'Csi'},
{'Name': 'Adam',
'Grades': [71, 55, 64],
'Course': 'MedPharm'},
{'Name': 'Natalia',
'Grades': [85, 91, 78],

7.8 The pformat Function 61

'Course': 'BioSci'},
{'Name': 'Denise',
'Grades': [68, 71, 82],
'Course': 'Chem'}]

data_str = str(grades)
print(data_str)

The output from this is:

[{'Name': 'John', 'Grades': [55, 34, 76], 'Course': 'Csi'},
{'Name': 'Adam', 'Grades': [71, 55, 64], 'Course': 'MedPharm'},
{'Name': 'Natalia', 'Grades': [85, 91, 78], 'Course': 'BioSci'},
{'Name': 'Denise', 'Grades': [68, 71, 82], 'Course': 'Chem'}]

which is a single string representing the contents of the grades structure.
However, using the pprint.pformat() function we can generate a string

which is formatted as it would if we had used the pprint() function, for example:

data_str = pprint.pformat(grades)
print(data_str)

The output from this is:

[{'Course': 'Csi', 'Grades': [55, 34, 76], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [71, 55, 64], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [85, 91, 78], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [68, 71, 82], 'Name': 'Denise'}]

In addition we can use the same options as are available on pprint() to control
the depth, width and indentation, for example:

import pprint
data_str = pprint.pformat(grades, depth=2, width=40, indent=2)
print(data_str)

which produces the following output:

[{ 'Course': 'Csi',
'Grades': [...],
'Name': 'John'},

{ 'Course': 'MedPharm',
'Grades': [...],
'Name': 'Adam'},

{ 'Course': 'BioSci',
'Grades': [...],
'Name': 'Natalia'},

{ 'Course': 'Chem',
'Grades': [...],
'Name': 'Denise'}]

Note that this is a single string representing the nested grades data structures.

62 7 Working with pprint

7.9 The saferepr() Function

In some situations a data structure might be recursive; that is a structure may at some
point refer to itself resulting in an endless loop. An example of this sort of structure
is illustrated below where list1 contains three strings and a reference to list3.
However, list3 is made up of list1 and list2:

list1 = ['a', 'b', 'c']
list2 = ['d', 'e', 'f']
list3 = [list1, list2]
list1.append(list3)
print(list1)

Python handles this normally by just using the three dots to indicate something—
however it is not necessarily obvious that this indicates a recursive structure. For
example, the output of the above is:

['a', 'b', 'c', [[...], ['d', 'e', 'f']]]

However, the saferepr() function returns a string which will include a
‘<Recursion on list with >’ element when data becomes recursive, for example:

print(pprint.saferepr(list1))

This generates:

['a', 'b', 'c', [<Recursion on list with id=4349488128>, ['d', 'e',
'f']]]

To help determine if you want to use saferepr() there is a isrecusrive()
function in the pprint module that will return True if a structure is recursive. For
example:

print(f'pprint.isrecursive(grades):
{pprint.isrecursive(grades)}')
print(f'pprint.isrecursive(list1): {pprint.isrecursive(list1)}')

The output from this is:

pprint.isrecursive(grades): False
pprint.isrecursive(list1): True

7.10 Using the PrettyPrinter Class

If you are going to use a particular option on the pprint() function all the time you
can create your own custom PrettyPrint instance with the parameter set to your
default. This means that you only need to specify the new settings once when you
are instantiating the PrettyPrint object and can use these settings throughout
your program.

7.11 Online Resource 63

import pprint

ppr = pprint.PrettyPrinter(depth=2, indent=2)
ppr.pprint(grades)

The output from this is:

[{'Course': 'Csi', 'Grades': [...], 'Name': 'John'},
{'Course': 'MedPharm', 'Grades': [...], 'Name': 'Adam'},
{'Course': 'BioSci', 'Grades': [...], 'Name': 'Natalia'},
{'Course': 'Chem', 'Grades': [...], 'Name': 'Denise'}]

Now each time you use the per object you will have the depth set to 2 and the
indent also set 2 but the width is the default 80, etc.

7.11 Online Resource

• https://docs.python.org/3/library/pprint.html Documentation on the pprint
module.

https://docs.python.org/3/library/pprint.html

Chapter 8
Shallow v Deep Copy

8.1 Introduction

When a container or collection type is copied there is an issue of what should be
copied about the elements it contains. By default if a list of lists is copied, then
the copy contains the addresses of the sublists; thus the inner lists are shared. This
is efficient as it means that complex or deep structures aren’t duplicated but can
cause problems if programmers do not realise that a sublist is shared between data
structures and start to modify the sublists. In this chapter we will look at the copy
module that provides for both shallow and deep copy options.

8.2 Copying a List of Lists

There are several ways in which a list can be copied. The two most common
approaches are to use the copy() method on a list or to the use copy slice syntax.

The copy() method is invoked using the dot notation and generates a shallow
copy of the data held in a container; for example when using a list of lists we might
write:

list1 = [1, 2, 3]
list2 = [4, 5, 6]
List3 = [list1, list2]

Copy using the copy method
list4 = list3.copy()
for item in list4:

print(f’item: {item}’)

In this example we have a list3 which contains references to two sublists
list1 and list2. These sublists contain integers. We then create a copy of list3

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_8&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_8

66 8 Shallow v Deep Copy

and store that in list4. We then loop through list4 printing out each item in turn.
The output from this is:

item: [1, 2, 3]
item: [4, 5, 6]

We thus end up with two lists (list3 and list4) which contain sublists with
integers in them.

We could also have used the slice syntax to create a copy of list3 as shown
below:

Copy using slice syntax
list5 = list3[:]
for item in list5:

print(f’item: {item}’)

Again the output from this is:

item: [1, 2, 3]
item: [4, 5, 6]

8.3 The Problem with Copying

So what is the problem with copy? The issue comes in the way that Python copies
the contents of the top-level list list3. By default it does a shallow copy. That is,
it copies the references to the sublists held in list3 into list4 and list5. This
is efficient in that we don’t create lots of additional lists but it is dangerous in that all
three top-level lists, list3, list4 and list5 reference the same instances of the
lists originally held in list1 and list2. Thus if a sublist is modified via list5,
it is also modified for list3 and list4.

This is illustrated by the ids of the sublists held in each of the top-level lists:

list1_id = id(list1)
print(f’list1_id: {list1_id}’)

list2_id = id(list2)
print(f’list2_id: {list2_id}’)

print(’=’ * 25)
for sublist in list3:

print(f’sublist id: {id(sublist)}’)
print(’-’ * 25)

for sublist in list4:
print(f’sublist id: {id(sublist)}’)

print(’-’ * 25)

list5 = list3[:]
for sublist in list5:

8.3 The Problem with Copying 67

print(f’sublist id: {id(sublist)}’)
print(’=’ * 25)

When we run this code the output is:

list1_id: 4521910080
list2_id: 4522960512
=========================
sublist id: 4341751808
sublist id: 4342801984

sublist id: 4341751808
sublist id: 4342801984

sublist id: 4341751808
sublist id: 4342801984
=========================

This indicates that the ids of the sublists are the same across all three top-level
lists. As every object in Python has a unique id they must be the same instances of
the inner lists.

Pictorially what happens when we copy list3 to list4 is shown below:

As we can see from the diagram both list3 and list4 are referencing the
same instances of list1 and list2.

The danger occurs when we append a value to a sublist via, for example, list5.
This is shown below:

list5[0].append(100)
print(list5)
print(list4)
print(list3)

68 8 Shallow v Deep Copy

The output from this is:

[[1, 2, 3, 100], [4, 5, 6]]
[[1, 2, 3, 100], [4, 5, 6]]
[[1, 2, 3, 100], [4, 5, 6]]

Here you can see that the integer 100 has apparently been added to list5,
list4 and list3. Actually it was added to the shared sublist originally represented
by list1.

8.4 The Copy Module to the Rescue

The copy module provides two functions, the copy() function and the
deepcopy() function. These are described below:

• copy.copy(x) returns a shallow copy of x.
• copy.deepcopy(x) returns a deep copy of x.

The difference between shallow and deep copying is only relevant for container or
collection like objects such as lists, tuples, dictionaries or class instances. In essence
the difference is that:

• A shallow copy constructs a new top-level object (such as a list) and then (to the
extent possible) inserts references (that is the addresses) of the contained objects
into the copy.

• A deep copy constructs a new top-level object (such as a list) and then, recur-
sively, makes copies of the contained objects which are added to the new top-
level container. Thus copies are made down to any depth within the structure
being copied.

At this point you might be wondering why all copies are not performed as deep
copies as they are safer. There are several issues to consider with deep copies,
including:

• Recursive objects. These are objects which at some point refer back to another
compound object within the same data structure. This may happen directly or
indirectly because of some deep network within the structure. These can cause
recursive loops which mean that a deep copy can fail.

• Intentionally shared data. Because deep copy copies everything it may copy too
much, such as data which is intended to be shared between copies.

• The amount of data being copied may be prohibitively expensive both in terms of
the memory being used but also in terms of the time taken to make a copy.

For these reasons most programming languages default to a shallow copy mech-
anism and often provide a deep copy option—which is exactly what Python
does.

8.5 Using the deepcopy() Function 69

To try to alleviate some of the issues associated with the first two points above,
the deepcopy() function in Python has a couple of enhancement strategies; these
are:

• Keeping a memo dictionary of objects already copied during the current copying
pass. The term memo is short of memoization and is a form of caching, and it is
typically used where the cache concept is specific to a particular task or function.

• Letting user-defined classes override the copying operation or the set of
components copied.

This second point is worthy of some additional explanation. Classes in Python
can define special methods that typically start with a __ in their name. Copying is
no different to other operations such as addition or subtract in this way. In order
for a class to define its own copy implementation, it can define special methods __
copy__() and __deepcopy__(). The former is called to implement the shallow
copy operation; no additional arguments are passed. The latter is called to implement
the deep copy operation; it is passed one argument, the memo dictionary. If the _
_deepcopy__() implementation needs to make a deep copy of a component, it
should call the copy.deepcopy() function with the component as first argument
and the memo dictionary as second argument.

8.5 Using the deepcopy() Function

We can now update our earlier examples to use copy.deepcopy() rather than
just the copy() method or the [:] copy slice syntax. We now have to import the
copy module and then call the copy.deepcopy() function passing in the list to
be copied (in this case list3). The new list is then stored in list4.

In the following code we use the id() function to again check the unique id for
each sublist within lists and list4:

import copy

list1 = [1, 2, 3]
list2 = [4, 5, 6]
list3 = [list1, list2]

list4 = copy.deepcopy(list3)
for sublist in list3:

print(f’sublist id: {id(sublist)}’)
print(’-’ * 25)

for sublist in list4:
print(f’sublist id: {id(sublist)}’)

print(’-’ * 25)

The output from this code is given below:

70 8 Shallow v Deep Copy

sublist id: 4539736128
sublist id: 4539735488

sublist id: 4539737536
sublist id: 4539474560

This time the ids for the sublists in list3 are different to the ids of the sublists
in list4. They no longer hold the same references, but they instead hold copies of
the sublists. This means that if we now add the integer 100 to list4 it will have no
effect on the contents of list3, for example:

list4[0].append(100)
print(list4)
print(list3)

which produces:

[[1, 2, 3, 100], [4, 5, 6]]
[[1, 2, 3], [4, 5, 6]]

As we can see list3 has not been modified.
Thus the effect of using deepcopy() pictorially on list3 and list 4 is:

8.6 Online Resource

• https://docs.python.org/3/library/copy.html Shallow and deep copy operations.

https://docs.python.org/3/library/copy.html

Chapter 9
The __init__ Versus __new__ and __call

9.1 Introduction

Python classes have many special methods that are of the form _
_<name of method>__. These methods are sometimes referred to as
magic methods or double underscore methods (also dunder methods which
is short for double underscore methods). Many of these support opera-
tors such as __eq__ (for the equality operator==) or __lt__ (for the
less than operator<) or for specification functionality such as __len__ for
determining the length of an object or __str__ and __repr__ for
converting objects into string formats. However, two special methods that often get
confused are __new__ and __init__. These two special methods are associated
with instance creation but have different roles and are run at different times in the
object creation process. For many developers they only ever use __init__ and
may not even realise that there is a __new__ method available. This chapter looks
at these two methods, their roles and how they are defined. The chapter concludes
by briefly introducing the __call__ method.

9.2 The __new__ and __init__ Methods

In Python, both the __new__ and __init__ methods are special methods used
in class definitions. They serve different purposes and are invoked at different stages
of an object’s lifecycle.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_9

72 9 The __init__ Versus __new__ and __call

The __new__ method is responsible for creating and returning the instance of
the object, while the __init__() method initialises the object’s attributes and
performs any necessary setup. When you create an object using the class constructor,
both methods are automatically invoked in the following sequence:

<Object Instantiated> -> __new__() -> __init()

The __new__() method is called first, which creates the object instance and
returns it. It is a static method that takes the class as its first argument, followed
by any additional arguments passed to the class constructor. The __new__ method
is responsible for creating the object and can return an instance of the class or an
instance of a different class.

After the object has been created by the __new__()
method, the __init__() method is called with the newly created object
instance as its first argument, followed by any additional arguments passed to the
class constructor. The __init__ method is expected to initialise the state of the object,
that is to set up the attributes held by the object and their initial values. It can also
invoke any additional set up or initialisation behaviour as required.

9.3 The __new__ Method

The __new__() method is the object creation method. Its purpose is to create the
instance or object of the class. The default behaviour of the __new__ method is
defined in the class object from which all class in Python inherit. As such all classes
can create instances of a class in the same way. However, subclasses can override
the __new__ method when and if required.

The __new__ method is a static method, and it is therefore part of the class itself
and not part of a particular object or instance. However, it is a special case which
means that you do not need to mark it explicitly as a static method; it automatically
is a static method.

The __new__ method is typically used in situations where you need more control
over the object creation process, such as when dealing with immutable objects or
implementing singletons.

Typical implementations of the __new__ method create a new instance of the
class by invoking the superclass’s __new__() method using super().__new_
_(cls[,...]) with appropriate arguments and then modifying the newly created
instance as necessary before returning it.

The definition of the __new__ method is:

def class (class, *args, **kwargs)

The parameters are:

• class this is the class of the new object that you want to create.

9.4 When to Use the __new__ Method 73

• The *args and **kwargs parameters must match the parameters of the __
init__() of the class. However, the __new__() method is not expected to
use them.

Here’s a basic example of how the __new__ method can be used:

class MyClass:
def __new__(cls, *args, **kwargs):
print(’Entering __new__’)
Custom object creation logic
instance = super().__new__(cls)
print(’New instance created’)
Additional initialisation of the instance if needed
return instance

print(’Starting’)
obj = MyClass()
print(’Done’)

The output generated from running this code is:

Starting
Entering __new__
New instance created
Done

As you can see the output is generated when the instance of MyClass is created.
An important point to note is that it is quite rare to need to implement your own

__new__ method.
The default __new__ method in the object class is usually perfectly fine for

most situations. If you do not define your own __new__ method then the default
is inherited from the parent class (e.g. object). This default simply creates and
returns a new instance of the class.

9.4 When to Use the __new__ Method

The __new__ method is usually used in specific situations where there is a need
for fine-grained control over object creation. Here are a few scenarios where the __
new__ method might be used:

• Implementing Immutable Objects: If we want to create an object that is
immutable (i.e. its state cannot be changed after creation), we can override the
__new__ method to ensure that no modifications can be made to the object’s
attributes.

• Singleton Pattern: The __new__ method can be used to
implement the singleton design pattern, where only one instance of a class
can exist. By controlling the creation process in __new__, you can ensure that
subsequent requests for the object return the same instance. That is, the class

74 9 The __init__ Versus __new__ and __call

can record the single instance to be used the first time a new instance is created.
Following this, each subsequent request for a new instance will return the original
instance.

• Customising Object Creation: If you need to perform additional operations
during object creation, such as validating arguments or initialising internal state,
you can override the __new__ method to incorporate your custom logic before
the object is initialised by __init__.

• Subclassing an Immutable Base Class: When subclassing an immutable class,
like tuple or str, you need to override the __new__ method instead of __
init__ because the base class does not allow modification after creation.

9.5 Using __new__ to Create a Singleton Object

The following code creates a simple implementation of a singleton class in Python.
This class overrides the __new__ method such that the first instance of the class is
rec order in the class side attribute instance. After this further requests to return a
new instance just return the previously created instance:

class Singleton:

instance = None
def __new__(cls, *args, **kwargs):
print(’Entering __new__’)
if Singleton.instance is None:

print(’Creating instance’)
create the single instance
Singleton.instance = super().__new__(cls)

print(’Returning instance’)
return Singleton.instance

print(’Starting’)
s1 = Singleton()
print(’-’ * 25)
s2 = Singleton()
print(’-’ * 25)
s3 = Singleton()
print(’-’ * 25)

print(id(s1))
print(id(s2))
print(id(s3))
print(’Done’)

If we run this code the output from this is:

Starting
Entering __new__
Creating instance

9.6 The __init__ Method 75

Returning instance

Entering __new__
Returning instance

Entering __new__
Returning instance

4321848656
4321848656
4321848656
Done

From this we can see that only once does the code print out ‘Creating instance’
and that the ids for each of the objects being referenced by s1, s2 and s3 are the
same. Thus the same instances is being used each time a request is made to make a
new object of type Singleton.

9.6 The __init__ Method

The __init__ method is called after the object has been created by the __new_
_ method. It initialises the object’s attributes and performs any necessary setup. The
__init__ method takes the newly created object instance as its first argument,
followed by any additional arguments passed to the class constructor. It doesn’t
return anything and is primarily used for initialisation purposes.

The following code provides a simple example of creating a class Person in
which the name and age attributes are initialised by values passed into the __
init__ method:

class Person:

def __init__(self, name, age):
print(’In __init__’)
self.name = name
self.age = age

def __repr__(self):
return f’Person({self.name}), {self.age})’

print(’Starting’)
p1 = Person(’John’, 21)
print(p1)
p2 = Person(’Denise’, 18)
print(p2)
print(’Done’)

The result of running this code is:

Starting
In __init__

76 9 The __init__ Versus __new__ and __call

Person(John), 21)
In __init__
Person(Denise), 18)
Done

As can be seen from this the __init__method runs when each of the instances
of the class Person is created.

9.7 Can __new__ and __init__ Be Used Together?

The short answer here is yes they can—they serve different purposes as has been
indicated above.

Thus an individual class may well have need for both a __new__ and an __
init__ methods. For example, the __new__ method may be used to limit the
number of instances of a class that are created whereas the __init__ method may
be used to initialise the state of any instances that are actually created.

The following class has both a __new__ and an __init__ methods.

class MyClass:
def __new__(cls, *args, **kwargs):

print(’Entering __new__’)
Custom object creation logic
instance = super().__new__(cls)
print(’New instance created’)
Additional initialisation of the instance if needed
return instance

def __init__(self):
print(’In __init__’)

print(’Starting’)
obj = MyClass()
print(’Done’)

When we run this code the output generated will be:

Starting
Entering __new__
New instance created
In __init__
Done

As this shows the __new__ method runs before the __init__ method.

9.9 Summary 77

9.8 The __call__ Method

A final special method that we should consider is the __call__ method. This
special method allows an object to be called as if it were a function. When an object
defines the __call__ method, it can be invoked using parentheses () as if it were
a function call.

A simple example is given below:

class CallableClass:
def __call__(self, *args, **kwargs):
print("The object was called!")

print(’Start’)
obj = CallableClass()
obj()
print(’Done’)

The output generated for this code is:

Start
The object was called!
Done

We can therefore make any class into a callable or executable thing. The
inverse of this is that not all objects in Python can be called. Only objects that
define the __call__() method can be invoked as functions.

Another point to note is that when an object is instantiated in Python using the stan-
dard notation, it is this method that makes the class creation behaviour an executable
thing; that is the __call__() method is invoked when creating a new instance of
a class. Thus the following invokes the call method to create a new Person instance:

P1 = Person(’John’)

9.9 Summary

To summarise, the __new__ method is responsible for creating the instance of the
object, while the __init__ method initialises the object’s attributes and performs
setup operations. The __new__ method is rarely used in everyday Python program-
ming, except in cases where you need more control over object creation. On the other
hand, the __init__ method is commonly used for typical initialisation tasks.

Chapter 10
Python Metaclasses and Meta
Programming

10.1 Introduction

This chapter looks at metaprogramming and metaclasses in Python. Metaprogram-
ming relates to the idea that a Python program can generate or modify code dynam-
ically at runtime. This is a very powerful (although potentially dangerous) feature
in Python which many statically compiled languages such as C++ do not provide.
This chapter introduces metaprogramming before discussing three ways in which
metaprogramming can be achieved in Python; using decorators, metaclasses and
dynamic code execution.

10.2 Metaprogramming

Metaprogramming is exactly that, it is software that can generate program code (or
indeed modify existing code). Hence it is ‘meta’ programming—that is programs
that generate programs. In Python such metaprogramming happens dynamically at
runtime. There are several features in the language that can support metaprogram-
ming including decorators, metaclasses and dynamic code execution using exec()
and eval():

• Decorators: Decorators are functions that modify the behaviour of other func-
tions. They are denoted by the “@” symbol and can be applied to functions,
classes, or methods. Decorators allow you to add functionality to existing code
without modifying it directly.

• Metaclasses: Metaclasses are classes that define the behaviour of other classes.
By defining a metaclass, you can customise the creation and behaviour of class
objects. Metaclasses are often used to implement frameworks and libraries.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_10

80 10 Python Metaclasses and Meta Programming

• Dynamic code execution: Python provides the exec and eval functions, which
allow you to execute dynamically generated code. These functions take a string
containing Python code and execute it at runtime. This enables dynamic code
generation and execution based on specific conditions or user input.

Thus the key aspect to metaprogramming is that the developer must create code
that will generate or manipulate other code. This may sound non-sensical, but it does
allow developers to create very flexible and powerful code abstractions that would
not be possible using traditional coding techniques.

A word of caution is appropriate at this point. Metaprogramming is very powerful;
however, it can also have significant drawbacks. The most notable issue with metapro-
gramming is that it can make code much harder to understand, debug and maintain as
there is a level of indirection and additional complexity involved. Metaprogramming
can be very useful for generic, reusable frameworks but should only be used when
they are appropriate and not as a general technique.

It is therefore useful to consider the situations in which metaprogramming can be
useful. Some of these include:

• Code Generation: Metaprogramming allows a developer to generate code
dynamically based on specific conditions, configurations or input. This can be
helpful when an application or library needs to automate repetitive code generation
tasks or customise code behaviour at runtime.

• Frameworks and Libraries: Metaprogramming is often used in frameworks and
libraries to provide flexible and extensible APIs. By using metaprogramming tech-
niques, frameworks can automatically handle common tasks, enforce conventions,
and provide abstractions that simplify development.

• Dynamic Configuration: Metaprogramming allows the developer to load and
modify configuration files or data structures at runtime. This can be helpful when
it is necessary to dynamically adjust the behaviour of an application based on
different environments, user preferences, or external data.

• Domain-Specific Languages (DSLs): Metaprogramming can be used to create
domain-specific languages that provide a higher level of abstraction tailored to
specific problem domains. DSLs enable solutions to be expressed in a more
concise and intuitive manner, improving productivity and code readability. For
example a DSL might be created to represent submitting jobs to some task
processing system, or to describe a set of domain concepts such as trades in a
financial trading system, etc.

• Aspect-Oriented Programming (AOP): Metaprogramming can be applied to
implement aspect-oriented programming techniques. AOP allows you to modu-
larise cross-cutting concerns, such as logging, error handling or performance
monitoring, by separating them from the core logic of your application. AOP is
widely used in several common frameworks although it is often hidden from the
end user, for example turning logging on within a framework may appear to be
a simple ‘on’ function but behind the scenes metaprogramming may be used to
enable cross-framework logging.

10.3 Decorators as a Form of Metaprogramming 81

The overall guiding principle regarding whether to use a metaprogramming tech-
nique or not should be ‘does its use improve the flexibility, comprehensibility or
readability or maintainability of your code without significantly comprising that
code?’. Thus an appropriate balance between these aspects should be borne in mind.

10.3 Decorators as a Form of Metaprogramming

Decorators in Python are a language feature that can be used to implement a
metaprogramming approach.

Decorators are higher-order functions that take a function as input and can return
a modified or wrapped version of that function as their result. They can thus replace,
modify or wrap a function there by dynamically modifying the behaviour of a
function.

Some common uses for metaprogramming style decorators include:

• Function Wrapping: This is the classic use of decorators. A decorator can wrap
a function with additional behaviour. For example, you can create a decorator to
log function calls, measure execution time, or handle exceptions.

• Access Control: Decorators can be used to control access to the associated
wrapped function or method. This access can be used to check for security
constraints such as is the current user valid and do they have access rights to
the function or method.

• Caching and Memoization: Decorators can be used to create a form of caching
often referred to as memoization. This approach allows a function to cache the
results generated for particular parameter values. The cache holds information
about the parameters and the results previously generated. This means that when
the function is invoked a look up is performed to see if the function has already
cached the results. This is particularly useful for computations that are expensive
to perform as the computation is only required to be performed once. However,
it also relies on the function or method not using mutable external values. For
memoization to work a function or method must rely sole on the parameter values
passed into it to generate the result or only reference immutable external values.
This is referred to as Referential Transparency (aka RT).

• Input valuation and Sanitisation: Decorators can also be used to validate and
sanitise input values. By defining reusable decorators that can do such input valu-
ation/sanitisation you can provide common integrity support across functions and
methods.

• Frameworks and Libraries: Decorators are widely used within many frame-
works and library APIs to link functions, classes and methods into those
frameworks, etc. Flask discussed later in this book is an example of such a
framework.

One specific benefit of using decorators to perform the above metaprogramming
use cases is that it enables a separation of concerns as well as code reuse. For example,

82 10 Python Metaclasses and Meta Programming

the logic associated with a Flask RESTFul service is encapsulated to a large extent
within a set of decorators, while the behaviour required when a service is invoked is
encapsulated within a function.

Here is an example that demonstrates how decorators can be used for metapro-
gramming in Python:

def uppercase_decorator(func):
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
if isinstance(result, str):

return result.upper()
return result

return wrapper

@uppercase_decorator
def greeter(name):

return f"Hello, {name}!"

print(greeter(’Hello Denise’))

The output generated by this code is:

HELLO, DENISE!

In this example, we define a decorator called uppercase_decorator. This
decorator takes a function func as an argument and returns a new function
wrapper. The wrapper function wraps the original function func and modi-
fies its behaviour. That is when wrapper is called it calls the original function and
then adds some behaviour which may modify the result of the function.

In this case, the uppercase_decorator converts the return value of the
decorated function into uppercase if it is a string. The wrapper function receives the
arguments passed to the decorated function, calls the original function func and
stores the result in the result variable.

Then, it checks if the result is a string using the isinstance function. If it is,
the wrapper function converts the result to uppercase using the upper() method.
Finally, the modified result is returned.

The @uppercase_decorator syntax is used to apply the decorator to the
greeter() function. Now, whenever the greeter() function is called, the
uppercase_decorator is automatically invoked, modifying the output by
converting it to uppercase if it’s a string.

When we call greeter(‘Denise’), the output is “HELLO, DENISE!”,
demonstrating how the decorator modifies the behaviour of the original function.

Of course the @uppercase_decorator could be applied to any function or
method and would convert all strings to upper case; it is not tied to the greeter()
function.

10.4 Metaclasses for Metaprogramming 83

10.4 Metaclasses for Metaprogramming

Metaclasses in Python provide a way to define the behaviour of classes themselves.
A metaclass is the class of a class, meaning it is responsible for creating and defining
the behaviour of class objects. Metaclasses allow you to modify class creation and
control how classes behave at runtime. Metaclasses are used with Abstract Base
Classes to provide the basic behaviour of an ABC.

Metaclasses are classes for classes, and there are several points worth noting about
metaclasses including:

• Metaclasses are Templates for Classes: By template here we mean that a meta-
class acts as a pattern or blueprint for creating a class. It defines the structure,
behaviour and attributes of the classes that will be created using the metaclass.

• Class Creation and Initialisation is Handled by Metaclasses: If a class has a
metaclass defined for it, then when an instance of a class is created, the metaclass
will be used to create that instance (object). Python will therefore invoke the
metaclasses __new__() and __init__() methods. Thus it’s the metaclass
that decides how a new object will be created and its state set up.

• Metaclasses can modify the behaviour of a class: A metaclass can intercept and
modify class attributes, methods and their behaviour. Metaclasses can therefore
add, modify or remove attributes, override methods, modify the effect of a method
or add new methods to a class.

• Metaclasses can add class-level behaviour: Class-level methods are methods
that apply to the class itself rather than instances of the class. This includes defining
custom class methods, class properties or class-level methods.

• Metaclasses can control inheritance: Metaclasses can control how classes inherit
from parent/super classes. They can modify the inheritance order, enforce specific
constraints on inheritance or dynamically generate parent classes based on specific
conditions.

Although metaclasses provide a very powerful way to create abstractions,
libraries, frameworks and the like, care should be taken with them. As the saying
goes, with great power comes great responsibility! Best practice suggests that meta-
classes should be used with caution and only where their use has clear benefits in
terms of readability, reusability, maintenance and further extensions.

10.4.1 Singleton Metaclass

As an alternative to the singleton pattern implementation presented in the
last chapter, here is a metaclass version. This version allows the metaclass
SingletonMetaclass to be used with any class that we wish to convert into a
singleton pattern. This provides significant benefits in terms of reusability, that is we
only need to define this behaviour once and we can use it with any class.

84 10 Python Metaclasses and Meta Programming

Here’s an example that demonstrates a SingletonMetaclass used for
metaprogramming in Python:

class SingletonMetaclass(type):
_instances = {}
def __call__(cls, *args, **kwargs):

print(’In SingletonMetaclass.__call__’)
if cls not in cls._instances:

print(f’Creating new instance of {cls}’)
cls._instances[cls] = super().__call__(*args, **kwargs)

print(’Returning instance’)
return cls._instances[cls]

class Session(metaclass=SingletonMetaclass):
def __init__(self):

print(’In Session initialiser’)

print(’Starting’)
s1 = Session()
s2 = Session()
print(f’id(s1): {id(s1)}’)
print(f’id(s2): {id(s2)}’)
checks to see if they are the same instance
print(f’s1 is s2: {s1 is s2}’)
print(’Done’)

The output from this sample code is:

Starting
In SingletonMetaclass.__call__
Creating new instance of <class ‘__main__.Session’>
In Session initialiser
Returning instance
In SingletonMetaclass.__call__
Returning instance
id(s1): 4305011728
id(s2): 4305011728
s1 is s2: True
Done

If we examine the output we can see that only one instance of the class
__main__.Session is created. Subsequent requests to create a new instance
will return the stored instance. This is illustrated by the ids of s1 and s2 being the
same and by the is operator returning True.

To understand how this works let us look at the implementation. The class
SingletonMetaclass is a metaclass that inherits from the class metaclass
(this is what makes it a metaclass). It overrides the default behaviour of the
__call__() method which is used when creating a new instance of a class.

The SingletonMetaclass maintains a class side dictionary _instances that
holds the instances created for any classes that the SingletonMetaclass is
applied to. Note that we are using the _ notation here to indicate that it is a protected

10.5 Exec and Eval for Metaprogramming 85

attribute. When a new instance of a class is to be created the __call__() method
checks to see if an instance of that class already exists in the dictionary _instances.
If it does, it returns the existing instance. Otherwise, it creates a new instance using
the super().__call__ method and stores it in _instances before returning
it.

Once we have defined the SingletonMetaclass we define a class Session
which has its metaclass set to be SingletonMetaclass. This means that the
SingletonMetaclass metaclass will be used to create and customise the
behaviour of instances of the Session class.

When we create instances of Session (s1 and s2), the
SingletonMetaclass metaclass ensures that only one instance of Session is
created. Subsequent calls to create new instances will return the existing instance.

When we print out the id of the objects held in s1 and s2 we can see that they
are the same indicating that s1 and s2 both hold the same instances. This is also
confirmed by the is operator which checks for referential equality rather than value
based equality.

10.5 Exec and Eval for Metaprogramming

Both exec() and eval() functions in Python allow a developer to dynamically
compile and execute code. That is Python can on the fly create new code which
can be compiled and executed at runtime. This allows them to be used as a way to
implement metaprogramming style behaviours.

10.5.1 The exec() Function

The exec() function allows a developer to execute dynamically generated code
as a statement block. It takes a string containing Python code as an argument and
executes it within the current scope.

As an example of the exec() function, consider the following code:

MAX = 4
code = ’ ’ ’
for i in range(MAX):

print(i)
”’

exec(code)

When this code is run the output is:

0
1

86 10 Python Metaclasses and Meta Programming

2
3

The above example has a global value MAX set to 4. A string is then created
containing valid, well formed, Python code. The code within the string actually
references the value in MAX but of course at this point it’s just a string. We then call
exec() passing in the string within code. The exec() function now executes the
contents of the string as Python within the current execution context. This means
that it runs the code as if it had been in the Python file as normal code and it can
therefore access the MAX value. The result of running the code is a series of integers
printed to the standard output.

The code that is executed is created on the fly and could have been loaded from a
database, a text file or constructed based on other information available dynamically
at runtime.

10.5.2 The eval() Function

The eval function evaluates a string containing a Python expression and returns the
result. It allows you to dynamically compute values based on code provided as a
string.

The key here is that eval executes expressions that are expected to return a value.
An example of using eval to evaluate an expression is given below:

expression = ’((2 + 3) - 4) * 5’

result = eval(expression)
print(result)

The output from this code is:

5

In this example the expression ‘((2 + 3) − 4) * 5’ is held in a string stored
in the variable expression. This is evaluated using eval() and the result is
printed out. In this case the result is 5.

The eval() function can be used to dynamically generate a string containing
an expression which is executed at runtime.

10.5.3 eval Versus exec()

It is worth noting a difference between eval() and exec() as they can both
appear to do the same thing at first glance. The main difference between eval()
and exec() in Python lies in their functionality and the type of code they handle:

10.5 Exec and Eval for Metaprogramming 87

• eval() is a built-in Python function that evaluates a single expression and returns
the result. The result returned byeval() is the result of evaluating the expression.
It is typically used for evaluating mathematical or logical expressions, or for
dynamically computing values based on user input or configuration files.

• exec() is a built-in Python function that executes a block of code (statements)
in the current context. It takes a string containing one or more lines of Python
code as input and executes but does not return any value. It is commonly used for
executing dynamically generated code, code generation tasks, or running code
obtained from external source.

Both exec and eval should be used with caution since they execute arbitrary
code and can introduce security risks if used with untrusted input. It’s essential to
validate and sanitise any input used with exec or eval to prevent potential security
vulnerabilities.

Part II
Computer Graphics and GUIs

Chapter 11
Introduction to Computer Graphics

11.1 Introduction

Computer Graphics are everywhere; they are on your TV, in cinema adverts, the core
of many films, on your tablet or mobile phone and certainly on your PC or Mac as
well as on the dashboard of your car, on your smart watch and in children’s electronic
toys.

However what do we mean by the term Computer Graphics? The term goes back
to a time when many (most) computers were purely textual in terms of their input and
output, and very few computers could generate graphical displays let alone handle
input via such a display. However, in terms of this book we take the term Computer
Graphics to include the creation of Graphical User Interfaces (or GUIs), graphs and
charts such as bar charts or line plots of data, graphics in computer games (such as
Space Invaders or Flight Simulator) as well as the generation of 2D and 3D scenes
or images. We also use the term to include Computer Generated Art.

The availability of Computer Graphics is very important for the huge acceptance
of computer systems by non-computer scientists over the last 40 years. It is in part
thanks to the accessibility of computer systems via computer graphic interfaces that
almost everybody now uses some form of computer system (whether that is a PC, a
tablet, a mobile phone or a smart TV).

A Graphical User Interface (GUI) can capture the essence of an idea or a situation,
often avoiding the need for a long passage of text or textual commands. It is also
because a picture can paint a thousand words; as long as it is the right picture.

In many situations where the relationships between large amounts of information
must be conveyed, it is much easier for the user to assimilate this graphically than
textually. Similarly, it is often easier to convey some meaning by manipulating some
system entities on screen, than by combinations of text commands.

For example, a well-chosen graph can make clear information that is hard to
determine from a table of the same data. In turn, an adventure style game can become
engaging and immersive with computer graphics which is in marked contrast to the

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_11&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_11

92 11 Introduction to Computer Graphics

textual versions of the 1980s. This highlights the advantages of a visual presentation
compared to a purely textual one.

11.2 Background

Every interactive software system has a human–computer interface, whether it be
a single text line system or an advanced graphic display. It is the vehicle used by
developers for obtaining information from their user(s), and in turn, every user has
to face some form of computer interface in order to perform any desired computer
operation.

Historically computer systems did not have a Graphical User Interface and rarely
generated a graphical view. These systems from the 60s, 70s and 80s typically
focussed on numerical or data processing tasks. They were accessed via green or grey
screens on a text oriented terminal. There was little or no opportunity for graphical
output.

However, during this period various researchers at laboratories such as Stanford,
MIT, Bell Telephone Labs and Xerox were looking at the possibilities that graphic
systems might offer to computers. Indeed even as far back as the 1963 Ivan Sutherland
showed that Interactive Computer Graphics were feasible with his Ph.D. thesis on
the Sketchpad system.

11.3 The Graphical Computer Era

Graphical computer displays and interactive graphical interfaces became a common
means of human–computer interaction during the 1980s. Such interfaces can save a
user from the need to learn complex commands. They are less likely to intimidate
computer naives and can provide a large amount of information quickly in a form
which can be easily assimilated by the user.

The widespread use of high-quality graphical interfaces (such as those provided
by the Apple Macintosh and the early Windows interface) led many computer users to
expect such interfaces to any software they use. Indeed these systems paved the way
for the type of interface that is now omnipresent on PCs, Macs, Linux boxes, tablets
and smart phones. This graphical user interface is based on the WIMP paradigm
(Windows, Icons, Menus and Pointers) which is now the prevalent type of graphical
user interface in use today.

The main advantage of any window-based system, and particularly of a WIMP
environment, is that it requires only a small amount of user training. There is no
need to learn complex commands, as most operations are available either as icons,
operations on icons, user actions (such as swiping) or from menu options, and are
easy to use. (An icon is a small graphic object that is usually symbolic of an operation

11.4 Interactive and Non Interactive Graphics 93

or of a larger entity such as an application program or a file). In general, WIMP-
based systems are simple to learn, intuitive to use, easy to retain and straightforward
to work with.

These WIMP systems are exemplified by the Apple Macintosh interface (see
Goldberg and Robson as well as Tesler), which was influenced by the pioneering
work done at the Palo Alto Research Center on the Xerox Star Machine. It was,
however, the Macintosh which brought such interfaces to the mass market, and first
gained acceptance for them as tools for business, home and industry. This interface
transformed the way in which humans expected to interact with their computers,
becoming a de facto standard, which forced other manufacturers to provide similar
interfaces on their own machines, for example Microsoft Windows for the PC.

This type of interface can be augmented by providing direct manipulation
graphics. These are graphics which can be grabbed and manipulated by the user,
using a mouse, to perform some operation or action. Icons are a simple version of
this, the “opening” of an icon causes either the associated application to execute or
the associated window to be displayed.

11.4 Interactive and Non Interactive Graphics

Computer graphics can be broadly subdivided into two categories:

• Non-Interactive Computer Graphics
• Interactive Computer Graphics

In Non-Interactive Computer Graphics (aka Passive Computer Graphics) an image
is generated by a computer typically on a computer screen; this image can be
viewed by the user (however they cannot interact with the image). Examples of
non-interactive graphics presented later in this book include Computer Generated
Art in which an image is generated using Pythons Turtle graphics library. Such an
image can reviewed by the user but not modified. Another example might be a basic
bar chart generated using Matplotlib which presents some set of data.

Interactive Computer Graphics involve the user interacting with the image
displayed in the screen in some way. This might be to modify the data being displayed
or to change the way in which the image is being rendered, etc. It is typified by interac-
tive Graphical User Interfaces (GUIs) in which a user interacts with menus, buttons,
input field, sliders, scrollbars, etc. However, other visual displays can also be interac-
tive. For example, a slider could be used with a Matplotlib chart. This display could
present the number of sales made on a particular date; as the slider is moved so the
data changes and the chart is modified to show different data sets.

Another example is represented by all computer games which are inherently inter-
active and most, if not all, update their visual display in response to some user inputs.
For example in the classic flight simulator game, as the user moves the joystick or
mouse, the simulated plane moves accordingly and the display presented to the user
updates.

94 11 Introduction to Computer Graphics

11.5 Pixels

A key concept for all computer graphics systems is the pixel. Pixel was originally a
word formed from combining and shortening the words picture (or pix) and element.
A pixel is a cell on the computer screen. Each cell represents a dot on the screen. The
size of this dot or cell and the number of cells available will vary depending upon
the type, size and resolution of the screen. For example, it was common for early
Windows PCs to have a 640 by 480 resolution display (using a VGA graphics card).
This relates to the number of pixels in terms of the width and height. This meant that
there were 640 pixels across the screen with 480 rows of pixels down the screen. By
contrast todays 4 K TV displays have 4096 by 2160 pixels.

The size and number of pixels available affect the quality of the image as presented
to a user. With lower-resolution displays (with fewer individual pixels) the image may
appear blocky or poorly defined; whereas with a higher resolution it may appear sharp
and clear.

Each pixel can be referenced by its location in the display grid. By filling a pixels
on the screen with different colours various images/displays can be created. For
example, in the following picture a single pixel has been filled at position 4 by 4:

A sequence of pixels can form a line, a circle or any number of different shapes.
However, since the grid of pixels is based open individual points, a diagonal line or
a circle may need to utilise multiple pixels which when zoomed may have jagged
edges. For example, the following picture shows part of a circle on which we have
zoomed in:

11.5 Pixels 95

Each pixel can have a colour and a transparency associated with it. The range
of colours available depends on the display system being used. For example,
monochrome displays only allow black and white, whereas a grey scale displays
only allows various shades of grey to be displayed. On modern systems it is usually
possible to represent a wide range of colours using the tradition RGB colour codes
(where R represents Red, G represents Green and B represents Blue). In this encoding
solid Red is represented by a code such as [255, 0, 0] where as solid Green is repre-
sented by [0, 255, 0] and solid Blue by [0, 0, 255]. Based on these various shades
can be represented by combination of these codes such as Orange which might be
represented by [255, 150, 50]. This is illustrated below for a set of RGB colours
using different red, green and blue values:

In addition it is possible to apply a transparency to a pixel. This is used to indicate
how solid the fill colour should be. The above grid illustrates the effect of applying

96 11 Introduction to Computer Graphics

a 75%, 50% and 25% transparency to colours displayed using the Python wxPython
GUI library. In this library the transparency is referred to as the alpha opaque value.
It can have values in the range 0 to 255 where 0 is completely transparent and 255 is
completely solid.

11.6 Bit Map Versus Vector Graphics

There are two ways of generating an image/display across the pixels on the screen.
One approach is known as bit mapped (or raster) graphics, and the other is known
as vector graphics. In the bit mapped approach each pixel is mapped to the values to
be displayed to create the image. In the vector graphics approach geometric shapes
are described (such as lines and points), and these are then rendered onto a display.
Raster graphics are simpler, but vector graphics provide much more flexibility and
scalability.

11.7 Buffering

One issue for interactive graphical displays is the ability to change the display as
smoothly and cleanly as possible. If a display is jerky or seems to jump from one
image to another, then users will find it uncomfortable. It is therefore common to
drawn the next display on some in memory structure; often referred to as a buffer.
This buffer can then be rendered on the display once the whole image has been
created. For example, Turtle graphics allows the user to define how many changes
should be made to the display before it is rendered (or drawn) on to the screen. This
can significantly speed up the performance if a graphic application.

In some cases systems will use two buffers; often referred to as double buffering.
In this approach one buffer is being rendered or drawn onto the screen while the other
buffer is being updated. This can significantly improve the overall performance of
the system as modern computers can perform calculations and generate data much
faster than it can typically be drawn onto a screen.

11.8 Python and Computer Graphics

In the remainder of this section of the book we will look at generating computer
graphics using the Python Turtle graphics library. We will also discuss using this
library to create Computer Generated Art. Following this we will explore the
Matplotlib library used to generate charts and data plots such as bar charts, scatter
graphs, line plots and heat maps. We will then explore the use of Python libraries to
create GUIs using menus, fields, tables, etc.

11.10 Online Resources 97

11.9 References

The following are referenced in this chapter:

• I.E. Sutherland, Sketchpad: a man–machine graphical communication system (courtesy Computer
Laboratory, University of Cambridge UCAM-CL-TR-574 September 2003), January 1963.

• D.C. Smith, C. Irby, R. Kimball, B. Verplank, E. Harslem, Designing the Star user interface. BYTE
7(4), 242–282 (1982).

11.10 Online Resources

The following provide further reading material:

• https://en.wikipedia.org/wiki/Sketchpad Ivan Sutherlands Sketchpad from 1963.
• http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketch

pad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf Ivan
Sutherlands Ph.D. 1963.

• https://en.wikipedia.org/wiki/Xerox_Star The Xerox Star computer and GUI.

https://en.wikipedia.org/wiki/Sketchpad
http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketchpad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf
http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketchpad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf
https://en.wikipedia.org/wiki/Xerox_Star

Chapter 12
Python Turtle Graphics

12.1 Introduction

Python is very well supported in terms of graphics libraries. One of the most widely
used graphics libraries is the Turtle graphics library. This is partly because it is
straight forward to use and partly because it is provided by default with the Python
environment (and thus you do not need to install any additional libraries to use it).
This chapter introduces the Python Turtle Graphics library.

The chapter concludes by briefly considering a number of other graphic libraries
including PyOpenGL. The PyOpenGL library can be used to create sophisticated 3D
scenes.

12.2 The Turtle Graphics Library

12.2.1 The Turtle Module

This provides a library of features that allow what are known as vector graphics to
be created. Vector graphics refers to the lines (or vectors) that can be drawn on the
screen. The drawing area is often referred to as a drawing plane or drawing board
and has the idea of x, y coordinates.

The Turtle graphics library is intended just as a basic drawing tool; other libraries
can be used for drawing two- and three-dimensional graphs (such as Matplotlib) but
those tend to focus on specific types of graphical displays.

The idea behind the Turtle module (and its name) derives from the Logo program-
ming language from the 60s and 70s that was designed to introduce programming
to children. It had an on screen turtle that could be controlled by commands such as
forward (which would move the turtle forward), right (which would turn the turtle

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_12

100 12 Python Turtle Graphics

buy a certain number of degrees), left (which turns the turtle left by a certain number
of degrees), etc. This idea has continued into the current Python Turtle graphics
library where commands such as turtle.forward(10) moves the turtle (or cursor as
it is now) forward 10 pixels, etc. By combining together these apparently simple
commands, it is possible to create intricate and quite complex shapes.

12.2.2 Basic Turtle Graphics

Although the turtle module is built into Python 3 it is necessary to import the
module before you use it:

import turtle

There are in fact two ways of working with the turtle module; one is to use
the classes available with the library, and the other is to use a simpler set of functions
that hide the classes and objects. In this chapter we will focus on the set of functions
you can use to create drawings with the turtle library.

The first thing we will do is to set up the window we will use for our drawings; the
TurtleScreen class is the parent of all screen implementations used for whatever
operating system you are running on.

If we are using the turtle module functions then the screen object is initialised
as appropriate for our operating system. This means that we can just focus on the
following functions to configure the layout/display such as this screen can have a
title, a size, a starting location, etc.

The key functions are:

• setup(width, height, startx, starty) Sets the size and position
of the main window/screen. The parameters are:

– width—if an integer, a size in pixels, if a float, a fraction of the screen; default
is 50% of screen

– height—if an integer, the height in pixels, if a float, a fraction of the screen;
default is 75% of screen

– startx—if positive, starting position in pixels from the left edge of the
screen, if negative from the right edge, if None, centre window horizontally

– starty—if positive, starting position in pixels from the top edge of the screen,
if negative from the bottom edge, if None, centre window vertically

• title(titlestring) sets the title of the screen/window.
• exitonclick() shuts down the turtle graphics screen/window when the use

clicks on the screen.
• bye() shuts down the turtle graphics screen/window.
• done() starts the main event loop; this must be the last statement in a turtle

graphics program.

12.2 The Turtle Graphics Library 101

• speed(speed) the drawing speed to use, the default is 3. The higher the value
the faster the drawing takes place, values in the range 0–10 are accepted.

• turtle.tracer(n=None) can be used to batch updates to the Turtle graphics
screen. It is very useful when a drawing become large and complex. By setting
the number (n) to a large number (say 600) then 600 elements will be drawn
in memory before the actual screen is updated in one go; this can significantly
speed up the generation of for example, a fractal picture. When called without
arguments, returns the currently stored value of n.

• turtle.update() performs an update of the turtle screen; this should be
called at the end of a program when tracer() has been used as it will ensure
that all elements have been drawn even if the tracer threshold has not yet been
reached.

• pencolor(color) used to set the colour used to draw lines on the screen;
the colour can be specified in numerous ways including using named colours set
as ‘red’, ‘blue’, ‘green’ or using the RGB colour codes or by specifying the colour
using hexadecimal numbers. For more information on the named colours and RGB
colour codes to use see https://www.tcl.tk/man/tcl/TkCmd/colors.htm. Note all
colour methods use American spellings for example this method is pencolor
(not pencolour).

• fillcolor(color) used to set the colour to use to fill in closed areas within
drawn lines. Again note the spelling of colour!

The following code snippet illustrates some of these functions:

import turtle

set a title for your canvas window
turtle.title('My Turtle Animation')

set up the screen size (in pixels)
set the starting point of the turtle (0, 0)
turtle.setup(width=200, height=200, startx=0, starty=0)

sets the pen color to red
turtle.pencolor('red')

…

Add this so that the window will close when clicked on
turtle.exitonclick()

We can now look at how to actually draw a shape onto the screen.
The cursor on the screen has several properties; these include the current drawing

colour of the pen that the cursor moves, but also its current position (in the x, y
coordinates of the screen) and the direction it is currently facing. We have already
seen that we can control one of these properties using the pencolor() method;
other methods are used to control the cursor (or turtle) and are presented below.

https://www.tcl.tk/man/tcl/TkCmd/colors.htm

102 12 Python Turtle Graphics

The direction in which the cursor is pointing can be altered using several functions
including:

• right(angle) Turn cursor right by angle units.
• left(angle) Turn the cursor left by angle units
• setheading(to_angle) Set the orientation of the cursor to to_angle.

Where 0 is east, 90 is north, 180 is west and 270 is south.

We can move the cursor (and if the pen is down we will draw a line) using:

• forward(distance) move the cursor forward by the specified distance in
the direction that the cursor is currently pointing. If the pen is down draw a line.

• backward(distance) move the cursor backward by distance in the opposite
direction that that in which the cursor is pointing.

And we can also explicitly position the cursor:

• goto(x, y) move the cursor to the x, y location on the screen specified; if the
pen is down draw a line. You can also use steps and set position to do the same
thing.

• setx(x) sets the cursor’s x coordinate, leaves the y coordinate unchanged.
• sety(y) sets the cursor’s y coordinate, leaves the x coordinate unchanged.

It is also possible to move the cursor without drawing by modifying whether the
pen is up or down:

• penup() move the pen up—moving the cursor will no longer draw a line.
• pendown() move the pen down—moving the cursor will now draw a line in the

current pen colour.

The size of the pen can also be controlled:

• pensize(width) set the line thickness to width. The method width() is an
alias for this method.

It is also possible to draw a circle or a dot:

• circle(radius, extent, steps) draws a circle using the given radius.
The extent determines how much of the circle is drawn; if the extent is not given
then the whole circle is drawn. Steps indicate the number of steps to be used to
drawn the circle (it can be used to draw regular polygons).

• dot(size, color) draws a filled circle with the diameter of size using the
specified colour.

We can now use some of the above method to draw a shape on our screen. For
this first example, we will keep it very simple, we will draw a simple square:

Draw a square
turtle.forward(50)
turtle.right(90)
turtle.forward(50)
turtle.right(90)

12.2 The Turtle Graphics Library 103

turtle.forward(50)
turtle.right(90)
turtle.forward(50)
turtle.right(90)

The above moves the cursor forward 50 pixels then turns 90 degrees before
repeating these steps three times. The end result is that a square of 50 × 50 pixels is
drawn on the screen:

Note that the cursor is displayed during drawing (this can be turned off with
turtle.hideturtle() as the cursor was originally referred to as the turtle).

12.2.3 Drawing Shapes

Of course you do not need to just use fixed values for the shapes you draw, you can
use variables or calculate positions based on expressions, etc.

For example, the following program creates a sequences of squares rotated around
a central location to create an engaging image:

import turtle

def setup():
""" Provide the config for the screen """
turtle.title('Multiple Squares Animation')
turtle.setup(100, 100, 0, 0)
turtle.hideturtle()

def draw_square(size):
""" Draw a square in the current direction """
turtle.forward(size)
turtle.right(90)
turtle.forward(size)
turtle.right(90)
turtle.forward(size)
turtle.right(90)
turtle.forward(size)

setup()

104 12 Python Turtle Graphics

for _ in range(0, 12):
draw_square(50)
Rotate the starting direction
turtle.right(120)

Add this so that the window will close when clicked on
turtle.exitonclick()

In this program two functions have been defined, one to setup the screen or window
with a title and a size and to turn off the cursor display. The second function takes
a size parameter and uses that to draw a square. The main part of the program then
sets up the window and uses a for loop to draw 12 squares of 50 pixels each by
continuously rotating 120 degrees between each square. Note that as we do not need
to reference the loop variable we are using the ‘_’ format which is considered an
anonymous loop variable.

The image generated by this program is shown below:

12.2.4 Filling Shapes

It is also possible to fill in the area within a drawn shape. For example, if we wanted
to fill in one of the squares we have drawn as shown below:

12.3 Other Graphics Libraries 105

To do this we can use the begin_fill() and end_fill() functions:

• begin_fill() indicates that shapes should be filled with the current fill colour,
this function should be called just before drawing the shape to be filled.

• end_fill() called after the shape to be filled has been finished. This will
cause the shape drawn since the last call to begin_fill() to be filled using
the current fill colour.

• filling() Return the current fill state (True if filling, False if not).

The following program uses this (and the earlier draw_square() function) to
draw the above filled square:

turtle.title('Filled Square Example')
turtle.setup(100, 100, 0, 0)
turtle.hideturtle()

turtle.pencolor('red')
turtle.fillcolor('yellow')
turtle.begin_fill()

draw_square(60)

turtle.end_fill()
turtle.done()

12.3 Other Graphics Libraries

Of course Turtle graphics is not the only graphics option available for Python;
however, other graphics libraries do not come pre-packed with Python and must
be downloaded using a tool such as Anaconda or PyCharm.

• PyQtGraph: The PyQtGraph library is pure Python library oriented towards
mathematics, scientific and engineering graphic applications as well as GUI
applications. For more information see http://www.pyqtgraph.org.

http://www.pyqtgraph.org

106 12 Python Turtle Graphics

• Pillow: Pillow is a Python Imaging Library (based on PIL the Python Imaging
Library) that provides image processing capabilities for use in Python. For more
information on Pillow see https://pillow.readthedocs.io/en/stable.

• Pyglet: Pyglet is another windowing and multimedia library for Python. See
https://bitbucket.org/pyglet/pyglet/wiki/Home.

12.4 3D Graphics

Although it is certainly possible for a developer to create convincing 3D images using
Turtle graphics, it is not the primary aim of the library. This means that there is no
direct support for creating 3D images other than the basic cursor moving facilities
and the programmers skill.

However, there are 3D graphics libraries available for Python. One such library is
Pand3D (https://www.panda3d.org) while another is VPython (https://vpython.org)
while a third is pi3d (https://pypi.org/project/pi3d). However we will briefly look at
the PyOpenGL library as this builds on the very widely used OpenGL library.

12.4.1 PyOpenGL

PyOpenGL is an open-source project that provides a set of bindings (or wrappings
around) the OpenGL library. OpenGL is the Open Graphics Library which is a cross-
language, cross-platform API for rendering 2D and 3D vector graphics. OpenGL is
used in a wide range of applications from games, to virtual reality, through data
and information visualisation systems to computer-aided design (CAD) systems.
PyOpenGL provides a set of Python functions that call out from Python to the under-
lying openGL libraries. This makes it very easy to create 3D vector-based images
in Python using the industry standard OpenGL library. A very simple example of an
image created using PyOpenGL is given below:

https://pillow.readthedocs.io/en/stable
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://www.panda3d.org
https://vpython.org
https://pypi.org/project/pi3d

12.6 Exercises 107

12.5 Online Resources

The following provides further reading material:

• https://docs.python.org/3/library/turtle.html Turtle graphics documentation.
• http://pythonturtle.org/ The Python Turtle programming environment—this

intended for teaching the basic concepts behind programming using the Turtle
graphics library.

• http://pyopengl.sourceforge.net The PyOpenGL home page.
• https://www.opengl.org The OpenGL home page.

12.6 Exercises

The aim of this exercise is to create a graphic display using Python Turtle graphics.
You should create a simple program to draw an octagon on the Turtle graphics

screen.
Modify your program so that there is a hexagon drawing function. This function

should take three parameters, the x and y coordinates to start drawing the octagon
and the size of each side of the octagon.

Modify your program to draw the hexagon in multiple locations to create the
following picture:

https://docs.python.org/3/library/turtle.html
http://pythonturtle.org/
http://pyopengl.sourceforge.net
https://www.opengl.org

Chapter 13
Computer Generated Art

13.1 Creating Computer Art

Computer Art is defined as any art that uses a computer. However, in the context of
this book we mean it to be art that is generated by a computer or more specifically
a computer program. The following example illustrates how in a very few lines of
Python code, using the Turtle graphics library, you can create images that might be
considered to be Computer Art.

The following image is generated by a recursive function that draws a circle at
a given x, y location of a specified size. This function recursively calls itself by
modifying the parameters so that smaller and smaller circles are drawn at different
locations until the size of the circles goes below 20 pixels.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_13

110 13 Computer Generated Art

The program used to generate this picture is given below for reference:

import turtle

WIDTH = 640
HEIGHT = 360
def setup_window():

Set up the window
turtle.title(’Circles in My Mind’)
turtle.setup(WIDTH, HEIGHT, 0, 0)
Indicates RGB numbers will be in the range 0 to 255
turtle.colormode(255)
turtle.hideturtle()
Batch drawing to the screen for faster rendering
turtle.tracer(2000)

Speed up drawing process
turtle.speed(10)
turtle.penup()

def draw_circle(x, y, radius, red=50, green=255, blue=10, width=7):
""" Draw a circle at a specific x, y location.
Then draw four smaller circles recursively """
colour = (red, green, blue)

Recursively drawn smaller circles
if radius > 50:

Calculate colours and line width for smaller circles
if red < 216:

red = red + 33
green = green - 42
blue = blue + 10
width -= 1

else:
red = 0
green = 255

Calculate the radius for the smaller circles
new_radius = int(radius / 1.3)
Drawn four circles
draw_circle(int(x + new_radius), y, new_radius, red, green,

blue, width)
draw_circle(x - new_radius, y, new_radius, red, green, blue,

width)
draw_circle(x, int(y + new_radius), new_radius, red, green,

blue, width)
draw_circle(x, int(y - new_radius), new_radius, red, green,

blue, width)

13.2 A Computer Art Generator 111

Draw the original circle
turtle.goto(x, y)
turtle.color(colour)
turtle.width(width)
turtle.pendown()
turtle.circle(radius)
turtle.penup()

Run the program
print(’Starting’)
setup_window()
draw_circle(25, -100, 200)

Ensure that all the drawing is rendered
turtle.update()
print(’Done’)
turtle.done()

There are a few points to note about this program. It uses recursion to draw the
circles with smaller and smaller circles being drawn until the radius of the circles
falls below a certain threshold (there termination point).

It also uses the turtle.tracer() function to speed up drawing the picture
as 2000 changes will be buffered before the screen is updated.

Finally, the colours used for the circles are changed at each level of recession;
a very simple approach is used to that the Red, Green and Blue codes are changed
resulting in different colour circles. Also a line width is used to reduce the size of
the circle outline to add more interest to the image.

13.2 A Computer Art Generator

As an another example of how you can use Turtle graphics to create Computer Art,
the following program randomly generates RGB colours to use for the lines being
drawn which gives the pictures more interest. It also allows the user to input an angle
to use when changing the direction in which the line is draw. As the drawing happens
within a loop even this simple change to the angle used to draw the lines can generate
very different pictures.

Lets play with some colours
import turtle
from random import randint

def get_input_angle():
""" Obtain input from user and convert to an int """
message = ’Please provide an angle:’
value_as_string = input(message)
while not value_as_string.isnumeric():

112 13 Computer Generated Art

print(’The input must be an integer!’)
value_as_string = input(message)

return int(value_as_string)

def generate_random_colour():
""" Generates an R,G,B values randomly in range
0 to 255 """
r = randint(0, 255)
g = randint(0, 255)
b = randint(0, 255)
return r, g, b

print(’Set up Screen’)
turtle.title(’Colourful pattern’)
turtle.setup(640, 600)
turtle.hideturtle()
turtle.bgcolor(’black’)# Set the background colour of the
screen
turtle.colormode(255)# Indicates RGB numbers will be in the
range 0 to 255
turtle.speed(10)
angle = get_input_angle()
print(’Start the drawing’)
for i in range(0, 200):

turtle.color(generate_random_colour())
turtle.forward(i)
turtle.right(angle)

print(’Done’)
turtle.done()

Some sample images generated from this program are given below. The left most
picture is generated by inputting an angle of 38, the picture on the right uses an angle
of 68 and the bottom picture an angle of 98.

13.2 A Computer Art Generator 113

The following pictures below use an angles of 118, 138 and 168 respectively.

What is interesting about these images is how different each is; even though
they use exactly the same program. This illustrates how algorithmic or Computer
Generated Art can be as subtle and flexible as any other art form. It also illustrates
that even with such a process it is still up to the human to determine which image (if
any) is the most aesthetically pleasing.

114 13 Computer Generated Art

13.3 Fractals in Python

Within the arena of Computer Art fractals are a very well-known art form. Fractals
are recurring patterns that are calculated either using an iterative approach (such
as for loop) or a recursive approach (when a function calls itself but with modified
parameters). One of the really interesting features of fractals is that they exhibit
the same pattern (or nearly the same pattern) at successive levels of granularity.
That is, if you magnified a fractal image you would find that the same pattern is
being repeated at successively smaller and smaller magnifications. This is known as
expanding symmetry or unfolding symmetry; if this replication is exactly the same
at every scale, then it is called affine self-similar.

Fractals have their roots in the world of mathematics starting in the seventeenth
century, with the term fractal being coined in the twentieth century by mathematical
Benoit Mandelbrot in 1975. One often cited description that Mandelbrot published
to describe geometric fractals is:

a rough or fragmented geometric shape that can be split into parts, each of which is (at least
approximately) a reduced-size copy of the whole.

For more information see Mandelbrot, Benoît B. (1983). The fractal geometry of
nature. Macmillan. ISBN 978-0-7167-1186-5).

Since the latter part of the twentieth century fractals have been a commonly used
way of creating Computer Art.

One example of a fractal often used in Computer Art is the Koch snowflake, while
another is the Mandelbrot set. Both of these are used as examples to illustrate how
Python and the Turtle graphics library can be used to create fractal-based art.

13.4 The Koch Snowflake

The Koch snowflake is a fractal that begins with equilateral triangle and then replaces
the middle third of every line segment with a pair of line segments that form an
equilateral bump. This replacement can be performed to any depth generating finer
and finer grained (smaller and smaller) triangles until the overall shape resembles a
snow flake.

The following program can be used to generate a Koch snowflake with different
levels of recursion. The larger the number of levels of recursion the more times each
line segment is dissected.

import turtle

Set up Constants
ANGLES = [60, -120, 60, 0]
SIZE_OF_SNOWFLAKE = 300
def get_input_depth():

""" Obtain input from user and convert to an int """

13.4 The Koch Snowflake 115

message = ’Please provide the depth (0 or a positive integer):’
value_as_string = input(message)
while not value_as_string.isnumeric():

print(’The input must be an integer!’)
value_as_string = input(message)

return int(value_as_string)

def setup_screen(title, background=’white’, screen_size_x=640,
screen_size_y=320, tracer_size=800):

print(’Set up Screen’)
turtle.title(title)
turtle.setup(screen_size_x, screen_size_y)
turtle.hideturtle()
turtle.penup()
turtle.backward(240)
Batch drawing to the screen for faster rendering
turtle.tracer(tracer_size)
turtle.bgcolor(background) # Set the background colour of the

screen

def draw_koch(size, depth):
if depth > 0:

for angle in ANGLES:
draw_koch(size / 3, depth - 1)
turtle.left(angle)

else:
turtle.forward(size)

depth = get_input_depth()
setup_screen(’Koch Snowflake (depth ’ + str(depth) + ’)’,

background=’black’,
screen_size_x=420, screen_size_y=420)

Set foreground colours
turtle.color(’sky blue’)

Ensure snowflake is centred
turtle.penup()
turtle.setposition(-180,0)
turtle.left(30)
turtle.pendown()

Draw three sides of snowflake
for _ in range(3):

draw_koch(SIZE_OF_SNOWFLAKE, depth)
turtle.right(120)

Ensure that all the drawing is rendered
turtle.update()
print(’Done’)
turtle.done()

116 13 Computer Generated Art

Several different runs of the program are shown below with the depth set at 0, 1,
3 and 7.

Running the simple draw_koch() function with different depths makes it easy
to see the way in which each side of a triangle can be dissected into a further triangle
like shape. This can be repeated to multiple depths giving a more detailed structured
in which the same shape is repeated again and again.

13.5 Mandelbrot Set

Probably one of the most famous fractal images is based on the Mandelbrot set. The
Mandelbrot set is the set of complex numbers c for which the function z * z +
c does not diverge when iterated from z = 0 for which the sequence of functions
(func(0), func(func(0)), etc.) remains bounded by an absolute value. The definition
of the Mandelbrot set and its name is down to the French mathematician Adrien
Douady, who named it as a tribute to the mathematician Benoit Mandelbrot.

13.5 Mandelbrot Set 117

Mandelbrot set images may be created by sampling the complex numbers and
testing, for each sample point c, whether the sequence func(0), func(func(0)), etc.
ranges to infinity (in practice this means that a test is made to see if it leaves some
predetermined bounded neighbourhood of 0 after a predetermined number of itera-
tions). Treating the real and imaginary parts of c as image coordinates on the complex
plane, pixels may then be coloured according to how soon the sequence crosses an
arbitrarily chosen threshold, with a special colour (usually black) used for the values
of c for which the sequence has not crossed the threshold after the predetermined
number of iterations (this is necessary to clearly distinguish the Mandelbrot set image
from the image of its complement).

The following image was generated for the Mandelbrot set using Python and
Turtle graphics.

The program used to generate this image is given below:

import turtle

Set up constants
SCREEN_OFFSET_X = 250
SCREEN_OFFSET_Y = 240
max iterations allowed
MAX_ITERATIONS = 255
image size
IMAGE_SIZE_X = 512
IMAGE_SIZE_Y = 512
Drawing area
MIN_X = -2.0
MAX_X = 1.0
MIN_Y = -1.5

118 13 Computer Generated Art

MAX_Y = 1.5
def setup_screen(title, background=’white’, screen_size_x=640,
screen_size_y=320, tracer_size=200):

print(’Set up Screen’)
turtle.title(title)
turtle.setup(screen_size_x, screen_size_y)
turtle.hideturtle()
turtle.penup()
turtle.backward(240)
turtle.tracer(tracer_size)
turtle.bgcolor(background) # Set the background colour of the

screen

setup_screen(’Mandelbrot’, screen_size_x=IMAGE_SIZE_X, screen_
size_y=IMAGE_SIZE_Y, tracer_size=20000)
turtle.colormode(255)# Indicates RGB numbers will be in the
range 0 to 255

Generate Mandelbrot
for y in range(IMAGE_SIZE_Y):

zy = y * (MAX_Y - MIN_Y) / (IMAGE_SIZE_Y - 1) + MIN_Y
for x in range(IMAGE_SIZE_X):

zx = x * (MAX_X - MIN_X) / (IMAGE_SIZE_Y - 1) + MIN_X
z = zx + zy * 1j
c = z
for i in range(MAX_ITERATIONS):

if abs(z) > 2.0:
break

z = z * z + c
turtle.color((i % 4 * 64, i % 8 * 32, i % 16 * 16))
turtle.setposition(x - SCREEN_OFFSET_X, y - SCREEN_OFFSET_Y)
turtle.pendown()
turtle.dot(1)
turtle.penup()

Ensure that all the drawing is rendered
turtle.update()

print(’Done’)
turtle.done()

13.7 Exercises 119

13.6 Online Resources

The following provide further reading material:

• https://en.wikipedia.org/wiki/Fractal For the Wikipedia page on Fractals.
• https://en.wikipedia.org/wiki/Koch_snowflake the Wikipedia page on the Koch

snowflake.
• https://en.wikipedia.org/wiki/Mandelbrot_set Wikipedia page on the Mandelbrot

set.

13.7 Exercises

The aim of this exercise is to create a fractal tree.
A fractal tree is a tree in which the overall structure is replicated at finer and finer

levels through the tree until a set of leaf elements are reached.
To draw the fractal tree you will need to:

• Draw the trunk.
• At the end of the trunk, split the trunk in two with the left trunk and the right

trunk being 30° left/right of the original trunk. For aesthetic purposes the trunk
may become thinner each time it is split. The trunk may be drawn in a particular
colour such as brown.

• Continue this until a maximum number of splits have occurred (or the trunk size
reduces to a particular minimum). You have now reached the leaves (you may
draw the leaves in a different colour, e.g. green).

An example of a fractal tree is given below:

https://en.wikipedia.org/wiki/Fractal
https://en.wikipedia.org/wiki/Koch_snowflake
https://en.wikipedia.org/wiki/Mandelbrot_set

Chapter 14
Introduction to Matplotlib

14.1 Introduction

Matplotlib is a Python graphing and plotting library that can generate a variety of
different types of graph or chart in a variety of different formats. It can be used to
generate line charts, scatter graphs, heat maps, bar charts, pie charts and 3D plots. It
can even support animations and interactive displays.

An example of a graph generated using Matplotlib is given below. This shows a
line chart used to plot a simple sign wave:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_14

122 14 Introduction to Matplotlib

Matplotlib is a very flexible and powerful graphing library. It can support a variety
of different Python graphics platforms and operating system windowing environ-
ments. It can also generate output graphics in a variety of different formats including
PNG, JPEG, SVG and PDF.

Matplotlib can be used on its own or in conjunction with other libraries to provide a
wide variety of facilities. One library that is often used in conjunction with Matplotlib
is NumPy which is a library often used in Data Science applications that provides
a variety of functions and data structures (such as n-dimensional arrays) that can be
very useful when processing data for display within a chart.

However, Matplotlib does not come pre-built into the Python environment; it is
an optional module which must be added to your environment of IDE.

In this chapter we will introduce the Matplotlib library, its architecture, the compo-
nents that comprise a chart and the pyplot API. The pyplot API is the simplest
and most common way in which a programmer interacts with Matplotlib. We will
then explore a variety of different types of chart and how they can be created using
Matplotlib, from simple line charts, through scatter charts, to bar charts and pie
charts. We will finish by looking at a simple 3D chart.

14.2 Matplotlib

Matplotlib is a graph plotting library for Python. For simple graphs Matplotlib is very
easy to use, for example to create a simple line graph for a set of x and y coordinates
you can use the matplotlib.pyplot.plot function:

import matplotlib.pyplot as pyplot

Plot a sequence of values
pyplot.plot([1, 0.25, 0.5, 2, 3, 3.75, 3.5])

Display the chart in a window
pyplot.show()

This very simple program generates the following graph:

14.3 Plot Components 123

In this example, the plot() function takes a sequence of values which will be
treated as the y axis values; the x axis values are implied by the position of the value
within the list. Thus as the list has six elements in it the x axis has the range 0–6. In
turn as the maximum value contained in the list is 3.75, then the y value ranges from
0 to 4.

14.3 Plot Components

Although they may seem simple, there are numerous elements that comprise a
Matplotlib graph or plot. These elements can all be manipulated and modified
independently. It is therefore useful to be familiar with the Matplotlib terminology
associated with these elements, such as ticks, legends, labels, etc.

The elements that make up a plot are illustrated below:

124 14 Introduction to Matplotlib

The diagram illustrates the following elements:

• Axes An Axes is defined by the matplotlib.axes.Axes class. It is used to
maintain most of the elements of a figure, namely the X and Y Axis, the ticks, the
line plots, any text and any polygon shapes.

• Title This is the title of the whole figure.
• Ticks (major and minor) The ticks are represented by the class
matplotlib.axis.Tick. A tick is the mark on the Axis indicating a
new value. There can be major ticks which are larger and may be labelled. There
are also minor ticks which can be smaller (and may also be labelled).

• Tick Labels (major and minor) This is a label on a tick.
• Axis The maplotlib.axis.Axis class defines an Axis object (such as an X

or Y axis) within a parent Axes instance. It can have formatters used to format
the labels used for the major and minor ticks. It is also possible to set the locations
of the major and minor ticks.

• Axis Labels (X, Y and in some cases Z) These are labels used to describe the
Axis.

• Plot types such as line and scatter plots. Various types of plots and graphs are
supported by Matplotlib including line plots, scatter graphs, bar charts and pie
charts.

• Grid This is an optional grid displayed behind a plot, graph or chart. The grid can
be displayed with a variety of different line styles (such as solid or dashed lines),
colours and line widths.

14.4 Matplotlib Architecture 125

14.4 Matplotlib Architecture

The Matplotlib library has a layered architecture that hides much of the complexity
associated with different windowing systems and graphic outputs. This architecture
has three main layers, the Scripting Layer, the Artist Layer and the Backend Layer.
Each layer has specific responsibilities and components. For example, the Backend
is responsible for reading and interacting with the graph or plot being generated. In
turn the Artist Layer is responsible for creating the graph objects that will be rendered
by the Backend Layer. Finally the Scripting Layer is used by the developer to create
the graphs.

This architecture is illustrated below:

14.4.1 Backend Layer

The Matplotlib backend layer handles the generation of output to different target
formats. Matplotlib itself can be used in many different ways to generate many
different outputs.

Matplotlib can be used interactively, it can be embedded in an application (or
graphical user interface), and it may be used as part of a batch application with plots
being stored as PNG, SVG, PDF or other images.

To support all of these use cases, Matplotlib can target different outputs, and each
of these capabilities is called a backend; the “frontend” is the developer facing code.
The Backend Layer maintains all the different backends, and the programmer can
either use the default backend or select a different backend as required.

The backend to be used can be set via the matplotlib.use() function. For
example, to set the backend to render Postscript use: matplotlib.use(‘PS’) this is
illustrated below:

import matplotlib

if 'matplotlib.backends'not in sys.modules:
matplotlib.use('PS')

import matplotlib.pyplot as pyplot

126 14 Introduction to Matplotlib

It should be noted that if you use the matplotlib.use() function, this must
be done before importing matplotlib.pyplot. Calling matplotlib.use()
after matplotlib.pyplot has been imported will have no effect. Note that the
argument passed to the matplotlib.use() function is case sensitive.

The default renderer is the ‘Agg’ which uses the Anti-Grain Geometry C++
library to make a raster (pixel) image of the figure. This produces high-quality raster
graphics-based images of the data plots.

The ‘Agg’ backend was chosen as the default backend as it works on a broad
selection of Linux machines as its supporting requirements are quite small; other
backends may run on one particular machine, but may not work on another machine.
This occurs if a particular machine does not have all the dependencies loaded that
the specified Matplotlib backend relies on.

The Backend Layer can be divided into two categories:

• User interface backends (interactive) that support various Python windowing
systems such as wxWidgets, Qt, TK, etc.

• Hardcopy Backends (non-interactive) that support raster and vector graphic
outputs.

The user interface and hardcopy backends are built upon common abstractions
referred to as the Backend base classes.

14.4.2 The Artist Layer

The Artist Layer provides the majority of the functionality that you might consider
to be what Matplotlib actually does; that is the generation of the plots and graphs
that are rendered/displayed to the user (or output in a particular format).

14.4 Matplotlib Architecture 127

The artist layer is concerned with things such as the lines, shapes, axis, axes, text,
etc. that comprise a plot.

The classes used by the Artist Layer can be classified into one of the following
three groups; primitives, containers and collections:

• Primitives are classes used to represent graphical objects that will be drawn on to
a figures canvas.

• Containers are objects that hold primitives. For example, typically a figure would
be instantiated and used to create one or more Axes, etc.

• Collections are used to efficiently handle large numbers of similar types of objects.

Although it is useful to be aware of these classes, in many cases you will not need
to work with them directly as the pyplot API hides much of the detail. However,
it is possible to work at the level of figures, axes, ticks, etc. if required.

14.4.3 The Scripting Layer

The scripting layer is the developer facing interface that simplifies the task of working
with the other layers.

128 14 Introduction to Matplotlib

Note that from the programmers’ point of view, the Scripting Layer is represented
by thepyplotmodule. Under the coverspyplot uses module-level objects to track
the state of the data, handle drawing the graphs, etc.

When imported pyplot selects either the default backend for the system or the
one that has been configured; for example via the matplotlib.use() function.

It then calls a setup() function that:

• Creates a figure manager factory function, which when called will create a new
figure manager appropriate for the selected backend,

• Prepares the drawing function that should be used with the selected backend,
• Identifies the callable function that integrates with the backend mainloop

function,
• Provides the module for the selected backend.

The pyplot interface simplifies interactions with the internal wrappers by
providing methods such as plot(), pie(), bar(), title(), savefig(),
draw() and figure().

Most of the examples presented later in this chapter will use the functions provided
by the pyplot module to create the required charts, thereby hiding the lower level
details.

14.5 Online Resources

See the online documentation for:

• https://matplotlib.org The Matplotlib library. This incorporates numerous exam-
ples with complete listings, documentation, galleries and a detailed user guide
and FAQ.

• https://pythonprogramming.net/matplotlib-python-3-basics-tutorial Python
Matplotlib crash course.

https://matplotlib.org
https://pythonprogramming.net/matplotlib-python-3-basics-tutorial

Chapter 15
Graphing with Matplotlib Pyplot

15.1 Introduction

In this chapter we will explore the Matplotlib pyplot API. This is the most common
way in which developers generate different types of graphs or plots using Matplotlib.

15.2 The pyplot API

The purpose of the pyplot module and the API it presents is to simplify the gener-
ation and manipulation of Matplotlib plots and charts. As a whole the Matplotlib
library tried to make simple things easy and complex things possible. The primary
way in which it achieves the first of these aims is through the pyplot API as this
API has high-level functions such as bar(), plot(), scatter() and pie() that make it easy
to create bar charts, line plots, scatter graphs and pie charts.

One point to note about the functions provided by the pyplotAPI is that they can
often take very many parameters; however most of these parameters will have default
values that in many situations will give you a reasonable default behaviour/default
visual representations. You can therefore ignore most of the parameters available
until such time as you actually need to do something different; at which point you
should refer to the Matplotlib documentation as this has extensive material as well
as numerous examples.

It is of course necessary to import the pyplot module; as it is a module within
the Matplotlib (e.g.matplotlib.pyplot) library. It is often given an alias within
a program to make it easier to reference. Common alias for this module are pyplot
or plt.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_15

130 15 Graphing with Matplotlib Pyplot

A typical import for the pyplot module is given below:

import matplotlib.pyplot as pyplot

The pyplot API can be used to

• construct the plot,
• configure labels and axis,
• manage colour and line styles,
• handles events/allows plots to be interactive,
• display (show) the plot.

We will see examples of using the pyplot API in the following sections.

15.3 Line Graphs

A line graph or line plot is a graph with the points on the graph (often referred to as
markers) connected by lines to show how something changes in value as some set
of values (typically the x axis) changes. For example, over a series to time intervals
(also known as a time series). Such line charts are typically drawn in chronological
order; such charts are known as run charts.

The following chart is an example of such a run chart; it charts time across the
bottom (x axis) against speed (represented by the y axis).

The program used to generate this chart is given below:

15.3 Line Graphs 131

import matplotlib.pyplot as pyplot

Set up the data
x = [0, 1, 2, 3, 4, 5, 6]
y = [0, 2, 6, 14, 30, 43, 75]

Set the axes headings
pyplot.ylabel(‘Speed’, fontsize=12)
pyplot.xlabel(‘Time’, fontsize=12)

Set the title
pyplot.title(“Speed v Time”)

Plot and display the graph
Using blue circles for markers (‘bo’)
and a solid line (‘-’)
pyplot.plot(x, y, ‘bo-’)
pyplot.show()

The first thing that this program does is to import the matplotlib.pyplot
module and give it an alias of pyplot (as this is a shorter name it makes the code
easier to read).

Two lists of values are then created for the x and y coordinates of each marker
or plot point.

The graph itself is then configured with labels being provided for the x and y axis
(using the pyplot functions xlabel() and ylabel()). The title of the graph is
then set (again using a pyplot function).

After this the x and y values are then plotted as a line chart on the graph. This is
done using the pyplot.plot() function. This function can take a wide range of
parameters, the only compulsory parameters being the data used to define the plot
points. In the above example a third parameter is provided; this is a string ‘bo-’.
This is a coded format string in that each element of the string is meaningful to the
pyplot.plot() function. The elements of the string are:

• b—this indicates the colour to use when drawing the line; in this case the letter ‘b’
indicates the colour blue (in the same way ‘r’ would indicate red and ‘g’ would
indicate green).

• o—this indicates that each marker (each point being plotted) should be represented
by a circle. The lines between the markers then create the line plot.

• ‘-’—This indicates the line style to use. A single dash (‘-’) indicates a solid line,
where as a double dash (‘--’) indicates a dashed line.

132 15 Graphing with Matplotlib Pyplot

Finally the program then uses the show() function to render the figure on the
screen; alternatively savefig() could have been used to save the figure to a file.

15.3.1 Coded Format Strings

There are numerous options that can be provided via the format string; the following
tables summarises some of these:

The following colour abbreviations are supported by the format string:

Character Colour

‘b’ Blue

‘g’ Green

‘r’ Red

‘c’ Cyan

‘m’ Magenta

‘y’ Yellow

‘k’ Black

‘w’ White

Different ways of representing the markers (points on the graph) connected by
the lines are also supported including:

Character Description

‘.’ Point marker

‘,’ Pixel marker

‘o’ Circle marker

‘v’ Triangle_down marker

‘^’ Triangle_up marker

‘<’ Triangle_left marker

‘>’ Triangle_right marker

‘s’ Square marker

‘p’ Pentagon marker

‘*’ Star marker

‘h’ Hexagon1 marker

‘ + ’ Plus marker

‘x’ x marker

‘D’ Diamond marker

Finally, the format string supports different line styles:

15.4 Scatter Graph 133

Character Description

‘-’ Solid line style

‘--’ Dashed line style

‘-.’ Dash-dot line style

‘:’ Dotted line style

Some examples of formatting strings:

• ‘r’ red line with default markers and line style.
• ‘g-’ green solid line.
• ‘--’ dashed line with the default colour and default markers.
• ‘yo:’ yellow dotted line with circle markers.

15.4 Scatter Graph

A scatter graph or scatter plot is type of plot where individual values are indicated
using Cartesian (or x and y) coordinates to display values. Each value is indicated
via a mark (such as a circle or triangle) on the graph. They can be used to represent
values obtained for two different variables; one plotted on the x axis and the other
plotted on the y axis.

An example of a scatter chart with three sets of scatter values is given below:

134 15 Graphing with Matplotlib Pyplot

In this graph each dot represents the amount of time people of different ages spend
on three different activities.

The program that was used to generate the above graph is shown below:

import matplotlib.pyplot as pyplot

Create data
riding = ((17, 18, 21, 22, 19, 21, 25, 22, 25, 24),

(3, 6, 3.5, 4, 5, 6.3, 4.5, 5, 4.5, 4))
swimming = ((17, 18, 20, 19, 22, 21, 23, 19, 21, 24),

(8, 9, 7, 10, 7.5, 9, 8, 7, 8.5, 9))
sailing = ((31, 28, 29, 36, 27, 32, 34, 35, 33, 39),

(4, 6.3, 6, 3, 5, 7.5, 2, 5, 7, 4))

Plot the data
pyplot.scatter(x=riding[0], y=riding[1], c=‘red’, marker=‘o’,
label=‘riding’)
pyplot.scatter(x=swimming[0], y=swimming[1], c=‘green’,
marker=‘^’, label=‘swimming’)
pyplot.scatter(x=sailing[0], y=sailing[1], c=‘blue’, marker=‘*’,
label=‘sailing’)

Configure graph
pyplot.xlabel(‘Age’)
pyplot.ylabel(‘Hours’)
pyplot.title(‘Activities Scatter Graph’)
pyplot.legend()

Display the chart
pyplot.show()

In the above example the plot.scatter() function is used to generate the
scatter graph for the data defined by the riding, swimming and sailing tuples.

The colours of the markers have been specified using the named parameter c. This
parameter can take a string representing the name of a colour or a two-dimensional
array with a single row in which each value in the row represents an RGB colour code.
The marker Indicates the marker style such as ‘o’ for a circle, a ‘^’ for a triangle
and ‘*’ for a star shape. The label is used in the chart legend for the marker.

Other options available on the pyplot.scatter() function include:

• alpha: indicates the alpha blending value, between 0 (transparent) and 1
(opaque).

• linewidths: which is used to indicate the line width of the marker edges.
• edgecolors: indicates the colour to use for the marker edges if different from

the fill colour used for the marker (indicates by the parameter ‘c’).

15.4.1 When to Use Scatter Graphs

A useful question to consider is when should a scatter plot be used? In general scatter
plots are used when it is necessary to show the relationship between two variables.

15.4 Scatter Graph 135

Scatter plots are sometimes called correlation plots because they show how two
variables are correlated.

In many cases a trend can be discerned around the points plotted on a scatter chart
(although there may be outlying values). To help visualise the trend it can be useful
to draw a trend line along with the scatter graph. The trend line helps to make the
relationship of the scatter plots to the general trend clearer.

The following chart represents a set of values as a scatter graph and draws the
trend line of this scatter graph. As can be seen some values are closer to the trendline
than others.

The trend line has been created in this case using the numpy function
polyfit().

The polyfit() function performs a least squares polynomial fit for the data it is
given. A poly1d class is then created based on the array returned by polyfit().
This class is a one-dimensional polynomial class. It is a convenience class, used
to encapsulate “natural” operations on polynomials. The poly1d object is then
used to generate a set of values for use with the set of x values for the function
pyplot.plot().

136 15 Graphing with Matplotlib Pyplot

import numpy as np
import matplotlib.pyplot as pyplot

x = (5, 5.5, 6, 6.5, 7, 8, 9, 10)
y = (120, 115, 100, 112, 80, 85, 69, 65)

Generate the scatter plot
pyplot.scatter(x, y)

Generate the trend line
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
pyplot.plot(x, p(x), ‘r’)

Display the figure
pyplot.show()

15.5 Pie Charts

A pie chart is a type of graph in which a circle is divided into sectors (or wedges)
that each represent a proportion of the whole. A wedge of the circle represents a
category’s contribution to the overall total. As such the graph resembles a pie that
has been cut into different sized slices.

Typically, the different sectors of the pie chart are presented in different colours
and are arranged clockwise around the chart in order of magnitude. However, if there
is a slice that does not contain a unique category of data but summarises several, for
example “other types” or “other answers”, then even if it is not the smallest category,
it is usual to display it last in order that it does not detract from the named categories
of interest.

The following chart illustrates a pie chart used to represent programming language
usage within a particular organisation.

15.5 Pie Charts 137

The pie chart is created using the pyplot.pie() function.

import matplotlib.pyplot as pyplot

labels = (‘Python’, ‘Java’, ‘Scala’, ‘C#’)
sizes = [45, 30, 15, 10]

pyplot.pie(sizes,
labels=labels,
autopct=‘%1.f%%’,
counterclock=False,
startangle=90)

pyplot.show()

The pyplot.pie() function takes several parameters, most of which are
optional. The only required parameter is the first one that provides the values to
be used for the wedge or segment sizes. The following optional parameters are used
in the above example:

• The labels parameter is an optional parameter that can take a sequence of
strings that are used to provide labels for each wedge.

• The autopct parameter takes a string (or function) to be used to format the
numeric values used with each wedge.

• The counterclockwise parameter. By default wedges are plotted counter
clockwise in pyplot and so to ensure that the layout is more like the traditional
clockwise approach the counterclock parameter is set to False.

• The startangle parameter. The starting angle has also been moved 90° using
the startangle parameter so that the first segment starts at the top of the chart.

15.5.1 Expanding Segments

It can be useful to emphasise a particular segment of the pie chart by exploding
it; that is separating it out from the rest of the pie chart. This can be done using
the explode parameter of the pie() function that takes a sequence of values
indicating how much a segment should be explored by.

The visual impact of the pie chart can also be enhanced in this case by adding a
shadow to the segments using the named shadow Boolean parameter. The effect of
these is shown below:

138 15 Graphing with Matplotlib Pyplot

The program that generated this modified chart is given below for reference:

import matplotlib.pyplot as pyplot

labels = (‘Python’, ‘Java’, ‘Scala’, ‘C#’)
sizes = [45, 30, 15, 10]

only “explode” the 1st slice (i.e. ‘Python’) explode = (0.1, 0,
0, 0)

pyplot.pie(sizes,
explode=explode,
labels=labels,
autopct=‘%1.f%%’,
shadow=True,
counterclock=False,
startangle=90)

pyplot.show()

15.5.2 When to Use Pie Charts

It is useful to consider what data can be/should be presented using a pie chart. In
general pie charts are useful for displaying data that can be classified into nominal or
ordinal categories. Nominal data is categorised according to descriptive or qualitative
information such as program languages, type of car, country of birth. Ordinal data
is similar but the categories can also be ranked, for example in a survey people may
be asked to say whether they classed something as very poor, poor, fair, good, very
good.

15.6 Bar Charts 139

Pie charts can also be used to show percentage or proportional data and usually
the percentage represented by each category is provided next to the corresponding
slice of pie.

Pie charts are also typically limited to presenting data for six or less categories.
When there are more categories it is difficult for the eye to distinguish between the
relative sizes of the different sectors and so the chart becomes difficult to interpret.

15.6 Bar Charts

A bar chart is a type of chart or graph that is used to present different discrete
categories of data. The data is usually presented vertically although in some cases
horizontal bar charts may be used. Each category is represented by a bar whose height
(or length) represent the data for that category.

Because it is easy to interpret bar charts, and how each category relates to another,
they are one of the most commonly used types of chart. There are also several different
common variations such as grouped bar charts and stacked bar charts.

The following is an example of a typical bar chart. Five categories of programming
languages are presented along the x axis while the y axis indicates percentage usage.
Each bar then represents the usage percentage associated with each programming
language.

The program used to generate the above figure is given below:

import matplotlib.pyplot as pyplot

Set up the data
labels = (‘Python’, ‘Scala’, ‘C#’, ‘Java’, ‘PHP’)
index = (1, 2, 3, 4, 5) # provides locations on x axis

140 15 Graphing with Matplotlib Pyplot

sizes = [45, 10, 15, 30, 22]

Set up the bar chart
pyplot.bar(index, sizes, tick_label=labels)

Configure the layout
pyplot.ylabel(‘Usage’)
pyplot.xlabel(‘Programming Languages’)

Display the chart
pyplot.show()

The chart is constructed such that the lengths of the different bars are proportional
to the size of the category they represent. The x axis represents the different categories
and so has no scale. In order to emphasise the fact that the categories are discrete,
a gap is left between the bars on the x axis. The y axis does have a scale, and this
indicates the units of measurement.

15.6.1 Horizontal Bar Charts

Bar charts are normally drawn so that the bars are vertical which means that the taller
the bar, the larger the category. However, it is also possible to draw bar charts so that
the bars are horizontal which means that the longer the bar, the larger the category.
This is a particularly effective way of presenting a large number of different categories
when there is insufficient space to fit all the columns required for a vertical bar chart
across the page.

In Matplotlib the pyplot.barh() function can be used to generate a horizontal
bar chart:

In this case the only line of code to change from the previous example is:

15.6 Bar Charts 141

pyplot.barh(x_values, sizes, tick_label=labels)

15.6.2 Coloured Bars

It is also common to colour different bars in the chart in different colours or using
different shades. This can help to distinguish one bar from another. An example is
given below:

The colour to be used for each category can be provided via the color parameter
to the bar() (and barh()) function. This is a sequence of the colours to apply.
For example, the above coloured bar chart can be generated using:

pyplot.bar(x_values, sizes, tick_label=labels, color=(‘red’,
‘green’, ‘blue’, ‘yellow’, ‘orange’))

15.6.3 Stacked Bar Charts

Bar charts can also be stacked. This can be a way of showing total values (and
what contributes to those total values) across several categories. That is, it is a way
of viewing overall totals, for several different categories based on how different
elements contribute to those totals.

Different colours are used for the different subgroups that contribute to the overall
bar. In such cases, a legend or key is usually provided to indicate what subgroup each

142 15 Graphing with Matplotlib Pyplot

of the shadings/colours represent. The legend can be placed in the plot area or may
be located below the chart.

For example, in the following chart the total usage of a particular programming
language is composed of its use in games and web development as well as data
science analytics.

From this figure we can see how much each use of a programming language
contributes to the overall usage of that language. The program that generated this
chart is given below:

import matplotlib.pyplot as pyplot

Set up the data
labels = (‘Python’, ‘Scala’, ‘C#’, ‘Java’, ‘PHP’)
index = (1, 2, 3, 4, 5)
web_usage = [20, 2, 5, 10, 14]
data_science_usage = [15, 8, 5, 15, 2]
games_usage = [10, 1, 5, 5, 4]

Set up the bar chart
pyplot.bar(index, web_usage, tick_label=labels, label=‘web’)
pyplot.bar(index, data_science_usage, tick_label=labels,
label=‘data science’, bottom=web_usage)

web_and_games_usage = [web_usage[i] + data_science_usage[i] for i
in range(0, len(web_usage))]
pyplot.bar(index, games_usage, tick_label=labels, label=‘games’,
bottom=web_and_games_usage)

Configure the layout
pyplot.ylabel(‘Usage’)
pyplot.xlabel(‘Programming Languages’)
pyplot.legend()

15.6 Bar Charts 143

Display the chart
pyplot.show()

One thing to note from this example is that after the first set of values are added
using the pyplot.bar() function, it is necessary to specify the bottom locations
for the next set of bars using the bottom parameter. We can do this just using the
values already used for web_usage for the second bar chart; however for the third
bar chart we must add the values used for web_usage and data_science_
usage together (in this case using a for list comprehension).

15.6.4 Grouped Bar Charts

Finally, grouped bar charts are a way of showing information about different
subgroups of the main categories. In such cases, a legend or key is usually provided
to indicate what subgroup each of the shadings/colours represent. The legend can be
placed in the plot area or may be located below the chart.

For a particular category separate bar charts are drawn for each of the subgroups.
For example, in the following chart the results obtained for two sets of teams across
a series of lab exercises are displayed. Thus each team has a bar for lab1, lab2,
lab3, etc. A space is left between each category to make it easier to compare the sub
categories.

The following program generates the grouped bar chart for the lab exercises
example:

import matplotlib.pyplot as pyplot

BAR_WIDTH = 0.35
set up grouped bar charts
teama_results = (60, 75, 56, 62, 58)
teamb_results = (55, 68, 80, 73, 55)
Set up the index for each bar
index_teama = (1, 2, 3, 4, 5)
index_teamb = [i + BAR_WIDTH for i in index_teama]

Determine the mid point for the ticks
ticks = [i + BAR_WIDTH / 2 for i in index_teama]
tick_labels = (‘Lab 1’, ‘Lab 2’, ‘Lab 3’, ‘Lab 4’, ‘Lab 5’)

Plot the bar charts
pyplot.bar(index_teama, teama_results, BAR_WIDTH, color=‘b’,
label=‘Team A’)
pyplot.bar(index_teamb, teamb_results, BAR_WIDTH, color=‘g’,
label=‘Team B’)

Set up the graph
pyplot.xlabel(‘Labs’)
pyplot.ylabel(‘Scores’)
pyplot.title(‘Scores by Lab’)

144 15 Graphing with Matplotlib Pyplot

pyplot.xticks(ticks, tick_labels)
pyplot.legend()

Display the graph
pyplot.show()

Notice in the above program that it has been necessary to calculate the index for
the second team as we want the bars presented next to each other. Thus the index
for the teams includes the width of the bar for each index point, thus the first bar
is at index position 1.35, the second at index position 2.35, etc. Finally the tick
positions must therefore be between the two bars and thus is calculated by taking
into account the bar widths.

This program generates the following grouped bar chart:

15.7 Figures and Subplots

A Matplotlib figure is the object that contains all the graphical elements displayed
on a plot. That is the axes, the legend, the title as well as the line plot or bar chart
itself. It thus represents the overall window or page and is the top level graphical
component.

In many cases the figure is implicit as the developer interacts with the pyplot
API; however the figure can be accessed directly if required.

The matplotlib.pyplot.subplots() function is a useful function that
creates common layouts of subplots, including the enclosing figure object. This
function can take optional parameters to indicate the number and organisation of the
subplots, for example:

15.7 Figures and Subplots 145

fig, axs = plt.subplots(2, 2)

Indicates 4 subplots display in a 2 by 2 grid.
This function returns a matplotlib.figure.Figure object and a two-

dimensional array of axis objects that can be used with the subplots. It is then possible
to interact directly with the appropriate axis object. For example it is possible to add
subplots and titles for these subplots to the axes.

Working directly with the axes is necessary if you want to add multiple subplots
to a figure. This can be useful if what is required is to be able to compare different
views of the same data side by side. Each subplot has its own axes which can coexist
within the figure.

One or more subplots can be added to a figure using the appropriate axis. As
the axis is a two-dimensional array (an ndarray) it is possible to access each axis
individually and add a plot to that axis, for example:

axs[0, 0].plot(t, s)
axs[0, 0].set_title(‘Subplot [0, 0]’)

This adds a plot to axis in position 0, 0 within the ndarray and then sets the
title of this plot.

For example, the following figure illustrates four subplots presented within a
single figure. Each subplot is added via the Axes.plot() method.

This figure is generated by the following program:

import matplotlib.pyplot as plt

146 15 Graphing with Matplotlib Pyplot

Generate some data to display
t = range(0, 20)
s = range(30, 10, -1)

Set up the grid of subplots to be 2 by 2
fig, axs = plt.subplots(2, 2)
fig.suptitle(‘Subplots’)

Add first subplot
print(‘Adding first subplot to position [0, 0]’)
axs[0, 0].plot(t, s)
axs[0, 0].set_title(‘Subplot [0, 0]’)

Add second subplot
print(‘Adding second subplot to position [0, 1]’)
axs[0, 1].plot(t, s, ‘g-’)
axs[0, 1].set_title(‘Subplot [0, 1]’)

Add third subplot
print(‘Adding third subplot to position [1, 0]’)
axs[1, 0].plot(t, s, ‘r-’)
axs[1, 0].set_title(‘Subplot [1, 0]’)

Add fourth subplot
print(‘Adding fourth subplot to position [1, 1]’)
axs[1, 1].plot(t, s, ‘y-’)
axs[1, 1].set_title(‘Subplot [1, 1]’)

Set up X and y axis labels
for ax in axs.flat:

ax.set(xlabel=‘x-label’, ylabel=‘y-label’)

Hide x labels and tick labels for top plots and y ticks for
right plots.
for ax in axs.flat:

ax.label_outer()

Display the chart
plt.show()

The console output from this program is given below:

Adding first subplot to position [0, 0]
Adding second subplot to position [0, 1]
Adding third subplot to position [1, 0]
Adding fourth subplot to position [1, 1]

15.8 3D Graphs

A three-dimensional graph is used to plot the relationships between three sets of
values (instead of the two used in the examples presented so far in this chapter). In
a three-dimensional graph as well as the x and y axis there is also a z axis.

15.8 3D Graphs 147

The following program creates a simple 3D graph using two sets of values gener-
ates using the bumpy range function. These are then converted into a coordinate
matrices using the bumpy meshgrid() function. The z axis values are created
using the bumpy sin() function. The 3D graph surface is plotted using the plot_
surface function of the futures axes object. This takes the x, y and z coordinates. The
function is also given a colour map to use when rendering the surface (in this case
the Matplotlib cool to warm colour map is used).

import matplotlib.pyplot as pyplot
Import matplotlib colour map
from matplotlib import cm as colourmap
Provide access to numpy functions
import numpy as np

Make the data to be displayed
x_values = np.arange(-6, 6, 0.3)
y_values = np.arange(-6, 6, 0.3)

Generate coordinate matrices from coordinate vectors
x_values, y_values = np.meshgrid(x_values, y_values)

Generate Z values as sin of x plus y values
z_values = np.sin(x_values + y_values)
Obtain the figure object / get the axes object for the 3D
graph
figure, axes = pyplot.subplots(subplot_kw={“projection”: “3d”})

Plot the surface.
surf = axes.plot_surface(x_values,

y_values,
z_values,
cmap=colourmap.coolwarm)

Add a color bar which maps values to colors.
figure.colorbar(surf)

Add labels to the graph
pyplot.title(“3D Graph”)
axes.set_ylabel(‘y values’, fontsize=8)
axes.set_xlabel(‘x values’, fontsize=8)
axes.set_zlabel(‘z values’, fontsize=8)

Display the graph
pyplot.show()

This program generates the following 3D graph:

148 15 Graphing with Matplotlib Pyplot

One point to note about three-dimensional graphs is that they are not universally
accepted as being a good way to present the data. One of the maxims of data visual-
isation is keep it simple/keep it clean. Many consider that a three-dimensional chart
does not do this and that it can be difficult to see what is really being shown or that it
can be hard to interpret the data appropriately. For example, in the above chart what
are the values associated with any of the peaks? This is difficult to determine as it
is hard to see where the peaks are relative to the X, Y and Z axis. Many consider
such 3D charts to be eye candy; pretty to look at but not proving much information.
As such the use of a 3 D chart should be minimised and only used when actually
necessary.

15.9 Exercises

The following table provides information on cities in the UK and their populations
(note that London has been omitted as its population is so much larger than that of
any other city).

City Population

Bristol 617,280

Cardiff 447,287

Bath 94,782

Liverpool 864,122

Glasgow 591,620

(continued)

15.9 Exercises 149

(continued)

City Population

Edinburgh 464,990

Leeds 455,123

Reading 318,014

Swansea 300,352

Manchester 395,515

Using this data create:

1. A scatter plot for the city to population data.
2. A bar chart for the city to population data.

Chapter 16
Graphical User Interfaces

16.1 Introduction

A Graphical User Interface can capture the essence of an idea or a situation, often
avoiding the need for a long passage of text. Such interfaces can save a user from the
need to learn complex commands. They are less likely to intimidate computer users
and can provide a large amount of information quickly in a form which can be easily
assimilated by the user.

The widespread use of high-quality graphical interfaces has led many computer
users to expect such interfaces to any software they use. Most programming languages
either incorporate a graphical user interface (GUI) library or have third-party libraries
available.

Python is of course a cross-platform programming language, and this brings in
additional complexities as the underlying operating system may provide different
windowing facilities depending upon whether the program is running on Unix, Linux,
macOS or Windows operating systems.

In this chapter we will first introduce what we mean by a GUI and by WIMP-based
UIs in particular. We will then consider the range of libraries available for Python
before selecting one to use. This chapter will then describe how to create rich client
graphical displays (desktop application) using one of these GUI libraries. Thus in
this chapter we consider how windows, buttons, text fields and labels are created,
added to windows, positioned and organised.

16.2 GUIs and WIMPS

Graphical user interfaces (GUIs) and Windows, Icons, Mice and Pop-up Menus
(WIMP) style interfaces have been available within computer systems for many
decades, but they are still one of the most significant developments to have occurred.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_16

152 16 Graphical User Interfaces

These interfaces were originally developed out of a desire to address many of the
perceived weaknesses of purely textual interfaces.

The textual interface to an operating system was typified by a peremptory prompt.
In Unix/Linux systems for example, the prompt is often merely a single character
such as %, > or $, which can be intimidating. This is true even for experienced
computer users if they are not familiar with the Unix/Linux family of operating
systems.

For example, a user wishing to copy a file from one directory to another might
have to type something like:

> cp file.pdf ~otheruser/projdir/srcdir/newfile.pdf

This long sequence needs to be entered with no mistakes in order to be accepted.
Any syntax error in this command will cause the system to generate an error message
which might or might not be enlightening. Even where systems attempt to be more
“user friendly” through features like command histories, much typing of arrow keys
and filenames is typically needed.

The main issue on both input and output is one of bandwidth. For example,
in situations where the relationships between large amounts of information must be
described, it is much easier to assimilate this if output is displayed graphically than
if it is displayed as a tables of figures. On input, combinations of mouse actions can
be given a meaning that could otherwise only be conveyed by several lines of text.

WIMP stands for Windows (or Window Managers), Icons, Mice and Pop-up
menus. WIMP interfaces allow the user to overcome at least some of the weaknesses
of their textual counterparts—it is possible to provide a pictorial image of the oper-
ating system which can be based on a concept the user can relate to, menus can
be used instead of textual commands and information in general can be displayed
graphically.

The fundamental concepts presented via a WIMP interface were originally devel-
oped at XEROX’s Palo Alto Research Center and used on the Xerox Star machine,
but gained much wider acceptance through first the Apple Macintosh and then IBM
PC implementations of WIMP interfaces.

Most WIMP style environments use a desktop analogy (although this is less true
of mobile devices such as phones and tablets):

• the whole screen represents a working surface (a desktop),
• graphic windows that can overlap represent sheets of paper on that desktop,
• graphic objects are used for specific concepts, for example filing cabinets for disks

or a waste bin for file disposal (these could be regarded as desk accessories),
• various application programs are displayed on the screen, these stand for tools

that you might use on your desktop.

In order to interact with this display, the WIMP user is provided with a mouse (or
a light pen or a touch sensitive screen), which can be used to select icons and menus
or to manipulate windows.

The software basis of any WIMP style environment is the window manager. It
controls the multiple, possibly overlapping windows and icons displayed on the

16.3 Windowing Frameworks for Python 153

screen. It also handles the transfer of information about events which occur in those
windows to the appropriate application and generates the various menus and prompts
used.

A window is an area of the graphic screen in which a page or piece of a page
of information may be displayed; it may display text, graphics or a combination of
both. These windows may be overlapping, and associated with the same process, or
they may be associated with separate processes. Windows can generally be created,
opened, closed, moved and resized.

An icon is a small graphic object that is usually symbolic of an operation or of a
larger entity such as an application program or a file. The opening of an icon causes
either the associated application to execute or the associated window to be displayed.

At the heart of the users ability to interact with such WIMP-based programs is
the event loop. This loop listens for events such as the user clicking a button or
selecting a menu item or entering a text field. When such an event occurs it triggers
the associated behaviour (such as running a function linked with a button).

16.3 Windowing Frameworks for Python

Python is a cross-platform programming language. As such Python programs can
be written on one platform (such as a Linux box) and then run on that platform or
another operating system platforms (such as Windows or macOS). This can however
generate issues for libraries that need to be available across multiple operating system
platforms. The area of GUIs is particularly an issue as a library written to exploit
features available in the Windows system may not be available (or may look different)
on macOS or Linux systems.

Each operating system that Python runs on may have one or more windowing
systems written for it and these systems may or may not be available on other oper-
ating systems. This makes the job of providing a GUI library for Python that much
more difficult.

Developers of Python GUIs have taken one of two approaches to handle this:

• One approach is to write a wrapper that abstracts the underlying GUI facilities so
that the developer works at a level above a specific windowing system’s facilities.
The Python library then maps (as best it can) the facilities to the underlying system
that is currently being used.

• The other approach is to provide a closer wrapping to a particular set of facilities on
the underlying GUI system and to only target systems that support those facilities.

Some of the libraries available for Python are listed below and have been
categorised into platform-independent libraries and platform-specific libraries:

154 16 Graphical User Interfaces

16.3.1 Platform-Independent GUI Libraries

• Tkinter. This is a widely used standard Python GUI library. It is built on top
of the Tcl/Tk widget set that has been around for very many years for many
different operating systems. Tcl stands for Tool Command Language while Tk is
the graphical user interface toolkit for Tcl.

• wxPython. wxWidgets is a free, highly portable GUI library. It is written in C++,
and it can provide a native look and feel on operating systems such as Windows,
macOS and Linux. wxPython is a set of Python bindings for wxWidgets. This is
the library that we will be using in this chapter.

• PyQT or PySide both of these libraries wrap the Qt toolkit facilities. Qt is a cross-
platform software development system for the implementation of cross-platform
GUIs and applications.

16.3.2 Platform-Specific GUI Libraries

1. PyObjc is a macOS specific library that provides an Objective-C bridge to the
Apple Mac Cocoa GUI libraries.

2. PythonWin provides a set of wrappings around the Microsoft Windows
Foundation classes and can be used to create Windows-based GUIs.

16.4 Online Resources

There are numerous online references that support the development of GUIs and of
Python GUIs in particular, including:

1. https://www.wxpython.org wxPython home page.
2. https://www.tcl.tk for Information on Tcl/Tk.
3. https://www.qt.io For information on the Qt cross-platform software and UI

development library.
4. https://wiki.python.org/moin/PyQt For information about PyQt.
5. https://pypi.org/project/PySide/ which provides project information for PySide.
6. https://en.wikipedia.org/wiki/Cocoa_(API) for the Wikipedia page on the

MacOS Cocoa library.
7. https://pythonhosted.org/pyobjc/ for information on the Python to Objective-C

bridge.
8. https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=vs-

2019 Provides an introduction to the Microsoft Foundation classes.
9. https://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html for information on

PythonWin.

https://www.wxpython.org
https://www.tcl.tk
https://www.qt.io
https://wiki.python.org/moin/PyQt
https://pypi.org/project/PySide/
https://en.wikipedia.org/wiki/Cocoa_%28API%29
https://pythonhosted.org/pyobjc/
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=vs-2019
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications?view=vs-2019
https://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Chapter 17
Tkinter GUI Library

17.1 Introduction

The Tkinter library is a cross-platform GUI library (or toolkit) for Python. It allows
programmers to develop highly graphical user interfaces for their programs using
common concepts such as menu bars, menus, buttons, fields, panels and frames. This
chapter introduces Tkinter. It allows programmers to develop highly graphical user
interfaces for their programs using common concepts such as menu bars, menus,
buttons, fields, panels and frames. This chapter introduces Tkinter.

17.2 Tkinter

Tkinter is the de-facto standard for creating graphical user interfaces (GUIs) in
Python. Although there are other libraries available Tkinter is provided as part of
the Python environment and provides all the features required to create desktop
applications.

Some of the key features of Tkinter include:

• Cross-platform: Tkinter is available on most operating systems, including
Windows, macOS, and Linux, making it a platform-independent choice for GUI
development.

• Widget library: Tkinter provides a set of pre-built GUI elements called widgets,
such as buttons, labels, fields, checkboxes, menus and more.

• Event-driven programming: Tkinter follows an event-driven programming
paradigm common to most GUI libraries in most languages. It allows devel-
opers to define event handlers for various user actions, such as button clicks or
key presses, which allows for interactive applications. This is the topic of the next
chapter.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_17

156 17 Tkinter GUI Library

• Layout managers: Tkinter offers different layout managers, such as pack(),
grid(), and place(), to control the positioning and organisation of widgets
within a window or frame.

17.3 Windows as Objects

In Tkinter, window frames, buttons and text labels as well as their contents are
instances of appropriate classes (such as Frame, Button or Label). Thus when you
create a window.

• You create an object that knows how to display itself on the computer screen.
You must tell it what to display and then tell it to start listening for user input (if
appropriate).

• You should bear the following points in mind during your reading of this chapter;
they will help you understand what you are required to do:

• You create a window by instantiating a Tk object. This is the applications’ top
most window in a Tk application which typically represents the main window of
an application. It is also possible to have other top-level windows represented by
the TopLevel class.

• You define what the window displays by creating widgets that have an appropriate
parent

• A widget can be played out within a window using one or three strategies such as
pack().

• You can send messages to the window to change its state, perform an operation
and display a graphic object.

• The window, or components within the window, can send messages to other
objects in response to user (or program) actions.

• Everything displayed by a window is an instance of a class and is potentially
subject to all of the above.

• tk.Tk class handles the main event loop of the GUI application.

17.4 Key Concepts

In Tkinter all the elements of a GUI are contained within a Frame held within a
top-level windows such as a Tk class root window or a TopLevel window. These
frames contain graphical components known as widgets. These concepts and are
others are outlined below:

• Tk: The Tk class represents the main window or the root window of a Tkinter
application. It serves as the container for other widgets and is responsible for
managing the application’s event loop.

17.4 Key Concepts 157

• Toplevel: The Toplevel class represents additional top-level windows in a
Tkinter application. These windows are separate from the root window and can
be used for dialog boxes, pop-up windows, or secondary windows within the
application.

• Frame: The Frame class is a container widget that provides a rectangular region
to hold other widgets. It is used to group and organise widgets within the main
window or other windows.

• Widgets, which are graphical components within a Frame, such as a button, a
field, a label, etc.

• Canvas: The Canvas class provides a drawing area where you can draw
graphics, lines, shapes and images.

• Dialogs which are like Frames but provide fewer border controls.

Using these components it is possible to construct complex user interfaces.

17.4.1 The Tk Class

The Tk class is the core class used to create a TK window or frame. The class
methods and attributes that can be used to customise the main window, handle user
events, and manage the application’s behaviour. Some commonly used methods and
attributes of the Tk class include:

• title(): Sets the title of the main window.
• geometry(): Can be used to set the size and position of the main window.
• config(): Configures various properties of the main window.
• mainloop(): Starts the Tkinter event loop.
• destroy(): Closes the main window and terminates the application.
• bind(): Binds an event to a event handler/callback function.

Additionally, the Tk class inherits methods and attributes from the Widget class,
which is the base class for all Tkinter widgets. This allows the developer to further
customise the main window using methods and attributes available to all widgets,
such as setting the background colour, adding images or applying styles. By using
the Tk class and its associated methods and attributes, the developer can create the
main window of their Tkinter application and define its behaviour and appearance.

17.4.2 TK Widgets

There are a set of classes within TKinter referred to as widget classes. Each class
represents a different type of graphical element such as buttons, labels, menus and
list boxes. The widget classes all inherit (or mix in) from the tk,Misc class which
means that all widgets provide a common set of behaviours and attributes as well as
those specific to their type.

158 17 Tkinter GUI Library

When working with a widget it is necessary to create an instance of the corre-
sponding class and link it to its parent widget (which could be a window or a frame
or some other container style widget).

17.4.3 The TopLevel Class

Tkinter also has a class called tk.TopLevel. It represents a top-level window or
dialog box. It is a container widget that functions as a separate independent window,
typically used for creating pop-up windows, dialog boxes or additional top-level
windows in your application.

The tk.TopLevel class is derived from the tk.Tk class, however, unlike the
root window, a TopLevel window is a separate window with its own title bar and
borders.

To create a TopLevel window, you need to instantiate the class and specify the
parent widget as the first argument, typically the root window or another TopLevel
window. For example:

import tkinter as tk

root = tk.Tk()
Create a top-level window
top_level = tk.Toplevel(root)
top_level.title(“My TopLevel”)

Add widgets to the top-level window
label = tk.Label(top_level, text=“This is a top level window.”)
label.pack()

root.mainloop()

When this program is run it generates two windows as shown below:

In this code, we create a TopLevel instance named top_level with root as
the parent widget. The title of the top-level window is then set to “My TopLevel”

17.4 Key Concepts 159

using the title() method. A Label widget is then added to the top-level window
to display some text.
TopLevel windows are useful for creating additional windows or dialog boxes

in a Tkinter application, allowing the developer to display information, prompt for
input, or perform specific tasks independently of the main root window.

17.4.4 The Frame Class

The TK Frame class is a widget that represents a rectangular region used to group
and organise other widgets within a window. It thus acts as a container or a panel
within a window which is very useful when creating hierarchical layouts. This is
because each Frame can have their own layout management and thus by combining
frames together complex UIs can be created.

The tk.Frame() constructor can be used to create a new instance of a Frame
with respect to parent widget such as the root window. For example:

import tkinter as tk

root = tk.Tk()
Create a frame
frame = tk.Frame(root)
frame.pack()

Add widgets to the frame
label = tk.Label(frame, text=“Hello, World!”)
label.pack()

root.mainloop()

In this program an initial root window is created using tk.Tk(). This root is
then used as the parent of the tk.Frame() that is subsequently instantiated. The
frame is then packed with the root windows. Following this a label is created and
that is added to the Frame. The main loop of the top-level window is then started.

The result of running this program is that a simple window is displayed as shown
below:

160 17 Tkinter GUI Library

Note that the frame does not by and of its self have a default visual presence
within the top-level window.

17.4.5 Dialogs

You can use the tkinter.simpledialog or the tkinter.messagebox
modules to create common dialog types, such as input dialogs, file dialogs or message
boxes. These libraries provide pre-defined functions that make it easy to use dialogs
in your applications. The simpledialog module provides:

• SimpleDialog—A simple modal dialog box.
• Dialog—a base class for dialogs.
• askinteger()—a function to display a dialog to get an integer from the user.
• askfloat()—a function to display a dialog to get a float from the user
• askstring()—a function to display a dialog to get a string from the user

For example, the following code illustrates creating a simple Enter Your Name
style dialog:

import tkinter as tk
import tkinter.simpledialog as simpledialog

root = tk.Tk()
Function to display an input dialog
def display_dialog():

answer = simpledialog.askstring(“Name Entry”,
“Please enter your name:”)

if answer:
print(“Your name is:”, answer)

else:
print(“No input provided.”)

Create a button to show the dialog
button = tk.Button(root, text=“Open Dialog”, command=display_
dialog)
button.pack()

root.mainloop()

This program imports tkinter.simpledialog and use the askstring()
function to display an input dialog box. The function takes two arguments: the title
of the dialog box and the prompt message. It returns the user’s input as a string or
None if no input is provided. If the user entered their name it is printed out, if the user
did not enter their name then a message telling the user that no input was provided
is printed to the console.

When this program is run it generates a window containing a single button ‘Open
Dialog’. When you click on this button a ‘dialog’ is opened that will ask the user to
enter their name (as a string), for example:

17.4 Key Concepts 161

When the user enters their name it is then printed out to the console:

Your name is: John

17.4.6 The Canvas Class

The Canvas class in Tkinter provides a 2D drawing area that can be used to create
and manipulate graphical elements such as lines, shapes, images and text.

To use the Canvas class, it is first necessary to create an instance of the Canvas
and specify its parent container, usually the main window or a TopLevel window.
For example:

import tkinter as tk

window = tk.Tk()
canvas = tk.Canvas(window, width=400, height=300)
canvas.pack()

In this example, we have created an instance of the Canvas class, passing the
root window as the parent and specifying the desired width and height of the
canvas. We then use the pack() method to layout and display the canvas within the
main window.

Once the canvas is created, it can be used to draw and manipulate graphical
elements suing methods such as:

• create_line(): Draws a straight line between two coordinates on the
receiving canvas.

• create_rectangle(): Draws a rectangle specified by its top-left and bottom-
right coordinates.

• create_oval(): Draws an oval specified by its bounding box coordinates.
• create_polygon(): Draws a polygon specified by a list of coordinates.
• create_image(): Displays an image on the canvas.
• create_text(): Places text on the canvas.
• As an example off using the canvas to display a graphical element, the following

program draws a rectangle and a line as specific positions within the canvas:

162 17 Tkinter GUI Library

Draw a rectangle
canvas.create_rectangle(50, 50, 200, 150, fill=‘red’)

Draw a line
canvas.create_line(100, 100, 300, 200, fill=‘blue’, width=3)

root.mainloop()

In this example, we use the create_rectangle() method to draw a red
rectangle and the create_line() method to draw a blue line on the canvas.
The coordinates passed to these methods specify the position and dimensions of the
shapes.

The Canvas class provides additional methods for controlling the appearance
and behaviour of the canvas and its elements. For example, you can change the colour,
outline or fill of a shape, apply transformations such as scaling or rotation, handle
events like mouse clicks or movements on the canvas and more.

Using the Canvas class it is possible to create complex graphics, interactive
visualisations or custom drawing tools within your Tkinter application.

17.5 The Class Inheritance Hierarchy

The following diagram illustrates part of the inheritance tree for the graphical Tk
components (or widgets).

At the top of the hierarchy is the Widget class, which serves as the base class
for all Tkinter widgets. It provides the basic functionality and attributes shared by
all widgets.

The Widget class is then subclassed by other intermediate classes such as
BaseWidget, Misc, TopLevel, Frame, Button and Canvas, which further
define common behaviour and attributes for groups of related widgets.

Below these intermediate classes, you find specific widget classes like
CheckButton, RadioButton or LabelFrame which is a subclass of Frame.

Additionally, there are widget classes related to menus such as Menu.
Understanding the inheritance hierarchy can be useful when working with Tkinter,

as it helps in identifying common methods, attributes and behaviours shared by

17.6 A Simple Example 163

groups of widgets and allows you to leverage the specific features and customisation
options provided by each widget class.

17.5.1 Layout Management

All Tkinter widgets have access to specific geometry management methods, which
have the purpose of organising widgets throughout the parent widget area. Tkinter
exposes the following geometry manager classes: pack, grid and place.

• pack() This geometry manager organises widgets in blocks before placing them
in the parent widget.

• grid() This geometry manager organises widgets in a table-like structure in the
parent widget.

• place() This geometry manager organises widgets by placing them in a specific
position in the parent widget.

17.6 A Simple Example

To illustrate the basic usage of Tkinter, consider the following code that creates a
window containing a simple button.

import tkinter as tk

def button_click():
“““ function to be run when button is clicked”””
print(“Button clicked!”)

Set up the window and the button within the window
window = tk.Tk()
window.geometry(“200x80”)

Set the title of the tkinter window
window.title(‘Simple Window’)

Add a button to the window
button = tk.Button(window,

text=“Click Me”,
command=button_click)

button.pack()

Start the main GUI processing loop
window.mainloop()

When this program is run the following window is displayed:

164 17 Tkinter GUI Library

If the user clicks on the ‘Click Me’ button a message ‘button clicked!’ will be
printed to the standard out, for example if we click the button 3 times we will see the
following in the output console:

Button clicked!
Button clicked!
Button clicked!

The above code imports the tkinter module and creates a window using Tk().
It then sets the size of the window using geometry() and a string describing
the dimensions of the window. Following this the title of the window is set using
the title() method. The program then creates a button using Button() and
associates it with a function button_click to handle the button click event. The
pack() method is used to manage the layout of the button within the window.
In this case there is only the button and so the layout is very simple. Finally, the
mainloop() method is called to start the Tkinter GUI event loop that will listen
for user events and trigger their related behaviours.

17.7 Tkinter Installation

Tkinter is typically included with the standard Python installation on macOS, so you
don’t need to install it separately.

17.7.1 Mac Installation

You may need to ensure that the Tcl/Tk libraries, which Tkinter relies on, are installed
on your Mac. Most Unix/Linux operating system distributions, as well as Mac OS X,
include Tcl/Tk. If not already installed, you can use your system’s package manager
to install the appropriate packages.

Here’s how you can check and install Tkinter-related dependencies:

1. Open Terminal on your Mac.
2. Check if Tcl/Tk is installed by running the following command:

which wish

17.7 Tkinter Installation 165

If Tcl/Tk is installed, the command will display the path to the Tcl/Tk
interpreter.

3. If Tcl/Tk is not installed, you can install it using Homebrew, a popular package
manager for macOS. Install Homebrew by executing the following command in
Terminal:

/bin/bash -c “$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)”

4. Once Homebrew is installed, run the following command to install Tcl/Tk:

brew install tcl-tk

This command will install the Tcl/Tk libraries on your system.

After ensuring that Tcl/Tk is installed, you can start using Tkinter in your Python
programs without any additional installation steps. To check that this is working try
from the command line:

python -m tkinter

This should open a window with a sample tkinter application to verify everything
is ok:

If you are still having a problem in your environment then it may be necessary to
install the tkinter package on your Mac, this can be done again using homebrew via:

brew install python-tk

Now retest your system to ensure that you can run the tkinter sample application.

17.7.2 Windows Installation

On Windows, Tkinter is typically included with the standard Python installation, so
you don’t need to install it separately.

166 17 Tkinter GUI Library

17.8 GUI Builders for Tkinter

Programming a GUI by hand can provide very powerful and flexible UIs; however,
it is also time consuming and can be error prone. To alleviate this there are so called
GUI builders available for Tkinter that allow you to essentially ‘draw’ the UI and
then the GUI builder can generate the underlying code for you.

In general, these types of tools provide a visual interface for creating and arranging
widgets, setting properties, and generating the corresponding Tkinter code.

A few of the more popular GUI builders/editors for Tkinter are:

• Pygubu: Pygubu is a simple GUI builder that allows the developer to visually
design their GUI by dragging and dropping widgets onto a canvas, setting prop-
erties, and assigning event handlers. Pygubu generates the corresponding Python
code, which can then be used within an application.

• PAGE: Python Automatic GUI Generator (PAGE) is another GUI builder for
Tkinter. It provides a visual environment for designing GUIs and generates the
corresponding Python code. PAGE offers a variety of widgets and properties, and
it supports events and event binding.

• Qt Designer with PyQt: While not specific to Tkinter, you can use Qt Designer,
a visual GUI builder for PyQt (a Python binding for the popular Qt framework),
to design your GUI. PyQt provides a bridge between Tkinter and Qt, allowing
you to use the Qt Designer tool to create the GUI and then convert the generated
‘.ui’ file to Python code that works with Tkinter.

GUI builders can save time and make it easier to create complex layouts and
arrangements of widgets. However, bear in mind that learning the basics of Tkinter
and writing code manually can provide you with more flexibility and control over
your GUI application.

17.9 Online Resources

• https://docs.python.org/3/library/tkinter.html Main tkinter documentation.
• https://realpython.com/python-gui-tkinter/ Tutorial on Tkinter.
• https://tkdocs.com/tutorial/widgets.html Tutorial on the basic widgets.
• https://www.geeksforgeeks.org/what-are-widgets-in-tkinter/ Another tutorial on

widgets in Tkinter.
• https://github.com/alejandroautalan/pygubu Pygubu reference.
• https://sourceforge.net/projects/page/ SourceForge site for PAGE.
• https://pythonbasics.org/qt-designer-python/ Qt Designer tutorial.

https://docs.python.org/3/library/tkinter.html
https://realpython.com/python-gui-tkinter/
https://tkdocs.com/tutorial/widgets.html
https://www.geeksforgeeks.org/what-are-widgets-in-tkinter/
https://github.com/alejandroautalan/pygubu
https://sourceforge.net/projects/page/
https://pythonbasics.org/qt-designer-python/

17.10 Exercises 167

17.10 Exercises

Create a GUI application that has button and label. When the user clicks on the
button, a dialog should be displayed asking the user to enter their name. The field
should then be populated with the value the user provided.

For example, the window might initial look like:

When the user clicks on the button they should be prompted to enter their name:

If they enter their name the value should then update the display, for example if
they enter ‘John’, then the display should now update to:

168 17 Tkinter GUI Library

Note that to create the label you can use:

label = tk.Label(window, text=“<<...>>“)
label.pack()

And to update the label once it has been created (for example within your button
click function) you can use the config method:

label.config(text=answer)

Chapter 18
Events in Tkinter User Interfaces

18.1 Introduction

This chapter introduces event handling within a GUI application and Tkinter’s event
handling mechanism in particular. It outlines what an event is, what event handlers
are, and how events are bound to event handlers. It consider what types of events
there are in Tkinter. It then takes the reader through how a simple application is built
to handle several different events.

18.2 Event Handling

Events are an integral part of any GUI; they represent user interactions with the
interface such as clicking on a button, entering text into a field and selecting a menu
option.

The main event loop of GUI listens for an event; when one occurs it processes
that event (which usually results in a function or method being called) and then
waits for the next event to happen. This loop is initiated in Tkinter via the call to the
mainloop() method on the tk.Tk object.

This raises the question ‘what is an Event?’ An event object is a piece of infor-
mation representing some interaction that occurred typically with the GUI (although
an event can be generated by anything). An event is processed by an event handler.
This is a method or function that is called when the event occurs. The event is passed
to the handler as a parameter. An event binder is used to bind an event to an event
handler.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_18

170 18 Events in Tkinter User Interfaces

18.3 What is Event Handling?

In Tkinter, an event refers to a specific action that can happen within a graphical user
interface (GUI). It can be triggered by user interactions, such as clicking a button or
pressing a key, or by system events, such as window resizing or mouse movements.

Events are the primary means by which Tkinter communicates user actions or
system changes to the application, allowing that application to respond and handle
those actions appropriately.

When an event occurs, Tkinter generates an event object that contains information
about the event, such as the event type, widget involved, mouse coordinates or key
details.

For example, some of the common Tkinter events are:

• Button Click Event (“<Button-1>”): Occurs when the left mouse button is clicked.
• Key Press Event (“<Key>”): Occurs when a key on the keyboard is pressed.
• Mouse Motion Event (“<Motion>”): Occurs when the mouse moves within a

widget or window.
• Window Close Event (“<Destroy>”): Occurs when a window is closed.

Events are bound to specific widgets using the ‘bind()’ method (the binder). By
specifying the event type and the associated event handler function, a developer can
define how the application should respond when that event occurs.

For example, you a Button Click Event can be bound to button widget for the
left mouse button such that then it is clicked a function will be run. Similarly, you
can bind the Key Press Event (“<Key>”) to a widget or the root window and handle
different key presses by calling specific functions.

When the event is triggered, Tkinter invokes the event handler function associated
with that event, passing an event object as an argument. The event object provides
access to event-specific information, allowing you to determine the type of event,
the widget involved, or extract relevant details.

By understanding events and their associated event types, you can capture and
respond to user interactions and system changes in a Tkinter application, making it
interactive and responsive to user actions.

18.4 What Are Event Handlers?

Event handlers, also known as event callback functions or event listeners, are func-
tions that are associated with specific events in a graphical user interface (GUI)
application. They are responsible for handling and responding to events when they
occur.

As a programmer this means that you will associate a function to be invoked with
a widget using the bind() method. When the associated event is triggered, the
function will be called. Tkinter will pass into the function an object representing

18.4 What Are Event Handlers? 171

the event as an argument. This parameter represents the event object and provides
information about the event that occurred, such as the event type, the widget involved
or additional details like mouse coordinates or key information.

Here’s an example of an event handler function for a button click event in Tkinter.
The button is displayed winning the main Tk window:

import tkinter as tk
from datetime import datetime

def button_click(event):
print(‘Button clicked!’)
print(event)
print(f’Event type: {event.type}’)
print(f’Widget: {event.widget}’)
print(f’Time: {datetime.fromtimestamp(event.time / 1e3)}’)

Create main window
window = tk.Tk()
Set the size of the window
window.geometry(‘200x80’)
Set the title of the window
window.title(‘Simple Window’)

Create button
button = tk.Button(window,

text=“Click Me!”,
name=‘my button’)

button.pack()

Bind the button_click function to the <Button-1> event
button.bind(“<Button-1>“, button_click)

window.mainloop()

When this program is run it displays a window with a single button in it as shown
below:

When the user clicks on the button the following output is printed into the console
(although the date will be different):

172 18 Events in Tkinter User Interfaces

Button clicked!
<ButtonPress event num=1 x=63 y=16>
Event type: 4
Widget: .my button
Time: 2023-06-15 10:48:51.181000

The program defines a function button_click(event) which will be called
when the left mouse button is used to click the button in the window. The function
prints out the event (using the default print for events). This indicates that it is a button
press event at location x 52 and y 12. The function then accesses several properties
of the event such as the type of the event, the widget that generated the event and the
timestamp of the event (which is then formatted into a date time object).

Note that in this example the button has been given an explicit name so that we
can see this returned when we access the event.widget property.

The function is bound to the button using thebind()method and the event binder
(which links the widget to the function for a specific event) is the “<Button-1>”
event binder. When the button is clicked, Tkinter calls the button_clicked
function and passes the event object as the argument.

18.5 Event Binders

Event binders are used to associate an event handler (for example the button_
clicked() function above) with a specific event for a particular widget.

Event binders allow a widget to have multiple event handlers bound that will
handle different event types. Thus a widget might have event handlers for when they
are in focus or lose focus as well as for key presses, etc. Each appropriate function
would be bound to the widget by a specific event binder.

The main method used to bind event handlers to widget for specific event bindings
is the bind()method. The bind() method takes two or more arguments, the key
two are:

• The event binding (the first parameter). This is a string representing the event
type (or a sequence of event types) used for the binding. The value can be a specific
event such as <Button1> or a sequence of events separated by a space such as
“<Button-1><Button-3>” for the left and right mouse button clicks.

• The event handler function (the second argument). This is the function that will
be invoked when the event is raised on the widget. Note it should be the name of
the function rather than a direct invocation of that function.

As well as the bind() method, Tkinter providers an unbind() method. This
allows a event handler to be removed from a widget. It also provides an unbind_
all() method which removes all event handlers from a widget.

18.7 Event Definitions 173

18.6 Virtual Events

One point to note is that built-in operating system generated events in Tkinter are
all defined using a single set of brackets such as ‘<KeyPress>’ or ‘<Button1>’.
Most of the built-in events are directly tied to actual physical events and follow this
format.

However, you may come across other events that have a double bracket name.
These are called virtual events. They do not necessarily represent a physical event and
often (although not always) are specific to a particular type of widget. For example
the ‘<<ListboxSelect>>’ is only used by the listbox.

Virtual events can be triggered by a combination of other events using theevent_
add() widget method, though they can also be generated by calling event_generate.

For example:

widget.event_add(“<<abc>>”)

18.7 Event Definitions

It is useful to summarise the definitions around events as the terminology used can
be confusing and is very similar:

• Event represents information from the underlying GUI framework that describes
something that has happened and any associated data. The specific data available
will differ depending on what has occurred. For example, if a window has been
moved then the associated data will relate to the window’s new location.

• Event Loop the main processing loop of the GUI that waits for an event to occur.
When an event occurs the associated event handler is called.

• Event Handlers these are methods (or functions) that are called when an event
occurs.

• Event Binders associate a type of event with an event handler.

The relationship between the event, the event handler via the event binder is
illustrated below:

174 18 Events in Tkinter User Interfaces

18.8 What Types of Event Are There?

Tkinter provides a wide range of event types that you can capture and handle in
your graphical user interface (GUI) application. These events cover various user
interactions and system changes. Here are some common event types in Tkinter:

• Mouse Events. There are a range of mouse events that can be handled including
those associated with:

• Button Click: <Button-1>, <Button-2>, <Button-3> (left, middle, and right mouse
button clicks)

• Button Release: <ButtonRelease-1>, <ButtonRelease-2>, <ButtonRelease-3>
• Mouse Motion: <Motion>
• Mouse Scroll: <MouseWheel>

Key Events. These are associated with keys on the keyboard. They include:

• Key Press: <KeyPress>
• Key Release: <KeyRelease>
• Individual Key Events: <KeyPress-a>, <KeyRelease-Enter>, etc.

Focus Events. These events relate to a widget gaining or loosing focus in the UI:

• Focus In: <FocusIn>
• Focus Out: <FocusOut>

Window Events. Window events relate to events at the window level such as resizing
and closing windows:

• Window Resize: <Configure >
• Window Close: <Destroy >

Widget-Specific Events. These are events associated with a specific type of widget
such as an entry field, listbox or combo box:

• Entry Field Edit: <Key > events on an Entry widget
• Listbox Selection: <ListboxSelect >

Timer Events. These are events that are triggered after a period of time, for example
every widget has an after method that will generate an event at a specific time interval
from the time it is called. The method takes at least two arguments: the amount of
time (in milliseconds) to wait before generating the event, and the callback function
to call after the time has elapsed.

• Timer Trigger: <Timer >

These are just a few examples of event types available in Tkinter. Each event type
has its own specific format and can be bound to widgets using the ‘bind()’ method.

18.10 Implementing Event Handling 175

18.9 Binding an Event to an Event Handler

An event is bound to an event handler using the bind() method of an event gener-
ating object (such as a button, field, menu item) via a named event binder such as
“<Button-1>”.

For example:

import tkinter as tk

def button_click(event):
print(“Button clicked!”)

root = tk.Tk()
button = tk.Button(root, text=“Click Me!”)
button.pack()
button.bind(“<Button-1>”, button_click)

root.mainloop()

18.10 Implementing Event Handling

There are four steps involved in implementing event handling for a widget or window,
these are:

1. Identify the event of interest. Many widgets will generate different events in
different situations; it may therefore be necessary to determine which event you
are interested in.

2. Find the correct Event Binder name, e.g. <Button-1>, <MouseWheel >,
<KeyPress> etc. Again you may find that the widget you are interested in supports
numerous different event binders which may be used in different situations (even
for the same event).

3. Implement an event handler that will be called when the event occurs. The
event handler will be supplied with the event object.

4. Bind the Event to the Event Handler via the Binder Name using the bind()
method of the event generating widget.

To illustrate this we will use a simple example.
We will write a very simple event handling application. This application will have

a Tk window containing a Button, a Label and an Entry.
We will define a set of function that can be called for different events. These

functions will react to the button click event (as we have seen above). However we
will also define a function to be used with a key press and two functions to be used
with focus (being gained and lost).

176 18 Events in Tkinter User Interfaces

We will associate the button_click function with the <Button1 >event
of the Button widget. For example:

button = tk.Button(window, text=‘Click Me!’)
button.pack()
button.bind(‘<Button-1>’, button_click)

However, we will associate the other functions all with the Entry widget. Each
function will be bound to a different event so that they will be called in different
situations. We thus need to determine the correct bindings for the event handler
functions.

A widget can support a wide range of events, and we can therefore choose which
event bindings are relevant. In this case we will select:

• the ‘<Key>’ binding for the key_pressed function,
• the ‘<FocusIn>’ binding for the focus_gained function,
• and the ‘<FocusOut>’ binding for the focus_lost function.

For example:

entry = tk.Entry(window, bd =5)
entry.pack(side = tk.RIGHT)
entry.bind(‘<FocusIn>’, focus_gained)
entry.bind(‘<FocusOut>’, focus_lost)
entry.bind(‘<Key>’, key_press)

This illustrates how a single widget can invoke different event handler functions
depending upon the type of event generated.

In this case we are also indicating to the pack()method that we would like it to
orient the widget to the right of the container/parent widget (in this case the window).

The end result is the program shown below:

import tkinter as tk

def button_click(event):
print(f’Button clicked: {event}’)

def key_press(event):
print(“Key pressed:”, event.char)

def focus_lost(event):
print(f’Widget {event.widget} lost focus’)

def focus_gained(event):
print(f’Widget {event.widget} gained focus’)

Create main window
window = tk.Tk()
Set the size of the window
window.geometry(‘300x120’)
Set the title of the window
window.title(‘Sample Application’)

button = tk.Button(window, text=‘Click Me!’)

18.10 Implementing Event Handling 177

button.pack()
button.bind(‘<Button-1>’, button_click)

label = tk.Label(window, text=‘User Name’)
label.pack(side = tk.LEFT)
entry = tk.Entry(window, bd =5)
entry.pack(side = tk.RIGHT)
entry.bind(‘<FocusIn>’, focus_gained)
entry.bind(‘<FocusOut>’, focus_lost)
entry.bind(‘<Key>’, key_press)

window.mainloop()

When this program is run the window is displayed with the button at the top of
the display and the User Name Label and the Entry input field below.

If the user then clicks the left mouse button on the button then a message will be
printed out. If they then click on the entry field the focus_gained function will
be invoked, if they type anything into the field then each key press will be echoed to
the output console. Thus if we end up with:

178 18 Events in Tkinter User Interfaces

Then the output in the console will be:

Button clicked: <ButtonPress event num=1 x=47 y=14>
Widget .!entry gained focus
Key pressed:
Key pressed: J
Key pressed: o
Key pressed: h
Key pressed: n
Widget .!entry lost focus

18.11 An Interactive GUI Application

As an example of a slightly larger GUI application, that brings together many of the
ideas presented in this chapter and the previous one, is given below.

In this application we have a text input field (a tk.Entry) that allows a user
to enter their name. When they click on the Enter button (tk.Button) a dialog is
displayed allowing them to enter they name. The value entered is then used to update
the contents of the Entry field.

Note that for the Entry field we have used a StringVar as the text variable
as this simplifies updating the on screen field. Using the text variable we can set the
Entry value using the set() method. If we interacted with the Entry directly
then we would have to use delete and insert methods to remove the existing content
and replace it with a new value, for example:

e.delete(0,tk.END)
e.insert(0,text_to_add)

This is only necessary as we want to overwrite any existing values within the
Entry field.

The code used to implement this GUI application is given below:

import tkinter as tk
import tkinter.simpledialog as simpledialog

def key_press(event):
print(“Key pressed:”, event.char)

def focus_lost(event):
print(f’Widget {event.widget} lost focus’)

def focus_gained(event):
print(f’Widget {event.widget} gained focus’)

Create main window
window = tk.Tk()
Set the size of the window
window.geometry(‘300x120’)
Set the title of the window

18.11 An Interactive GUI Application 179

window.title(‘Sample App’)

Create a frame
frame = tk.Frame(window)
frame.pack()

label = tk.Label(frame, text=‘User Name’)
label.pack(side = tk.LEFT)
Set up a ‘ext variable’ to use with the entry field
Makes setting it programmatically easier (don’t need to
delete and insert)
entry_text = tk.StringVar()
entry = tk.Entry(frame, textvariable=entry_text, bd =5)
entry.pack(side = tk.RIGHT)
entry.bind(‘<FocusIn>’, focus_gained)
entry.bind(‘<FocusOut>’, focus_lost)
entry.bind(‘<Key>’, key_press)

def button_click(event):
answer = simpledialog.askstring(“Name Entry”, “Please enter your

name:”)
if answer:

print(“Your name is:”, answer)
entry_text.set(answer)

else:
print(“No input provided.”)

button = tk.Button(window, text=‘Show Message’)
button.pack()
button.bind(‘<Button-1>’, button_click)

window.mainloop()

When the application is run then a window containing the various widgets will
be displayed to the user:

180 18 Events in Tkinter User Interfaces

If the user clicks on the ‘Show Message’ button then the
tkinter.simpledialog will display prompt to the user asking for their
name:

If the user then enters their name, such as John:

And then clicks on ‘OK’, the Entry field will be populated with their name:

18.13 Exercises 181

Of course if the user clicks on the Entry field and types into it, then the event
handlers for the entry field will be triggered, such as the key press and focus gained
and lost event handlers. For example, if they type hunt into the entry field after John,
then the output in the console would be:

Widget .!frame.!entry gained focus
Key pressed:
Key pressed: H
Key pressed: u
Key pressed: n
Key pressed: t
Widget .!frame.!entry lost focus

18.12 Online Resources

There are numerous online references that support the development of GUIs and of
Python GUIs in particular, including:

• https://docs.python.org/3/library/tkinter.html Main tkinter documentation.
• https://pythonprogramming.net/tkinter-tutorial-python-3-event-handling a tuto-

rial on Tkinter event handling.

18.13 Exercises

The application should allow a user to enter their name and age. You will need to
check that the value entered into the age field is a numeric value (for example using
isnumeric()). If the value is not a number then an error message dialog should
be displayed.

A button should be provided labelled ‘Birthday’; when clicked it should increment
the age by one and display a Happy Birthday message. The age should be updated
within the GUI.

An example of the user interface you created in the last chapter is given below:

https://docs.python.org/3/library/tkinter.html
https://pythonprogramming.net/tkinter-tutorial-python-3-event-handling

182 18 Events in Tkinter User Interfaces

As an example, the user might enter their name and age as shown below:

If they press enter then the welcome message should update with their name:

When the user clickffigs on the ‘birthday’ button then the Happy Birthday message
dialog is displayed:

18.13 Exercises 183

Note look at from tkinter import messagebox as there are several useful simple to
use dialogs available in this module such as:

messagebox.showerror(‘Error’, msg)

And

messagebox.showinfo(“Birthday”, msg)

Chapter 19
PyDraw Tkinter Example Application

19.1 Introduction

This chapter builds on the GUI library presented in the last two chapters to illustrate
how a larger application can be built. It presents a case study of a drawing tool akin
to a tool such as Visio.

19.2 The PyDraw Application

The PyDraw application allows a user to draw diagrams using squares, circles, lines
and text. At present there is no select, resize, reposition or delete option available
(although these could be added if required). PyDraw is implemented using the TkInter
set of components. Below we can see the PyDraw application running on a Mac:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_19

186 19 PyDraw Tkinter Example Application

When a user starts the PyDraw application, they see the interface shown above.
Depending on the operating system it has a menu bar across the top (on a Mac this
menu bar is at the Top of the Mac display) and a drawing area below that.

There are two menus defined for the application, File and Mode:

19.3 The Structure of the Application

The user interface created for the PyDraw application is made up of a number of
elements (see below): the PyDrawMenuBar, the PyDrawToolbar containing a
sequence of buttons across the top of the window, the drawing panel and the window
frame (implemented by the PyDrawFrame class).

19.3 The Structure of the Application 187

The following diagram shows the same information as that presented above, but
as a containment hierarchy, this means that the diagram illustrates how one object is
contained within another. The lower-level objects are contained within the higher-
level objects.

It is important to visualise this as the majority of GUI interfaces are built up in
this way, using containers and layout managers.

The inheritance structure between the classes used in the PyDraw application is
illustrated below. This class hierarchy is typical of an application which incorporates
user interface features with graphical elements.

188 19 PyDraw Tkinter Example Application

19.3.1 Model, View and Controller Architecture

The application adopts the well-established Model-View-Controller (or MVC)
design pattern for separating out the responsibilities between the view element (e.g.
the Tk or Frame), the control element (for handling user input) and the model element
(which holds the data to be displayed).

This separation of concerns is not a new idea and allows the construction of GUI
applications that mirror the Model-View-Controller architecture. The intention of
the MVC architecture is the separation of the user display, from the control of user
input, from the underlying information model as illustrated below.

There are a number of reasons why this separation is useful:

• reusability of application and/or user interface components,
• ability to develop the application and user interface separately,
• ability to inherit from different parts of the class hierarchy.
• ability to define control style classes which provide common features separately

from how these features may be displayed.

19.3 The Structure of the Application 189

This means that different interfaces can be used with the same application, without
the application knowing about it. It also means that any part of the system can be
changed without affecting the operation of the other. For example, the way that the
graphical interface (the look) displays the information could be changed without
modifying the actual application or how input is handled (the feel). Indeed the
application need not know what type of interface is currently connected to it at all.

19.3.2 PyDraw MVC Architecture

The MVC structure of the PyDraw application has a top-level controller class
PyDrawController and a top-level view class the PyDrawFrame (there is
no model as the top level MVC triad does not hold any explicit data itself). This is
shown below:

At the next level down there is another MVC structure; this time for the
drawing element of the application. There is a DrawingController, with a
DrawingModel and a DrawingPanel (the view) as illustrated below:

The DrawingModel, DrawingPanel and DrawingController classes
exhibit the classic MVC structure. The view and the controller classes
(DrawingPanel and DrawingController) know about each other and the
drawing model, whereas the DrawingModel knows nothing about the view or the
controller. The view is notified of changes in the drawing through the paint event.

190 19 PyDraw Tkinter Example Application

19.3.3 Additional Classes

There are also four types of drawing object (of Figure): Circle, Line, Square
and Text figures. The only difference between these classes is what is drawn on the
graphic device context within the draw()method. The Figure class, from which
they all inherit, defines the common attributes used by all objects within a Drawing
(e.g. representing an x and y location and size).

The PyDrawFrame class also uses a PyDrawMenuBar class which extends the
tk.Menu class with menu items for use within the PyDraw application.

The final class is the PyDraw class that initiates the execution of the whole
application.

19.3.4 Object Relationships

However, the inheritance hierarchy is only part of the story for any object-oriented
application. The following figure illustrates how the objects relate to one another
within the working application.

19.4 The Interactions Between Objects 191

The PyDrawView is responsible for setting up the controller and the
DrawingView.

The PyDrawController is responsible for handling menu and tool bar user
interactions.

This separates graphical elements from the behaviour triggered by the user.
The DrawingView is responsible for displaying any figures held by the

DrawingModel. The DrawingController manages all user interactions with
the DrawingView including adding figures and clearing all figures from the model.
The DrawingModel holds a list of figures to be displayed.

19.4 The Interactions Between Objects

We have now examined the physical structure of the application but not how the
objects within that application interact.

In many situations this can be extracted from the source code of the application
(with varying degrees of difficulty). However, in the case of an application such as
PyDraw, which is made up of a number of different interacting components, it is
useful to describe the system interactions explicitly.

The diagrams illustrating the interactions between the objects use the following
conventions:

• a solid arrow indicates a message send,

192 19 PyDraw Tkinter Example Application

• a square box indicates a class,
• a name in brackets indicates the type of instance,
• numbers indicate the sequence of message sends.

These diagrams are based on the sequence and collaboration diagrams found in
the Unified Modelling Language (UML) notation.

19.4.1 The PyDrawApp

When the PyDraw application is instantiated the PyDraw object in created, and this
happens if this is the main entry point to the code. The PyDraw class creates the main
PyDrawView display and causes it to be displayed to the user via the mainloop()
method of the view:

class PyDraw:
def __init__(self):

self.view = PyDrawView()
self.view.mainloop()

if __name__ == '__main__':
PyDraw()

19.5 The PyDrawView Constructor

The PyDrawView initialiser method sets up the main display of the UI application
and also initialises the controllers and drawing elements. This is shown below using
a collaboration diagram:

19.5 The PyDrawView Constructor 193

The PyDrawView constructor sets up the environment for the application. It
creates the top level PyDrawController. It creates the DrawingView and initialises
the display layout. It initialises the menu bar. It binds the DrawingView to the overall
PyDrawController. It also uses the Tk object to centre the windowing using:

self.root.eval('tk::PlaceWindow . center')

19.5.1 Changing the Application Mode

One interesting thing to note is what happens when the user selects an option from
the Drawing menu. This allows the mode to be changed to a square, circle, line or
text. The interactions involved are shown below for the situation where a user selects
the ‘Circle’ menu item on the Drawing menu (using a collaboration diagram):

When the user selects one of the menu items the command menu item
calls a referenced PyDrawController method (such as the
set_circle_mode() method). Thus each command menu item is linked to
the appropriate method defined on the overall controller (such as set_circle_
mode() or set_line_mode()). These methods set the mode attribute of the
controller to an appropriate value.

19.5.2 Adding a Graphic Object

A user adds a graphic object to the drawing displayed by the DrawingView by
pressing the mouse button.

When the user clicks on the drawing panel, the DrawingController responds
as shown below:

194 19 PyDraw Tkinter Example Application

The above illustrates what happens when the user presses and releases a mouse
button over the drawing panel, to create a new figure.

When the user presses the left mouse button, a mouse clicked message is sent to the
DrawingController, which decides what action to perform in response (see above).
In PyDraw, it obtains the cursor x and y values at which the event was generated.

The controller then calls its own add() method passing in the current
mode and the current mouse location. The controller obtains the current mode
(from the PyDrawController using the method callback provided when the
DrawingController is instantiated) and adds the appropriate type of figure to
the DrawingModel.

The add() method then adds a new figure to the drawing model based on the
specified mode. It finally asks the view to redraw its contents.

19.6 The Classes

This section presents the classes in the PyDraw application. As these classes build on
concepts already presented in the last few chapters, they shall be presented in their
entirety with comments highlighting specific points of their implementations. Note
that the code imports the tk module from the tkinter library, e.g.

import tkinter as tk
from abc import abstractmethod

19.6.1 The PyDrawConstants Class

The purpose of this class is to provide a set of constants that can be referenced in
the remainder of the application. It is used to provide constants used to represent the
current mode (to indicate whether a line, square, circle or test should be added to the
display) default window sizes and background colour etc.

19.6 The Classes 195

class PyDrawConstants:
WIDTH = 600
HEIGHT = 400
BACKGROUND_COLOUR = 'white'
CIRCLE_MODE = 'Circle'
SQUARE_MODE = 'Square'
LINE_MODE = 'Line'
TEXT_MODE = 'Text'
SIZE = 30

19.6.2 The PyDrawView Class

The PyDrawView class provides the main window for the application. Note that
due to the separation of concerns introduced via the MVC architecture, the view class
is only concerned with the layout of the components:

class PyDrawView:
""" Main Frame responsible for the

layout of the UI."""

def __init__(self):
self.root = tk.Tk()
Set the title of the window
self.root.title('PyDraw')

Set up the controller
self.controller = PyDrawController(self.root)
Set up menus
self.menubar = PyDrawMenuBar(self.root, self.controller)
self.root.config(menu=self.menubar)

Setup drawing view
self.drawing_view = DrawingView(self.root,

self.controller.get_mode)
self.controller.view = self.drawing_view
self.root.eval('tk::PlaceWindow . center')

def mainloop(self):
"""Delegate method that passes responsibility onto the root"""
self.root.mainloop()

196 19 PyDraw Tkinter Example Application

19.6.3 The PyDrawMenuBar Class

The PyDrawMenuBar class is a subclass of the tk.Menu class which defines
the contents of the menu bar for the PyDraw application. It does this by creating
two tk.Menu objects and adding them to the menu bar. Each tk.Menu imple-
ments a dropdown menu from the menu bar. To add individual menu items the add_
command() function is used. These menu items are appended to the menu.
The menus are themselves appended to the menu bar using the add_cascade() func-
tion. Each menu item invokes a method on the controller associated with the menu
bar—thus separating out the concerns of defining the structure of the menu bar and
defining the functionality of each item in the menu bar.

class PyDrawMenuBar(tk.Menu):
def __init__(self, parent, controller):

super().__init__(parent)
self.controller = controller
self.create_file_menu()
self.create_mode_menu()

def create_mode_menu(self):
mode_menu = tk.Menu(self, tearoff=0)
mode_menu.add_command(label=PyDrawConstants.CIRCLE_MODE,

command=self.controller.set_circle_mode)
mode_menu.add_command(label=PyDrawConstants.SQUARE_MODE,

command=self.controller.set_square_mode)
mode_menu.add_command(label=PyDrawConstants.LINE_MODE,

command=self.controller.set_line_mode)
mode_menu.add_command(label=PyDrawConstants.TEXT_MODE,

command=self.controller.set_text_mode)
self.add_cascade(label=‘Mode’, menu=mode_menu)

def create_file_menu(self):
file_menu = tk.Menu(self, tearoff=0)
file_menu.add_command(label='New',

command=self.controller.new_canvas)
file_menu.add_command(label=‘Exit’,

command=self.controller.exit_app)
self.add_cascade(label='File', menu=file_menu)

19.6.4 The PyDrawController Class

This class provides the control element of the top-level view. It maintains the current
mode. It also provides a method which can be used to obtain the current mode. The
final two methods support cleaning out the display and quitting the application.

19.6 The Classes 197

class PyDrawController:

def __init__(self, root):
self.root = root
self.view = None
Set the initial mode
self.mode = PyDrawConstants.SQUARE_MODE

def set_circle_mode(self):
self.mode = PyDrawConstants.CIRCLE_MODE

def set_line_mode(self):
self.mode = PyDrawConstants.LINE_MODE

def set_square_mode(self):
self.mode = PyDrawConstants.SQUARE_MODE

def set_text_mode(self):
self.mode = PyDrawConstants.TEXT_MODE

def clear_drawing(self):
self.view.drawing_controller.clear()

def get_mode(self):
return self.mode

def new_canvas(self):
self.view.delete('all')

def exit_app(self):
self.root.quit()

19.6.5 The DrawingModel Class

The DrawingModel class has a contents attribute that is used to hold all the
figures in the drawing. It also provides some convenience methods to reset the
contents and to add a figure to the contents.

class DrawingModel:

def __init__(self):
self.contents = []

def clear_figures(self):
self.contents = []

def add_figure(self, figure):
self.contents.append(figure)

The DrawingModel is a relatively simple model which merely records a set of
graphical figures in a List. These can be any type of object and can be displayed in
any way as long as they implement the draw() method. It is the objects themselves
which determine what they look like when drawn.

198 19 PyDraw Tkinter Example Application

19.6.6 The DrawingView Class

The DrawingView class is a subclass of the tk.Canvas class. It provides the
view for the drawing data model. This uses the classical MVC architecture and has
a model (DrawingModel), a view (the DrawingPanel) and a controller (the
DrawingController).

The DrawingPanel instantiates its own DrawingModel to hold the figures
to be drawn and DrawingController to handle mouse events.

It also registers for button events to be handled by the on_mouse_click method of
the controller.

class DrawingView(tk.Canvas):
def __init__(self, parent, get_mode,

width=PyDrawConstants.WIDTH,
height=PyDrawConstants.HEIGHT,
bg=PyDrawConstants.BACKGROUND_COLOUR):

super().__init__(parent, width=width, height=height, bg=bg)
self.model = DrawingModel()
self.controller = DrawingController(self, self.model, get_

mode)
self.pack()
self.bind('<Button-1>', self.controller.on_mouse_click)

def draw_contents(self):
for figure in self.model.contents:

figure.draw()

19.6.7 The DrawingController Class

The DrawingController class provides the control class for the top level MVC
architecture used with the DrawingModel (model) and DrawingPanel (view)
classes. In particular it handles the mouse events in the DrawingView via the on_
mouse_click() method.

It also defines an add method that is used to add a figure to the DrawingModel
(the actual figure depends on the current mode of the PyDrawController) and
requests that the view refresh itself. A final method, the clear() method, removes
all figures from the drawing model and refreshes the display.

class DrawingController:

def __init__(self, view, model, get_mode):
self.view = view
self.model = model
self.get_mode = get_mode

def on_mouse_click(self, mouse_event):
x = mouse_event.x

19.6 The Classes 199

y = mouse_event.y
self.add(self.get_mode(), x, y)

def add(self, mode, x, y, size=PyDrawConstants.SIZE):
if mode == PyDrawConstants.SQUARE_MODE:

fig = Square(self.view, x, y, size)
elif mode == PyDrawConstants.CIRCLE_MODE:

fig = Circle(self.view, x, y, size)
elif mode == PyDrawConstants.TEXT_MODE:

fig = Text(self.view, x, y)
else:

fig = Line(self.view, x, y, size)
self.model.add_figure(fig)
self.view.draw_contents()

def clear(self):
self.model.clear_figures()
self.view.delete('all')

19.6.8 The Figure Class

The Figure class (an abstract superclass of the Figure class hierarchy) captures
the elements which are common to graphic objects displayed within a drawing. The
x and y values define the position of the figure, while the size attribute defines the
size of the figure. The fill attributes defines the background colour used to fill the
figure (if appropriate).

The Figure class defines a single abstract method draw() that must be imple-
mented by all concrete subclasses. This method should define how the shape is drawn
on the drawing panel.

class Figure:
def __init__(self,

canvas,
x=0,
y=0,
size=None,
fill='blue'):

self.canvas = canvas
self.x = x
self.y = y
self.size = size
self.fill = fill

@abstractmethod
def draw(self):

pass

200 19 PyDraw Tkinter Example Application

19.6.9 The Square Class

This is a subclass of Figure that specifies how to draw a square shape in a
drawing. It implements the draw() method inherited from Figure using the
canvas.create_rectangle() method.

class Square(Figure):
def __init__(self, canvas, x, y, size):

super().__init__(canvas=canvas, x=x, y=y, size=size)

def draw(self):
self.canvas.create_rectangle(self.x,

self.y,
self.x + self.size,
self.y + self.size,
fill=self.fill)

19.6.10 The Circle Class

This is another subclass of Figure. It implements the draw()method by drawing
a circle (via the create_oval() method of the canvas. Note that the size attribute
must be used to generate an appropriate radius.

class Circle(Figure):
def __init__(self, canvas, x, y, size):

super().__init__(canvas=canvas, x=x, y=y, size=size,
fill='red')

def draw(self):
self.canvas.create_oval(self.x,

self.y,
self.x + self.size,
self.y + self.size,
fill=self.fill)

19.6.11 The Line Class

This is another subclass of Figure. In this very simple example, a default end point
for the line is generated. Alternatively the program could look for a mouse released
event and pick up the mouse at this location and use this as the end point of the line.

class Line(Figure):
def __init__(self, canvas, x, y, size):

super().__init__(canvas=canvas, x=x, y=y, size=size)

19.8 Exercises 201

def draw(self):
self.canvas.create_line(self.x,

self.y,
self.x + self.size,
self.y + self.size)

19.6.12 The Text Class

This is also a subclass of Figure. A default value is used for the text to display;
however a dialog could be presented to the user allowing them to input the text they
wish to display:

class Text(Figure):
def __init__(self, canvas, x, y, text_string='Text',

font='Helvetica 15 bold', fill='black'):
super().__init__(canvas=canvas, x=x, y=y, fill=fill)
self.text_string = text_string
self.font = font

def draw(self):
text = self.text_string
self.canvas.create_text(self.x,

self.y,
text=text,
fill=self.fill,
font=self.font)

19.7 Reference

The following provides some background on the Model-View-Controller architecture in user
interfaces.

1. G.E. Krasner, S.T. Pope, A cookbook for using the model-view controller user interface
paradigm in smalltalk-80. JOOP 1(3), 26–49 (1988)

19.8 Exercises

You could develop the PyDraw application further by adding the following features:

1. A delete option You can add a button labelled Delete to the window. It should set
the mode to “delete”. The drawingPanel must be altered so that the mouseRe-
leased method sends a delete message to the drawing. The drawing must find and
remove the appropriate graphic object and send the changed message to itself.

202 19 PyDraw Tkinter Example Application

2. A resize option This involves identifying which of the shapes has been selected
and then either using a dialog to enter the new size or providing some option that
allows the size for the shape to be indicated using the mouse.

Part III
Computer Games

Chapter 20
Introduction to Games Programming

20.1 Introduction

Games programming is performed by developers/coders who implement the logic
that drives a game.

Historically games developers did everything; they wrote the code, designed the
sprites and icons, handled the game play, dealt with sounds and music, generated any
animations required etc. However, as the game industry has matured games compa-
nies have developed specific riles including Computer Graphics (CG) animators,
artists, games developers and games engine and physics engine developers etc.

Those involved with code development may develop a physics engine, a games
engine, the games themselves, etc. Such developers focus on different aspects of a
game. For examples a game engine developer focusses on creating the framework
within which the game will run. In turn a physics engine developer will focus on
implementing the mathematics behind the physics of the simulated games world
(such as the effect of gravity on characters and components within that world). In
many cases there will also be developers working on the AI engine for a game. These
developers will focus on providing facilities that allow the game or characters in the
game to operate intelligently.

Those developing the actual game play will use these engines and frameworks
to create the overall end result. It is they who give life to the game and make it an
enjoyable (and playable) experience.

20.2 Games Frameworks and Libraries

There are many frameworks and libraries available that allow you to create anything
from simple games to large complex role playing games with infinite worlds.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_20

206 20 Introduction to Games Programming

One example is the Unity framework that can be used with the C# program-
ming language. Another such framework is the Unreal engine used with the C++
programming language.

Python has also been used for games development with several well known games
titles depending on it in one way or another. For example, Battlefield 2 by Digital
Illusions CE is a military simulator first-person shooter game. Battlefield Heroes
handles portions of the game logic involving game modes and scoring using Python.

Other games that use Python include Civilisation IV (for many of the tasks), Pirates
of the Caribbean Online and Overwatch (which makes its choices with Python).

Python is also embedded as a scripting engine within tools such as Autodesk’s
Maya which is a computer animation toolkit that is often used with games.

20.3 Python Games Development

For those wanting to learn more about game development; Python has much to
offer. There are many examples available online as well as several game oriented
frameworks.

The frameworks/libraries available for games development in Python include:

• Arcade. This is a Python library for creating 2D style video games.
• pyglet is a windowing and multimedia library for Python that can also be used for

games development.
• Cocos2d is a framework for building 2D games that is built on top of pyglet.
• pygame is probably the most widely used library for creating games within the

Python world. There are also many extensions available for pygame that help to
create a wide range of different types of games.

We will focus on pygame in the next two chapters in this book.
Other libraries of interest to Python games developers include:

• PyODE. This is an open-source Python binding for the Open Dynamics Engine
which is an open-source physics engine.

• pymunk Pymunk is a easy-to-use 2D physics library that can be used whenever
you need 2d rigid body physics with Python. It is very good when you need 2D
physics in your game, demo or other application. It is built on top of the 2D physics
library Chipmunk.

• pyBox2D pybox2d is a 2D physics library for your games and simple simulations.
It’s based on the Box2D library written in C++. It supports several shape types
(circle, polygon, thin line segments) as well as a number of joint types (revolute,
prismatic, wheel, etc.).

• Blender. This is a open-source 3D Computer Graphics software toolset used for
creating animated films, visual effects, art, 3D printed models, interactive 3D
applications and video games. Blender’s features include 3D modelling, texturing,

20.5 Online Resources 207

raster graphics editing, rigging and skinning, etc. Python can be used as a scripting
tool for creation, prototyping, game logic and more.

• Quake Army Knife which is an environment for developing 3D maps for games
based on the Quake engine. It is written in Delphi and Python.

20.4 Using Pygame

In the next two chapters we will explore the core pygame library and how it can be
used to develop interactive computer games. The next chapter explores pygame itself
and the facilities it provides. The following chapter developers a simple video game
in which the user moves a starship around avoiding meteors which scroll vertically
down the screen.

20.5 Online Resources

For further information games programming and the libraries mentioned in this
chapter see:

• https://unity.com/ the C# framework for games development.
• https://www.unrealengine.com for C++ games development.
• http://arcade.academy/ provides details on the Arcade games framework.
• http://www.pyglet.org/ for information on the piglet library.
• http://cocos2d.org/ is the home page for the Cocos2d framework.
• https://www.pygame.org for information on pygame.
• http://pyode.sourceforge.net/ for details of the PyODE bindings to the Open

Dynamics Engine.
• http://www.pymunk.org/ provides information on pymunk.
• https://github.com/pybox2d/pybox2d which is a GitHub repository for pyBox2d.
• https://git.blender.org/gitweb/gitweb.cgi/blender.git GitHub repository for

Blender.
• https://sourceforge.net/p/quark/code SourceForge repository for Quake Army

Knife.
• https://www.autodesk.co.uk/products/maya/overview for information on

Autodesks Maya computer animation software.

https://unity.com/
https://www.unrealengine.com
http://arcade.academy/
http://www.pyglet.org/
http://cocos2d.org/
https://www.pygame.org
http://pyode.sourceforge.net/
http://www.pymunk.org/
https://github.com/pybox2d/pybox2d
https://git.blender.org/gitweb/gitweb.cgi/blender.git
https://sourceforge.net/p/quark/code
https://www.autodesk.co.uk/products/maya/overview

Chapter 21
Building Games with Pygame

21.1 Introduction

Pygame is a cross-platform, free and open-source Python library designed to make
building multimedia applications such as games easy. Development of pygame started
back in October 2000 with pygame version 1.0 being released six months later. The
version of pygame discussed in this chapter is version 2.4.0. If you have a later
version, check to see what changes have been made to see if they have any impact
on the examples presented here.

You can install pygame using pip for example.

pip install pygame

The pygame library is built on top of the SDL library. SDL (or Simple Directmedia
Layer) is a cross-platform development library designed to provide access to audio,
keyboards, mouse, joystick and graphics hardware via OpenGL and Direct3D. To
promote portability, pygame also supports a variety of additional backends including
WinDIB, X11, Linux Frame Buffer, etc.

SDL officially supports Windows, Mac OS X, Linux, iOS and Android (although
other platforms are unofficially supported). SDL itself is written in C, and pygame
provides a wrapper around SDL. However, pygame adds functionality not found in
SDL to make the creation of graphical or video games easier. These functions include
vector maths, collision detection, 2D sprite scene graph management, MIDI support,
camera, pixel array manipulation, transformations, filtering, advanced freetype font
support, and drawing.

The remainder of this chapter introduces pygame, the key concepts; the key
modules, classes and functions, and a very simple first pygame application. The
next chapter steps through the development of a simple arcade style video game
which illustrates how a game can be created using pygame.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_21

210 21 Building Games with Pygame

21.2 The Display Surface

The Display Surface (aka the display): this is the most important part of a pygame
game. It is the main window display of your game and can be of any size; however,
you can only have one display surface.

In many ways, the display surface is like a blank piece of paper on which you can
draw. The surface itself is made up of pixels which are numbered from 0,0 in the top
left hand corner with the pixel locations being indexed in the x axis and the y axis.
This is shown below:

The above diagram illustrates how pixels within a surface are indexed. Indeed a
surface can be used to draw lines, shapes (such as rectangles, squares, circles and
elapses), display images, manipulate individual pixels, etc. Lines are drawn from one
pixel location to another (e.g. from location 0,0 to location 9,0 which would draw a
line across the top of the above display surface). Images can be displayed within the
display surface given a starting point such as 1, 1.

The display surface is created by the pygame.display.set_mode() func-
tion. This function takes a tuple that can be used to specify the size of the display
surface to be returned. For example:

display_surface = pygame.display.set_mode((400, 300))

This will create a display surface (window) of 400 by 300 pixels.
Once you have the display surface you can fill it with an appropriate background

colour (the default is black); however, if you want a different background colour or
want to clear everything that has previously been drawn on the surface, then you can
use the surface’s fill() method:

WHITE = (255, 255, 255)
display_surface.fill(WHITE)

21.3 Events 211

The fill method takes a tuple that is used to define a colour in terms of red, green and
blue (or RGB) colours. Although the above examples use a meaningful name for the
tuple representing the RGB values used for white, there is of course no requirement
to do this (although it is considered good practice).

To aid in performance, any changes you make to the display surface actually
happen in the background and will not be rendered onto the actual display that the
user sees until you call the update() or flip() methods on the surface. For
example:

pygame.display.update()
pygame.display.flip()

The update() method will redraw the display with all changes made to the
display in the background. It has an optional parameter that allows you to specify
just a region of the display to update (this is defined using a Rect which represents
a rectangular area on the screen). The flip() method always refreshes the whole
of the display (and as such does exactly the same as the update() method with no
parameters).

Another method, which is not specifically a display surface method, but which is
often used when the display surface is created, provides a caption or title for the top-
level window. This is the pygame.display.set_caption() function. For
example:

pygame.display.set_caption('Hello World')

This will give the top-level window the caption (or title) ‘Hello World’.

21.3 Events

Just as the graphical user interface systems described in earlier chapters have an
event loop that allows the programmer to work out what the user is doing (in those
cases this is typically selecting a menu item, clicking a button or entering data, etc.),
pygame has an event loop that allows the game to work out what the player is doing.
For example, the user may press the left or right arrow key. This is represented by
an event.

21.3.1 Event Types

Each event that occurs has associated information such as the type of that event. For
example:

• Pressing a key will result in a KEYDOWN type of event, while releasing a key will
result in a KEYUP event type.

212 21 Building Games with Pygame

• Selecting the window close button will generate a QUIT event type, etc.
• Using the mouse can generate MOUSEMOTION events as well as
MOUSEBUTTONDOWN and MOUSEBUTTONUP event types.

• Using a Joystick can generate several different types of event
including JOYAXISMOTION, JOYBALLMOTION, JOYBUTTONDOWN and
JOYBUTTONUP.

These event types tell you what occurred to generate the event. This means that
you can choose which types of events you want to deal with and ignore other events.

21.3.2 Event Information

Each type of event object provides information associated with that event. For
example a key-oriented event object will provide the actual key pressed, while a
mouse-oriented event object will provide information on the position of the mouse,
which button was pressed, etc. If you try an access an attribute on an event that does
not support that attribute, then an error will be generated.

The following lists some of the attributes available for different event types:

• KEYDOWN and KEYUP, the event has a key attribute and a mod attribute
(indicating if any other modifying keys such as shift are also being pressed).

• MOUSEBUTTONUP and MOUSEBUTTONDOWN have an attribute pos that holds
a tuple indicating the mouse location in terms of x and y coordinates on the
underlying surface. It also has a button attribute indicating which mouse was
pressed.

• MOUSEMOTION has pos, rel and buttons attributes. The pos is a tuple indicating
the x and y locations of mouse cursor. The real attribute indicates the amount
of mouse movement, and buttons indicate the state of the mouse buttons.

As an example if we want to check for a keyboard event type and then check that
the key pressed was the space bar, then we can write:

if event.type == pygame.KEYDOWN:
Check to see which key is pressed

if event.key == pygame.K_SPACE:
print(‘space’)

This indicates that if it is a key pressed event and that the actual key was the space
bar, then print the string ‘space’.

There are many keyboard constants that are used to represent the keys on the
keyboard and pygame.K_SPACE constant used above is just one of them.

All the keyboard constants are pre-fixed with ‘K_’ followed by the key or the
name of the key, for example:

• K_TAB, K_SPACE, K_PLUS, K_0, K_1, K_AT, K_a, K_b, K_z, K_DELTE, K_
DOWN, K_LEFT, K_RIGHT, K_LEFT, etc.

21.3 Events 213

Further keyboard constants are provided for modifier states that can be combined
with the above such as KMOD_SHIFT, KMOD_CAPS, KMOD_CTRL and KMOD_
ALT.

21.3.3 The Event Queue

Events are supplied to a pygame application via the Event Queue.
The event queue is used to collect together events as they happen. For example,

let us assume that a user clicks on the mouse twice and a key twice before a program
has a chance to process them; then there will be four events in the event queue as
shown below:

The application can then obtain an iterable from the event queue and process
through the events in turn. While the program is processing these events, further
events may occur and will be added to the event queue. When the program has
finished processing the initial collection of events, it can obtain the next set of events
to process.

One significant advantage of this approach is that no events are ever lost; that is
if the user clicks the mouse twice while the program is processing a previous set of
events, they will be recorded and added to the event queue. Another advantage is that
the events will be presented to the program in the order that they occurred.

The pygame.event.get() function will read all the events currently on
the event queue (removing them from the event queue). The method returns an
EventList which is an iterable list of the events read. Each event can then be
processed in turn. For example:

for event in pygame.event.get():
if event.type == pygame.QUIT:

print('Received Quit Event:')
elif event.type == pygame.MOUSEBUTTONDOWN:

print('Received Mouse Event')
elif event.type == pygame.KEYDOWN:

print('Received KeyDown Event')

In the above code snippet an EventList is obtained from the event queue containing
the current set of events. The for loop then processes each event in turn checking the
type and printing an appropriate message.

214 21 Building Games with Pygame

You can use this approach to trigger appropriate behaviour such as moving an
image around the screen or calculating the players score. However, be aware that if
this behaviour takes too long it can make the game difficult to play (although the
examples in this chapter and the next are simple enough that this is not a problem).

21.4 A First pygame Application

We are now at the point where we can put together what we have looked at so far
and create a simple pygame application.

It is common to create a hello world style program when using a new programming
language or using a new application framework, etc. The intention is that the core
elements of the language or framework are explored in order to generate the most
basic form of an application using the language or framework. We will therefore
implement the most basic application possible using pygame.

The application we will create will display a pygame window, with a ‘Hello World’
title. We will then be able to quit the game. Although technically speaking this isn’t
a game, it does possess the basic architecture of a pygame application.

The simple HelloWorld game will initialise pygame and the graphical display.
It will then have a main game playing loop that will continue until the user selects
to quit the application. It will then shut down pygame. The display created by the
program is shown below for both Mac and Windows operating systems:

To quit the program, click on the exit button for the windowing system you are
using.

The simple HelloWorld game is given below:

import pygame

def main():
print('Starting Game')

print('Initialising pygame')
pygame.init() # Required by every pygame application

print('Initialising HelloWorldGame')

21.4 A First pygame Application 215

pygame.display.set_mode((200, 100))
pygame.display.set_caption('Hello World')

print('Update display')
pygame.display.update()

print('Starting main Game Playing Loop')
running = True
while running:

for event in pygame.event.get():
if event.type == pygame.QUIT:

print('Received Quit Event:', event)
running = False

print('Game Over')
pygame.quit()

if __name__ == '__main__':
main()

There are several key steps highlighted by this example; these steps are

1. Import pygame. pygame is of course not one of the default modules avail-
able within Python. You must first import pygame into you code. The import
pygame statement imports the pygame module into your code and makes
the functions and classes in pygame available to you (note the capitalisation—
pygame is not the same module name as PyGame). It is also common to find
that programs import

• from pygame.locals import *
• This adds several constants and functions into the namespace of your program.

In this very simple example we have not needed to do this.

2. Initialise pygame. Almost every pygame module needs to be initialised in some
way, and the simplest way to do this is to call pygame.init(). This will do
what is required to set the pygame environment up for use. If you forget to call
this function, you will typically get an error message such as pygame.error:
video system not initialised (or something similar). If you get
such a method, check to see that you have called pygame.init(). Note
that you can initialise individual pygame modules (e.g. the pygame.font
module can be initialised using pygame.font.init()) if required. However
pygame.init() is the most commonly used approach to setting up pygame.

3. Set up the display. Once you have initialised the pygame framework you can
setup the display. In the above code example, the display is set up using the
pygame.display.set_mode() function. This function takes a tuple spec-
ifying the size of the window to be created (in this case 200 pixels wide by 100
pixels high). Note that if you try and invoke this function by passing in two
parameters instead of a tuple, then you will get an error. This function returns
the drawing surface or screen/window that can be used to display items within
the game such as icons, messages and shapes. As our example is so simple we

216 21 Building Games with Pygame

do not bother saving it into a variable. However, anything more complex than
this will need to do so. We also set the window/frame’s caption (or title). This is
displayed in the title bar of the window.

4. Render the display. We now call the pygame.display.update() func-
tion. This function causes the current details of the display to be drawn. At the
moment this is a blank window. However, it is common in games to perform a
series of updates to the display in the background and then when the program is
ready to update the display to call this function. This batches a series of updates
and the causes the display to be refreshed. In a complex display it is possible to
indicate which parts of the display need to be redrawn rather than redrawing the
whole window. This is done by passing a parameter into the update() function
to indicate the rectangle to be redrawn. However, our example is so simple we
are OK with redrawing the whole window, and therefore we do not need to pass
any parameters to the function.

5. Main game playing loop. It is common to have a main game playing loop that
drives the processing of user inputs, modifies the state of the game and updates
the display. This is represented above by the while running: loop. The
local variable running is initialised to True. This means that the while
loop ensures that the game continues until the user selects to quit the game at
which point the running variable is set to False which causes the loop to
exit. In many cases this loop will call update() to refresh the display. The
above example does not do this as nothing is changed in the display. However
the example developed later in this chapter will illustrate this idea.

6. Monitor for events that drive the game. As mentioned earlier the event queue
is used to allow user inputs to be queued and then processed by the game. In
the simple example shown above this is represented by a for loop that receives
events using pygame.event.get() and then checking to see if the event is
a pygame.QUIT event. If it is, then it sets the running flag to False, which
will cause the main while loop of the game to terminate.

7. Quit pygame once finished. In pygame any module that has an init() function
also has an equivalent quit() function that can be used to perform any cleanup
operations. As we called init() on the pygame module at the start of our
program we will therefore need to call pygame.quit() at the end of the
program to ensure everything is tidied up appropriately.

The output generated from a sample run of this program is given below:

pygame 2.4.0 (SDL 2.26.4, Python 3.11.3)
Hello from the pygame community. https://www.pygame.org/contri
bute.html
Starting Game
Initialising pygame
Initialising HelloWorldGame
Update display
Starting main Game Playing Loop

21.5 Further Concepts 217

21.5 Further Concepts

There are very many facilities in pygame that go beyond what we can cover in this
book; however a few of the more common are discussed below.

Surfaces are a hierarchy. The top-level display surface may contain other surfaces
that may be used to draw images or text. In turn containers such as panels may render
surfaces to display images or text, etc.

Other types of surface. The primary display surface is not the only surface in
pygame. For example, when an image, such as a PNG or JPEG image, is loaded into
a game, then it is rendered onto a surface. This surface can then be displayed within
another surface such as the display surface. This means that anything you can do to
the display surface you can do with any other surface such as draw on it, put text on
it, colour it and add another icon onto the surface.

Fonts. The pygame.font.Font object is used to create a font that can be used to
render text onto a surface. The render method returns a surface with the text rendered
on it that can be displayed within another surface such as the display surface. Note
that you cannot write text onto an existing surface you must always obtain a new
surface (using render) and then add that to an existing surface. The text can only be
displayed in a single line, and the surface holding the text will be of the dimensions
required to render the text. For example:

text_font = pygame.font.Font('freesansbold.ttf', 18)
text_surface = text_font.render('Hello World', antialias=True,
color=BLUE)

This creates a new font object using the specified font with the specified font size
(in this case 18). It will then render the string ‘Hello World’ on to a new surface using
the specified font and font size in blue. Specifying that antialias is true indicates that
we would like to smooth the edges of the text on the screen.

Rectangles (or Rects). The pygame.Rect class is an object used to represent
rectangular coordinates. A Rect can be created from a combination of the top left
corner coordinates plus a width and height. For flexibility many functions that expect
a Rect object can also be given a Rectlike list; this is a list that contains the data
necessary to create a Rect object. Rects are very useful in a pygame game as they
can be used to define the borders of a game object. This means that they can be used
within games to detect if two objects have collided. This is made particularly easy
because the Rect class provides several collision detection methods:

• pygame.Rect.contains() test if one rectangle is inside another.
• pygame.Rect.collidepoint() test if a point is inside a rectangle.
• pygame.Rect.colliderect() test if two rectangles overlap.
• pygame.Rect.collidelist() test if one rectangle in a list intersects.
• pygame.Rect.collidelistall() test if all rectangles in a list intersect.

218 21 Building Games with Pygame

• pygame.Rect.collidedict() test if one rectangle in a dictionary inter-
sects.

• pygame.Rect.collidedictall() test if all rectangles in a dictionary
intersect.

The class also provides several other utility methods such as move() which
moves the rectangle and inflate() which can grow or shrink the rectangles size.

Drawing shapes. The pygame.draw module has numerous functions that can be
used to draw lines and shapes onto a surface, for example:

pygame.draw.rect(display_surface, BLUE, [x, y, WIDTH, HEIGHT])

This will draw a filled blue rectangle (the default) onto the display surface. The
rectangle will be located at the location indicated by x and y (on the surface). This
indicates the top left hand corner of the rectangle. The width and height of the rect-
angle indicate its size. Note that these dimensions are defined within a list which is
a structure referred to as being rect like (see below). If you do not want a filled rect-
angle (i.e. You just want the outline), then you can use the optional width parameter
to indicate the thickness of the outer edge. Other methods available include

• pygame.draw.polygon() draw a shape with any number of sides.
• pygame.draw.circle() draw a circle around a point.
• pygame.draw.ellipse() draw a round shape inside a rectangle.
• pygame.draw.arc() draw a partial section of an ellipse.
• pygame.draw.line() draw a straight line segment.
• pygame.draw.lines() draw multiple contiguous line segments.
• pygame.draw.aaline() draw fine antialiased lines.
• pygame.draw.aalines() draw a connected sequence of antialiased lines.

Images. The pygame.image module contains functions for loading, saving and
transforming images. When an image is loaded into pygame, it is represented by
a surface object. This means that it is possible to draw, manipulate and process an
image in exactly the same way as any other surface which provides a great deal of
flexibility.

At a minimum the module only supports loading uncompressed BMP images but
usually also supports JPEG, PNG, GIF (non-animated), BMP, TIFF as well as other
formats. However, it only supports a limited set of formats when saving images;
these are BMP, TGA, PNG and JPEG.

An image can be loaded from a file using:

image_surface = pygame.image.load(filename).convert()

This will load the image from the specified file onto a surface.
One thing you might wonder at is the use of the convert() method on the

object returned from the pygame.image.load() function. This function returns
a surface that is used to display the image contained in the file. We call the method
convert() on this Surface, not to convert the image from a particular file format

21.6 A More Interactive pygame Application 219

(such as PNG, or JPEG); instead this method is used to convert the pixel format used
by the surface. If the pixel format used by the Surface is not the same as the display
format, then it will need to be converted on the fly each time the image is displayed
on the screen; this can be a fairly time-consuming (and unnecessary) process. We
therefore do this once when the image is loaded which means that it should not hinder
runtime performance and may improve performance significantly on some systems.

Once you have a surface containing an image it can be rendered onto another
surface, such as the display surface using the Surface.blit() method. For
example:

display_surface.blit(image_surface, (x, y))

Note that the position argument is a tuple specifying the x and y coordinates to
the image on the display surface.

Strictly speaking the blit() method draws one surface (the source surface) onto
another surface at the destination coordinates. Thus the target surface does not need
to be the top-level display surface.

Clock. A Clock object is an object that can be used to track time. In particular it can
be used to define the frame rate for the game, that is the number of frames rendered
per second. This is done using the Clock.tick() method. This method should be called
once (and only once) per frame. If you pass the optional framerate argument to
the tick() the function, then pygame will ensure that the games refresh rate is
slower than the given ticks per second. This can be used to help limit the runtime
speed of a game. By calling clock.tick(30) once per frame, the program will
never run at more than 30 frames per second.

21.6 A More Interactive pygame Application

The first pygame application we looked at earlier just displayed a window with the
caption ‘Hello World’. We can now extend this a little by playing with some of the
features we have looked at above.

The new application will add some mouse event handling. This will allow us to
pick up the location of the mouse when the user clicked on the window and draw a
small blue box at that point.

If the user clicks the mouse multiple times, we will get multiple blue boxes being
drawn. This is shown below.

220 21 Building Games with Pygame

This is still not much of a game but does make the pygame application more
interactive.

The program used to generate this application is presented below:

import pygame

FRAME_REFRESH_RATE = 30
BLUE = (0, 0, 255)
BACKGROUND = (255, 255, 255) # White
WIDTH = 10
HEIGHT = 10
def main():

print('Initialising PyGame')
pygame.init() # Required by every PyGame application

print('Initialising Box Game')
display_surface = pygame.display.set_mode((400, 300))
pygame.display.set_caption('Box Game')
print('Update display')
pygame.display.update()
print('Setup the Clock')
clock = pygame.time.Clock()
Clear the screen of current contents
display_surface.fill(BACKGROUND)

print('Starting main Game Playing Loop')
running = True
while running:

for event in pygame.event.get():
if event.type == pygame.QUIT:

print('Received Quit Event:', event)
running = False

elif event.type == pygame.MOUSEBUTTONDOWN:
print('Received Mouse Event', event)
x, y = event.pos

21.7 Alternative Approach to Processing Input Devices 221

pygame.draw.rect(display_surface, BLUE, [x, y, WIDTH,
HEIGHT])

Update the display
pygame.display.update()

Defines the frame rate - the number of frames per second
Should be called once per frame (but only once)
clock.tick(FRAME_REFRESH_RATE)

print('Game Over')
Now tidy up and quit Python
pygame.quit()

if __name__ == '__main__':
main()

Note that we now need to record the display surface in a local variable
so that we can use it to draw the blue rectangles. We also need to call the
pygame.display.update() function each time round the main while loop
so that the new rectangles we have drawn as part of the event processing for loop are
displayed to the user.

We also set the frame rate each time round the main while loop. This should
happen once per frame (but only once) and uses the clock object initialised at the
start of the program.

21.7 Alternative Approach to Processing Input Devices

There are actually two ways in which inputs from a device such as a mouse, joystick
or the keyboard can be processed. One approach is the event-based model described
earlier. The other approach is the state-based approach.

Although the event-based approach has many advantages, it is has two disadvan-
tages:

• Each event represents a single action, and continuous actions are not explicitly
represented. Thus if the user presses both the X key and the Z key, then this will
generate two events and it will be up to the program to determine that they have
been pressed at the same time.

• It is also up to the program to determine that the user is still pressing a key (by
noting that no KEYUP event has occurred).

• Both of these are possible but can be error prone.

An alternative approach is to use the state-based approach. In the state-based
approach the program can directly check the state of an input device (such as a key or
mouse or keyboard). For example, you can use pygame.key.get_pressed()
which returns the state of all the keys. This can be used to determine if a specific
key is being pressed at this moment in time. For example, pygame.key.get_

222 21 Building Games with Pygame

pressed()[pygame.K_SPACE] can be used to check to see if the space bar is
being pressed.

This can be used to determine what action to take. If you keep checking that the
key is pressed, then you can keep performing the associated action. This can be very
useful for continuous actions in a game such as moving an object.

However, if the user presses a key and then releases it before the program checks
the state of the keyboard, then that input will be missed.

21.8 pygame Modules

There are numerous modules provided as part of pygame as well as associated
libraries. Some of the core modules are listed below:

• pygame.display This module is used to control the display window or screen.
It provides facilities to initialise and shutdown the display module. It can be used
to initialise a window or screen. It can also be used to cause a window or screen
to refresh, etc.

• pygame.event This module manages events and the event queue. For
example pygame.event.get() retrieves events from the event queue,
pygame.event.poll() gets a single event from the queue, and
pygame.event.peek() tests to see if there are any event types on the queue.

• pygame.draw The draw module is used to draw simple shapes onto
a Surface. For example, it provides functions for drawing a rectangle
(pygame.draw.rect), a polygon, a circle, an ellipse, a line, etc.

• pygame.font The font module is used to create and render TrueType fonts
into a new surface object. Most of the features associated with fonts are supported
by the pygame.font.Font class. Free standing module functions allow the
module to be initialised and shutdown, plus functions to access fonts such as
pygame.font.get_fonts()which provides a list of the currently available
fonts.

• pygame.image This module allows images to be saved and loaded. Note that
images are loaded into a surface object (there is no image class unlike many other
GUI-oriented frameworks).

• pygame.joystick The joystick module provides the joystick object and
several supporting functions. These can be used for interacting with joysticks,
gamepads and trackballs.

• pygame.key This module provides support for working with inputs from the
keyboard. This allows the input keys to be obtained and modifier keys (such as
control and shift) to be identified. It also allows the approach to repeating keys to
be specified.

• pygame.mouse This module provides facilities for working with mouse input
such as obtaining the current mouse position, the state of mouse buttons as well
as the image to use for the mouse.

21.9 Online Resources 223

• pygame.time This is the pygame module for managing timing within a game.
It provides the pygame.time.Clock class that can be used to track time.

21.9 Online Resources

There is a great deal of information available on pygame including:

• https://www.pygame.org The pygame home page.
• http://www.libsdl.org/ SDL (Simple Directmedia Layer) documentation.
• news://gmane.comp.python.pygame The official pygame news group.

https://www.pygame.org
http://www.libsdl.org/
https://gmane.comp.python.pygame

Chapter 22
StarshipMeteors Pygame

22.1 Introduction

In this chapter we will create a game in which you pilot a starship through a field of
meteors. The longer you play the game, the larger the number of meteors you will
encounter.

22.2 Creating a Spaceship Game

A typical display from the game is shown below for an Apple Mac and a Windows
PC:

We will implement several classes to represent the entities within the game. Using
classes is not a required way to implement a game, and it should be noted that many
developers avoid the use of classes. However, using a class allows data associated
with an object within the game to be maintained in one place; it also simplifies the

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_22

226 22 StarshipMeteors Pygame

creation of multiple instances of the same object (such as the meteors) within the
game.

The classes and their relationships are shown below:

This diagram shows that the Starship and Meteor classes will extend a class
called GameObject.

In turn it also shows that the Game has a 1:1 relationship with the starship class.
That is the Game holds a reference to one starship, and in turn the starship holds a
single reference back to the Game.

In contrast the Game has a one to many relationship with the Meteor class. That
is the game object holds references to many meteors, and each Meteor holds a
reference back to the single Game object.

22.3 The Main Game Class

The first class we will look at will be the Game class itself.
The Game class will hold the list of meteors and the starship as well as the main

game playing loop.
It will also initialise the main window display (e.g. by setting the size and the

caption of the window).
In this case we will store the display surface returned by the

pygame.display.set_mode() function in an attribute of the game object
called display_surface. This is because we will need to use it later on to
display the starship and the meteors.

We will also hold onto an instance of the pygame.time.Clock() class that
we will use to set the frame rate each time round the main game playing while
loop.

22.3 The Main Game Class 227

The basic framework of our game is shown below; this listing provides the basic
Game class and the main method that will launch the game. The game also defines
three global constants that will be used to define the frame refresh rate and the size
of the display.

import pygame

Set up Global 'constants'
FRAME_REFRESH_RATE = 30
DISPLAY_WIDTH = 600
DISPLAY_HEIGHT = 400
class Game:

""" Represents the game itself, holds the main game playing
loop """

def __init__(self):
print('Initialising PyGame')
pygame.init()
Set up the display
self.display_surface = pygame.display.set_mode((DISPLAY_

WIDTH, DISPLAY_HEIGHT))
pygame.display.set_caption('Starship Meteors')
Used for timing within the program.
self.clock = pygame.time.Clock()

def play(self):
is_running = True
Main game playing Loop
while is_running:

Work out what the user wants to do
for event in pygame.event.get():

if event.type == pygame.QUIT:
is_running = False

elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_q:

is_running = False
Update the display
pygame.display.update()

Defines the frame rate
self.clock.tick(FRAME_REFRESH_RATE)

Let pygame shutdown gracefully
pygame.quit()

def main():
print('Starting Game')
game = Game()
game.play()
print('Game Over')

if __name__ == '__main__':

228 22 StarshipMeteors Pygame

main()

The main play() method of the Game class has a loop that will continue until
the user selects to quit the game. They can do this in one of two ways, either by
pressing the ‘q’ key (represented by the event.key K_q) or by clicking on the
window close button. In either case these events are picked up in the main event
processing for loop within the main while loop method.

If the user does not want to quit the game, then the display is updated (refreshed)
and then the clock.tick() (or frame) rate is set.

When the user selects to quit the game, then the main while loop is terminated (the
is_running flag is set to False) and the pygame.quit()method is called to
shut down pygame.

At the moment this not a very interactive game as it does not do anything except
allow the user to quit. In the next section we will add in behaviour that will allow us
to display the space ship within the display.

22.4 The GameObject Class

The GameObject class defines three methods:
The load_image()method can be used to load an image to be used to visually

represent the specific type of game object. The method then uses the width and height
of the image to define the width and height of the game object.

The rect() method returns a rectangle representing the current area used by the
game object on the underlying drawing surface. This differs from the images own
rect() which is not related to the location of the game object on the underlying
surface. Rects are very useful for comparing the location of one object with another
(e.g. when determining if a collision has occurred).

The draw() method draws the GameObjects’ image onto the display_
surface held by the game using the GameObjects current x and y coordinates. It
can be overridden by subclasses if they wish to be drawn in a different way.

The code for the GameObject class is presented below:

class GameObject:

def load_image(self, filename):
self.image = pygame.image.load(filename).convert()
self.width = self.image.get_width()
self.height = self.image.get_height()

def rect(self):
""" Generates a rectangle representing the objects location
and dimensions """
return pygame.Rect(self.x, self.y, self.width, self.height)

def draw(self):
""" draw the game object at the

current x, y coordinates """

22.5 Displaying the Starship 229

self.game.display_surface.blit(self.image, (self.x, self.y))

The GameObject ô the Starship class and the Meteor class.
Currently there are only two types of elements: the starship and the meteors; but

this could be extended in future to planets, comets, shooting stars, etc.

22.5 Displaying the Starship

The human player of this game will control a starship that can be moved around the
display.

The starship will be represented by an instance of the class Starship. This class
will extend the GameObject class that holds common behaviours for any type of
element that is represented within the game.

The starship class defines its own __init__() method that takes a reference to
the game that the starship is part of. This initialisation method sets the initial starting
location of the starship as half the width of the display for the x coordinate and the
display height minus 40 for the y coordinate (this gives a bit of a buffer before the end
of the screen). It then uses the load_image() method from the GameObject
parent class to load the image to be used to represent the Starship. This is held in
a file called starship.png. For the moment we will leave the starship class as it
is (however, we will return to this class so that we can make it into a movable object
in the next section).

The current version of the starship class is given below:

class Starship(GameObject):
""" Represents a starship"""

def __init__(self, game):
self.game = game
self.x = DISPLAY_WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

In the Game class we will now add a line to the__init__() method to initialise
the starship object. This line is:

230 22 StarshipMeteors Pygame

Set up the starship
self.starship = Starship(self)

We will also add a line to the main while loop within the play() method just
before we refresh the display. This line will call the draw() method on the starship
object:

Draw the starship
self.starship.draw()

This will have the effect of drawing the starship onto the windows drawing surface
in the background before the display is refreshed.

When we now run this version of the StarshipMeteor game, we now see the
starship in the display:

Of course at the moment the starship does not move; but we will address that in
the next section.

22.6 Moving the Spaceship

We want to be able to move the starship about within the bounds of the display screen.
To do this, we need to change the starships x and y coordinates in response to the

user pressing various keys.
We will use the arrow keys to move up and down the screen or to the left or right

of the screen. To do this, we will define four methods within the starship class; these
methods will move the starship up, down, left and right, etc.

The updated starship class is shown below:

class Starship(GameObject):
""" Represents a starship"""

def __init__(self, game):
self.game = game

22.6 Moving the Spaceship 231

self.x = DISPLAY_WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

def move_right(self):
""" moves the starship right across the screen """
self.x = self.x + STARSHIP_SPEED
if self.x + self.width > DISPLAY_WIDTH:

self.x = DISPLAY_WIDTH - self.width

def move_left(self):
""" Move the starship left across the screen """
self.x = self.x - STARSHIP_SPEED
if self.x < 0:

self.x = 0
def move_up(self):

""" Move the starship up the screen """
self.y = self.y - STARSHIP_SPEED
if self.y < 0:

self.y = 0
def move_down(self):

""" Move the starship down the screen """
self.y = self.y + STARSHIP_SPEED
if self.y + self.height > DISPLAY_HEIGHT:

self.y = DISPLAY_HEIGHT - self.height

def __str__(self):
return 'Starship('+ str(self.x) + ', '+ str(self.y) + ')'

This version of the starship class defines the various move methods. These methods
use a new global value STARSHIP_SPEED to determine how far and how fast the
starship moves. If you want to change the speed that the starship moves, then you
can change this global value.

Depending upon the direction intended we will need to modify either the x or y
coordinate of the Starship.

• If the starship moves to the left, then the x coordinate is reduced by STARSHIP_
SPEED.

• if it moves to the right, then the x coordinate is increased by STARSHIP_SPEED.
• in turn if the starship moves up the screen, then the y coordinate is decremented

by STARSHIP_SPEED.
• but if it moves down the screen, then the y coordinate is increased by STARSHIP_
SPEED.

Of course we do not want our starship to fly off the edge of the screen, and so a
test must be made to see if it has reached the boundaries of the screen. Thus tests
are made to see if the x or y values have gone below zero or above the DISPLAY_
WIDTH or DISPLAY_HEIGHT values. If any of these conditions are met, then the
x or y values are reset to an appropriate default.

232 22 StarshipMeteors Pygame

We can now use these methods with player input. This player input will indicate
the direction that the player wants to move the starship. As we are using the left,
right, up and down arrow keys for this we can extend the event processing loop that
we have already defined for the main game playing loop. As with the letter q, the
event keys are pre-fixed by the letter K and an underbar, but this time the keys are
named K_LEFT, K_RIGHT, K_UP and K_DOWN.

When one of these keys is pressed, then we will call the appropriate move method
on the starship object already held by the game object.

The main event processing for loop is now:

Work out what the user wants to do
for event in pygame.event.get():

if event.type == pygame.QUIT:
is_running = False

elif event.type == pygame.KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_RIGHT:

Right arrow key has been pressed
move the player right
self.starship.move_right()

elif event.key == pygame.K_LEFT:
Left arrow has been pressed
move the player left
self.starship.move_left()

elif event.key == pygame.K_UP:
self.starship.move_up()

elif event.key == pygame.K_DOWN:
self.starship.move_down()

elif event.key == pygame.K_q:
is_running = False

However, we are not quite finished. If we try and run this version of the program,
we will get a trail of starships drawn across the screen; for example:

The problem is that we are redrawing the starship at a different position; but the
previous image is still present.

22.7 Adding a Meteor Class 233

We now have two choices: one is to merely fill the whole screen with black;
effectively hiding anything that has been drawn so far; or alternatively we could just
draw over the area used by the previous image position, which approach is adopted
depends on the particular scenario represented by your game. As we will have a lot
of meteors on the screen once we have added them; the easiest option is to overwrite
everything on the screen before redrawing the starship. We will therefore add the
following line:

Clear the screen of current contents
self.display_surface.fill(BACKGROUND)

This line is added just before we draw the starship within the main game playing
while loop.

Now when we move the starship, the old image is removed before we draw the
new image:

One point to note is that we have also defined another global value BACKGROUND
used to hold the background colour of the game playing surface. This is set to black
as shown below:

Define default RGB colours
BACKGROUND = (0, 0, 0)

If you want to use a different background colour, then change this global value.

22.7 Adding a Meteor Class

The Meteor class will also be a subclass of the GameObject class. However, it
will only provide a move_down()method rather than the variety of move methods
of the Starship.

234 22 StarshipMeteors Pygame

It will also need to have a random x coordinate so that when a meteor is added
to the game its starting position will vary. This random position can be generated
using the random.randint() function using a value between 0 and the width
of the drawing surface. The meteor will also start at the top of the screen so will
have a different initial y coordinate to the starship. Finally, we also want our meteors
to have different speeds; this can be another random number between 1 and some
specified maximum meteor speed.

To support these, we need to add random to the modules being imported and
define several new global values, for example:

import pygame, random

INITIAL_METEOR_Y_LOCATION = 10
MAX_METEOR_SPEED = 5

We can now define the Meteor class:

class Meteor(GameObject):
""" represents a meteor in the game """

def __init__(self, game):
self.game = game
self.x = random.randint(0, DISPLAY_WIDTH)
self.y = INITIAL_METEOR_Y_LOCATION
self.speed = random.randint(1, MAX_METEOR_SPEED)
self.load_image('meteor.png')

def move_down(self):
""" Move the meteor down the screen """
self.y = self.y + self.speed
if self.y > DISPLAY_HEIGHT:

self.y = 5
def __str__(self):

return 'Meteor(' + str(self.x) + ', ' + str(self.y) + ')'

The __init__() method for the Meteor class has the same steps as the
starship; the difference is that the x coordinate and the speed are randomly generated.
The image used for the meteor is also different as it is ‘meteor.png’.

We have also implemented a move_down() method. This is essentially the same
as the starships move_down().

Note that at this point we could create a subclass of GameObject called
MoveableGameObject (which extends GameObject) and push the move oper-
ations up into that class and have the Meteor and Starship classes extend that
class. However we do not really want to allow meteors to move just anywhere on the
screen.

22.8 Moving the Meteors 235

We can now add the meteors to the Game class. We will add a new global value
to indicate the number of initial meteors in the game:

INITIAL_NUMBER_OF_METEORS = 8

Next we will initialise a new attribute for the Game class that will hold a list of
meteors. We will use a list here as we want to increase the number of meteors as the
game progresses.

To make this process easy, we will use a list comprehension which allows a for
loop to run with the results of an expression captured by the list:

Set up meteors
self.meteors = [Meteor(self) for _ in range(0, INITIAL_NUMBER_OF_
METEORS)]

We now have a list of meteors that need to be displayed. We thus need to update
the while loop of the play()method to draw not only the starship but also all the
meteors:

Draw the meteors and the starship
self.starship.draw()
for meteor in self.meteors:

meteor.draw()

The end result is that a set of meteor objects are created at random starting locations
across the top of the screen:

22.8 Moving the Meteors

We now want to be able to move the meteors down the screen so that the starship
has some objects to avoid.

236 22 StarshipMeteors Pygame

We can do this very easily as we have already implemented a move_down()
method in the Meteor class. We therefore only need to add a for loop to the main
game playing while loop that will move all the meteors. For example:

Move the Meteors
for meteor in self.meteors:

meteor.move_down()

This can be added after the event processing for loop and before the screen is
refreshed/redrawn or updated.

Now when we run the game, the meteors move and the player can navigate the
starship between the falling meteors.

22.9 Identifying a Collision

At the moment the game will play forever as there is no end state and no attempt to
identify if a starship has collided with a meteor.

We can add meteor/starship collision detection using PyGame Rects. As
mentioned in the last chapter, a Rect is a PyGame class used to represent rect-
angular coordinates. It is particularly useful as the pygame.Rect class provides
several collision detection methods that can be used to test if one rectangle (or point)
is inside another rectangle. We can therefore use one of the methods to test if the
rectangle around the starship intersects with any of the rectangles around the meteors.

The GameObject class already provides a method rect() that will return a
Rect object representing the objects current rectangle with respect to the drawing
surface (essentially the box around the object representing its location on the screen).

Thus we can write a collision detection method for the Game class using the
GameObject generated rects and the Rect class colliderect() method:

def _check_for_collision(self):
""" Checks to see if any of the meteors have collided with

the starship """

22.10 Identifying a Win 237

result = False
for meteor in self.meteors:

if self.starship.rect().colliderect(meteor.rect()):
result = True
break

return result

Note that we have followed the convention here of preceding the method name
with an underbar indicating that this method should be considered to provide to the
class. It should therefore never be called by anything outside of the game class. This
convention is defined in PEP 8 (Python Enhancement Proposal) but is not enforced
by the language.

We can now use this method in the main while loop of the game to check for a
collision:

Check to see if a meteor has hit the ship
if self._check_for_collision():

starship_collided = True

This code snippet also introduces a new local variable starship_collided.
We will initially set this to False and is another condition under which the main
game playing while loop will terminate:

is_running = True
starship_collided = False
Main game playing Loop
while is_running and not starship_collided:

Thus the game playing loop will terminate if the user selects to quit or if the
starship collides with a meteor.

22.10 Identifying a Win

We currently have a way to lose the game but we don’t have a way to win the game!
However, we want the player to be able to win the game by surviving for a specified
period of time. We could represent this with a timer of some sort. However, in our
case we will represent it as a specific number of cycles of the main game playing loop.
If the player survives for this number of cycles, then they have won. For example:

See if the player has won
if cycle_count == MAX_NUMBER_OF_CYCLES:

print(‘WINNER!')
break

In this case a message is printed out stating that the player won and then the main
game playing loop is terminated (using the break statement).

238 22 StarshipMeteors Pygame

The MAX_NUMBER_OF_CYCLES global value can be set as appropriate, for
example:

MAX_NUMBER_OF_CYCLES = 1000

22.11 Increasing the Number of Meteors

We could leave the game at this point as it is now possible to both win and lose the
game. However, there are a few things that can be easily added that will enhance the
game playing experience. One of these is to increase the number of meteors on the
screen making it harder as the game progresses.

We can do this using a NEW_METEOR_CYCLE_INTERVAL.

NEW_METEOR_CYCLE_INTERVAL = 40

When this interval is reached, we can add a new Meteor to the list of current
meteors; it will then be automatically drawn by the game class. For example:

Determine if new meteors should be added
if cycle_count % NEW_METEOR_CYCLE_INTERVAL == 0:
self.meteors.append(Meteor(self))

Now every NEW_METEOR_CYCLE_INTERVAL another meteor will be added at
a random x coordinate to the game.

22.12 Pausing the Game

Another feature that many games have is the ability to pause the game. This can be
easily added by monitoring for a pause key (this could be the letter p represented by
the event_key pygame.K_p). When this is pressed, the game could be paused until
the key is pressed again.

The pause operation can be implemented as a method _pause() that will
consume all events until the appropriate key is pressed. For example:

def _pause(self):
paused = True
while paused:

for event in pygame.event.get():
if event.type == pygame.KEYDOWN:

if event.key == pygame.K_p:
paused = False
break

In this method the outer while loop will loop until the paused local variable is
set to False. This only happens when the ‘p’ key is pressed. The break after the

22.13 Displaying the Game Over Message 239

statement setting paused to False ensures that the inner for loop is terminated
allowing the outer while loop to check the value of paused and terminate.

The _pause() method can be invoked during the game playing cycle by moni-
toring for the ‘p’ key within the event for loop and calling the _pause() method
from there:

elif event.key == pygame.K_p:
self._pause()

Note that again we have indicated that we don’t expect the _pause() method
to be called from outside the game by pre-fixing the method name with an underbar
(‘_’).

22.13 Displaying the Game Over Message

Pygame does not come with an easy way of creating a popup dialog box to display
messages such as ‘You Won’ or ‘You Lost’ which is why we have used print state-
ments so far. However, we could use a GUI framework such as wxPython to do this
or we could display a message on the display surface to indicate whether the player
has won or lost.

We can display a message on the display surface using the pygame.font.Font
class. This can be used to create a Font object that can be rendered onto a surface
that can be displayed onto the main display surface.

We can therefore add a method _display_message() to the game class that
can be used to display appropriate messages:

def _display_message(self, message):
""" Displays a message to the user on the screen """
print(message)
text_font = pygame.font.Font('freesansbold.ttf', 48)
text_surface = text_font.render(message, True, BLUE, WHITE)
text_rectangle = text_surface.get_rect()
text_rectangle.center = (DISPLAY_WIDTH / 2, DISPLAY_HEIGHT / 2)
self.display_surface.fill(WHITE)
self.display_surface.blit(text_surface, text_rectangle)

Again the leading underbar in the method name indicates that it should not be
called from outside the game class.

We can now modify the main loop such that appropriate messages are displayed
to the user, for example:

Check to see if a meteor has hit the ship
if self._check_for_collision():

starship_collided = True
self._display_message('Collision: Game Over')

The result of the above code being run when a collision occurs is shown below:

240 22 StarshipMeteors Pygame

22.14 The StarshipMeteors Game

The complete listing for the final version of the StarshipMeteors game is given below:

import pygame, random, time

FRAME_REFRESH_RATE = 30
DISPLAY_WIDTH = 600
DISPLAY_HEIGHT = 400
WHITE = (255, 255, 255)
BACKGROUND = (0, 0, 0)

INITIAL_METEOR_Y_LOCATION = 10
INITIAL_NUMBER_OF_METEORS = 8
MAX_METEOR_SPEED = 5
STARSHIP_SPEED = 10
MAX_NUMBER_OF_CYCLES = 1000
NEW_METEOR_CYCLE_INTERVAL = 40
class GameObject:

def load_image(self, filename):
self.image = pygame.image.load(filename).convert()
self.width = self.image.get_width()
self.height = self.image.get_height()

def rect(self):
""" Generates a rectangle representing the objects location
and dimensions """
return pygame.Rect(self.x, self.y, self.width, self.height)

def draw(self):
""" draw the game object at the

22.14 The StarshipMeteors Game 241

current x, y coordinates """
self.game.display_surface.blit(self.image, (self.x, self.y))

class Starship(GameObject):
""" Represents a starship"""

def __init__(self, game):
self.game = game
self.x = DISPLAY_WIDTH / 2
self.y = DISPLAY_HEIGHT - 40
self.load_image('starship.png')

def move_right(self):
""" moves the starship right across the screen """
self.x = self.x + STARSHIP_SPEED
if self.x + self.width > DISPLAY_WIDTH:

self.x = DISPLAY_WIDTH - self.width

def move_left(self):
""" Move the starship left across the screen """
self.x = self.x - STARSHIP_SPEED
if self.x < 0:

self.x = 0
def move_up(self):

""" Move the starship up the screen """
self.y = self.y - STARSHIP_SPEED
if self.y < 0:

self.y = 0
def move_down(self):

""" Move the starship down the screen """
self.y = self.y + STARSHIP_SPEED
if self.y + self.height > DISPLAY_HEIGHT:

self.y = DISPLAY_HEIGHT - self.height

def __str__(self):
return 'Starship(' + str(self.x) + ', ' + str(self.y) + ')'

class Meteor(GameObject):
""" represents a meteor in the game """

def __init__(self, game):
self.game = game
self.x = random.randint(0, DISPLAY_WIDTH)
self.y = INITIAL_METEOR_Y_LOCATION
self.speed = random.randint(1, MAX_METEOR_SPEED)
self.load_image('meteor.png')

def move_down(self):
""" Move the meteor down the screen """
self.y = self.y + self.speed
if self.y > DISPLAY_HEIGHT:

self.y = 5
def __str__(self):

242 22 StarshipMeteors Pygame

return 'Meteor(' + str(self.x) + ', ' + str(self.y) + ')'
class Game:

""" Represents the game itself, holds the main game playing
loop """

def __init__(self):
pygame.init()
Set up the display
self.display_surface = pygame.display.set_mode((DISPLAY_

WIDTH, DISPLAY_HEIGHT))
pygame.display.set_caption('Starship Meteors')
Used for timing within the program.
self.clock = pygame.time.Clock()
Set up the starship
self.starship = Starship(self)
Set up meteors

self.meteors = [Meteor(self) for _ in range(0, INITIAL_NUMBER_
OF_METEORS)]

def _check_for_collision(self):
""" Checks to see if any of the meteors have collided with

the starship """
result = False
for meteor in self.meteors:

if self.starship.rect().colliderect(meteor.rect()):
result = True
break

return result

def _display_message(self, message):
""" Displays a message to the user on the screen """
text_font = pygame.font.Font('freesansbold.ttf', 48)
text_surface = text_font.render(message, True, BLUE, WHITE)
text_rectangle = text_surface.get_rect()
text_rectangle.center = (DISPLAY_WIDTH / 2, DISPLAY_HEIGHT /

2)
self.display_surface.fill(WHITE)
self.display_surface.blit(text_surface, text_rectangle)

def _pause(self):
paused = True
while paused:

for event in pygame.event.get():
if event.type == pygame.KEYDOWN:

if event.key == pygame.K_p:
paused = False
break

def play(self):
is_running = True
starship_collided = False
cycle_count = 0
Main game playing Loop
while is_running and not starship_collided:

22.14 The StarshipMeteors Game 243

Indicates how many times the main game loop has been
run

cycle_count += 1
See if the player has won
if cycle_count == MAX_NUMBER_OF_CYCLES:

self._display_message('WINNER!')
break

Work out what the user wants to do
for event in pygame.event.get():

if event.type == pygame.QUIT:
is_running = False

elif event.type == pygame.KEYDOWN:
Check to see which key is pressed
if event.key == pygame.K_RIGHT:

Right arrow key has been pressed
move the player right
self.starship.move_right()

elif event.key == pygame.K_LEFT:
Left arrow has been pressed
move the player left
self.starship.move_left()

elif event.key == pygame.K_UP:
self.starship.move_up()

elif event.key == pygame.K_DOWN:
self.starship.move_down()

elif event.key == pygame.K_p:
self._pause()

elif event.key == pygame.K_q:
is_running = False

Move the Meteors
for meteor in self.meteors:

meteor.move_down()

Clear the screen of current contents
self.display_surface.fill(BACKGROUND)

Draw the meteors and the starship
self.starship.draw()
for meteor in self.meteors:

meteor.draw()

Check to see if a meteor has hit the ship
if self._check_for_collision():

starship_collided = True
self._display_message('Collision: Game Over')

Determine if new meteors should be added
if cycle_count % NEW_METEOR_CYCLE_INTERVAL == 0:

self.meteors.append(Meteor(self))

Update the display
pygame.display.update()

244 22 StarshipMeteors Pygame

Defines the frame rate. The number is number of frames
per

second. Should be called once per frame (but only once)
self.clock.tick(FRAME_REFRESH_RATE)

time.sleep(1)
Let pygame shutdown gracefully
pygame.quit()

def main():
print('Starting Game')
game = Game()
game.play()
print('Game Over')

if __name__ == '__main__':
main()

22.15 Online Resources

There is a great deal of information available on PyGame including:

• https://www.pygame.org The PyGame home page.
• https://www.pygame.org/docs/tut/PygameIntro.html PyGame tutorial.
• https://www.python.org/dev/peps/pep-0008/ PEP8 Style Guide for Python Code.

22.16 Exercises

Using the example presented in this chapter add the following:

• Provide a score counter. This could be based on the number of cycles the player
survives or the number of meteors that restart from the top of the screen, etc.

• Add another type of GameObject, this could be a shooting star that moves
across the screen horizontally; perhaps using a random starting y coordinate.

• Allow the game difficulty to be specified at the start. This could affect the number
of initial meteors, the maximum speed of a meteor, the number of shooting stars,
etc.

https://www.pygame.org
https://www.pygame.org/docs/tut/PygameIntro.html
https://www.python.org/dev/peps/pep-0008/

Part IV
Testing

Chapter 23
Introduction to Testing

23.1 Introduction

This chapter considers the different types of tests that you might want to perform
with the systems you develop in Python. It also introduces Test-Driven Development.

23.2 Types of Testing

There are at least two ways of thinking about testing:

1. It is the process of executing a program with the intent of finding errors/bugs
(see Glenford Myers, The Art of Software Testing).

2. It is a process used to establish that software components fulfil the requirements
identified for them that is that they do what they are supposed to do.

These two aspects of testing tend to have been emphasised at different points in the
software lifecycle. Error testing is an intrinsic part of the development process, and
an increasing emphasis is being placed on making testing a central part of software
development (see Test-Driven Development).

It should be noted that it is extremely difficult—and in many cases impossible—to
prove that software works and is completely error-free. The fact that a set of tests
finds no defects does not prove that the software is error-free. ‘Absence of evidence
is not evidence of absence!’. This was discussed in the late 1960s and early 1970s
by Dijkstra and can be summarised as:

Testing shows the presence, not the absence of bugs

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_23

248 23 Introduction to Testing

Testing to establish that software components fulfil their contract involves
checking operations against their requirements. Although this does happen at devel-
opment time, it forms a major part of Quality Assurance (QA) and User Accep-
tance testing. It should be noted that with the advent of Test-Driven Develop-
ment, the emphasis on testing against requirements during development has become
significantly higher.

There are of course many other aspects to testing; for example, Performance
Testing which identifies how a system will perform as various factors that affect that
system change, for example, as the number of concurrent requests increases, as the
number of processors used by the underlying hardware changes, as the size of the
database grows, etc.

However you view testing, the more the testing applied to a system, the higher
the level of confidence that the system will work as required.

23.3 What Should Be Tested?

An interesting question is ‘What aspects of your software system should be subject
to testing?’.

In general, anything that is repeatable should be subject to formal (and ideally
automated) testing. This includes (but is not limited to):

• The build process for all technologies involved.
• The deployment process to all platforms under consideration.
• The installation process for all runtime environments.
• The upgrade process for all supported versions (if appropriate).
• The performance of the system/servers as loads increase.
• The stability for systems that must run for any period of time (e.g. 24× 7 systems).
• The backup processes.
• The security of the system.
• The recovery ability of the system on failure.
• The functionality of the system.
• The integrity of the system.

Notice that only the last two of the above list might be what are the commonly
considered areas that would be subject to testing. However, to ensure the quality
of the system under consideration, all of the above are relevant. In fact, testing
should cover all aspects of the software development lifecycle and not just the QA
phase. During requirements gathering testing is the process of looking for missing or
ambiguous requirements. During this phase consideration should also be made with
regard to how the overall requirements will be tested, in the final software system.
Test planning should also look at all aspects of the software to test for functionality,
usability, legal compliance, conformance to regulatory constraints, security, perfor-
mance, availability, resilience, etc. Testing should be driven by the need to identify
and reduce risk.

23.4 Types of Testing 249

23.4 Types of Testing

As indicated above there are a number of different types of testing that are commonly
used within industry. These types are.

• Unit testing, which is used to verify the behaviour of individual components.
• Integration testing that tests that when individual components are combined

together to provide higher-level functional units that the combination of the units
operates appropriately.

• Regression testing. When new components are added to a system, or existing
components are changed, it is necessary to verify that the new functionality does
not break any existing functionality. Such testing is known as regression testing.

• Performance testing is used to ensure that the systems’ performance is as required
and, within the design parameters, is able to scale as utilisation increases.

• Stability testing represents a style of testing which attempts to simulate system
operation over an extended period of time. For example, for an online shopping
application that is expected to be up and running 24 × 7 a stability test might
ensure that with an average load that the system can indeed run 24 h a day for
7 days a week.

• Security testing ensures that access to the system is controlled appropriately
given the requirements. For example, for an online shopping system there may
be different security requirements depending upon whether you are browsing the
store, purchasing some products, or maintaining the product catalogue.

• Usability testing which may be performed by a specialist usability group and
may involve filming users while they use the system.

250 23 Introduction to Testing

• System testing validates that the system as a whole actually meets the user
requirements and conforms to required application integrity.

• User acceptance testing is a form of user-oriented testing where users confirm
that the system does and behaves in the way they expect.

• Installation, deployment and upgrade testing. These three types of testing vali-
date that a system can be installed and deployed appropriate including any upgrade
processes that may be required.

• Smoke tests used to check that the core elements of a large system operate
correctly. They can typically be run quickly and in a faction of the time taken
to run the full system tests.

Key testing approaches are discussed in the remainder of this section.

23.4.1 Unit Testing

A unit can be as small as a single function or as large as a subsystem but typically is
a class, object, self-contained library (API) or web page.

By looking at a small self-contained component, an extensive set of tests can be
developed to exercise the defined requirements and functionality of the unit.

Unit testing typically follows a white box approach, (also called Glass Box or
Structural testing), where the testing utilises knowledge and understanding of the
code and its structure, rather than just its interface (which is known as the black box
approach).

In white box testing, test coverage is measured by the number of code paths that
have been tested. The goal in unit testing is to provide 100% coverage: to exercise
every instruction, all sides of each logical branch, all called objects, handling of all
data structures, normal and abnormal termination of all loops, etc. Of course this may
not always be possible, but it is a goal that should be aimed for. Many automated
test tools will include a code coverage measure so that you are aware of how much
of your code has been exercised by any given set of tests.

Unit testing is almost always automated—there are many tools to help with this,
perhaps the best-known being the xUnit family of test frameworks such as JUnit for
Java and PyUnit for Python. The framework allows developers to:

• focus on testing the unit.
• simulate data or results from calling another unit (representative good and bad

results).
• create data-driven tests for maximum flexibility and repeatability.
• rely on mock objects that represent elements outside the unit that it must interact

with.

Having the tests automated means that they can be run frequently, at the very least
after initial development and after each change that affects the unit.

23.4 Types of Testing 251

Once confidence is established in the correct functioning of one unit, developers
can then use it to help test other units with which it interfaces, forming larger units
that can also be unit tested or, as the scale gets larger, put through integration testing.

23.4.2 Integration Testing

Integration testing is where several units (or modules) are brought together to be
tested as an entity in their own right. Typically, integration testing aims to ensure
that modules interact correctly and the individual unit developers have interpreted
the requirements in a consistent manner.

An integrated set of modules can be treated as a unit and unit tested in much
the same way as the constituent modules, but usually working at a “higher” level of
functionality. Integration testing is the intermediate stage between unit testing and
full system testing.

Therefore, integration testing focuses on the interaction between two or more
units to make sure that those units work together successfully and appropriately.
Such testing is typically conducted from the bottom-up but may also be conducted
top-down using mocks or stubs to represent called or calling functions. An important
point to note is that you should not aim to test everything together at once (so called
Big Bang testing) as it is more difficult to isolate bugs in order that they can be
rectified. This is why it is more common to find that integration testing has been
performed in a bottom-up style.

23.4.3 System Testing

System testing aims to validate that the combination of all the modules, units, data,
installation, configuration, etc., operates appropriately and meets the requirements
specified for the whole system. Testing the system has a whole typically involving
testing the top most functionality or behaviours of the system. Such behaviour-based
testing often involves end-users and other stakeholders who are less technical. To
support such tests, a range of technologies have evolved that allow a more English
style for test descriptions. This style of testing can be used as part of the requirements
gathering process and can lead to a behaviour-driven development (BDD) process.
The Python modulepytest-bdd provides a BDD style extension to the core PyTest
framework.

252 23 Introduction to Testing

23.4.4 Installation/Upgrade Testing

Installation testing is the testing of full, partial or upgrade install processes. It also
validates that the installation and transition software needed to move to the new
release for the product is functioning properly. Typically, it.

• verifies that the software may be completely uninstalled through its back-out
process.

• determines what files are added, changed or deleted on the hardware on which
the program was installed.

• determines whether any other programs on the hardware are affected by the new
software that has been installed.

• determines whether the software installs and operates properly on all hardware
platforms and operating systems that it is supposed to work on.

23.4.5 Smoke Tests

A smoke test is a test or suite of tests designed to verify that the fundamentals of
the system work. Smoke tests may be run against a new deployment or a patched
deployment in order to verify that the installation performs well enough to justify
further testing. Failure to pass a smoke test would halt any further testing until the
smoke tests pass. The name derives from the early days of electronics: If a device
began to smoke after it was powered on, testers knew that there was no point in
testing it further. For software technologies, the advantages of performing smoke
tests include:

• Smoke tests are often automated and standardised from one build to another.
• Because smoke tests validate things that are expected to work, when they fail it

is usually an indication that something fundamental has gone wrong (the wrong
version of a library has been used) or that a new build has introduced a bug into
core aspects of the system.

• If a system is built daily, it should be smoke tested daily.
• It will be necessary to periodically add to the smoke tests as new functionality is

added to the system.

23.5 Automating Testing

The actual way in which tests are written and executed needs careful consideration.
In general, we wish to automate as much of the testing process as is possible as this
makes it easy to run the tests and also ensures not only that all tests are run but that
they are run in the same way each time. In addition, once an automated test is set
up it will typically be quicker to rerun that automated test than to manually repeat a

23.6 Test-Driven Development 253

series of tests. However, not all of the features of a system can be easily tested via an
automated test tool, and in some cases the physical environment may make it hard
to automate tests.

Typically, most unit testing is automated and most acceptance testing is manual.
You will also need to decide which forms of testing must take place. Most software
projects should have unit testing, integration testing, system testing and acceptance
testing as a necessary requirement. Not all projects will implement performance or
stability testing, but you should be careful about omitting any stage of testing and be
sure it is not applicable.

23.6 Test-Driven Development

Test-Driven Development (or TDD) is a development technique whereby developers
write test cases before they write any implementation code. The tests thus drive
or dictate the code that is developed. The implementation only provides as much
functionality as is required to pass the test, and thus the tests act as a specification of
what the code does (and some argue that the tests are thus part of that specification
and provide documentation of what the system is capable of).

TDD has the benefit that as tests must be written first, there are always a set of tests
available to perform unit, integration, regression testing, etc. This is good as devel-
opers can find that writing tests and maintaining tests is boring and of less interest
than the actual code itself, and this puts less emphasis into the testing regime than
might be desirable. TDD encourages, and indeed requires, that developers maintain
an exhaustive set of repeatable tests and that those tests are developed to the same
quality and standards as the main body of code.

There are three rules of TDD as defined by Robert Martin; these are:

1. You are not allowed to write any production code unless it is to make a failing
unit test pass.

2. You are not allowed to write any more of a unit test than is sufficient to fail; and
compilation failures are failures.

3. You are not allowed to write any more production code than is sufficient to pass
the one failing unit test.

This leads to the TDD cycle described in the next section.

23.6.1 The TDD Cycle

There is a cycle to development when working in a TDD manner. The shortest form
of this cycle is the TDD mantra:

Red/Green/Refactor

254 23 Introduction to Testing

which relates to the unit testing suite of tools where it is possible to write a unit
test. Within tools such as PyCharm, when you run a PyUnit or PyTest test a Test
View is shown with red indicating that a test failed or green indicating that the test
passed. Hence red/green, in other words write the test and let it fail, then implement
the code to ensure it passes. The last part of this mantra is refactor which indicates
once you have it working make the code cleaner, better and fitter by refactoring it.
Refactoring is the process by which the behaviour of the system is not changed, but
the implementation is altered to improve it.

The full TDD cycle is shown by the following diagram which highlights the test
first approach of TDD:

The TDD mantra can be seen in the TDD cycle that is shown above and described
in more detail below:

1. Write a single test.
2. Run the test and see it fail.
3. Implement just enough code to get the test to pass.
4. Run the test and see it pass.
5. Refactor for clarity and deal with any issue of reuse, etc.
6. Repeat for next test.

23.6.2 Test Complexity

The aim is to strive for simplicity in all that you do within TDD. Thus, you write a
test that fails, then do just enough to make that test pass (but no more). Then you
refactor the implementation code (i.e. change the internals of the unit under test) to
improve the code base. You continue to do this until all the functionality for a unit
has been completed. In terms of each test, you should again strive for simplicity with

23.8 Online Resources 255

each test only testing one thing with only a single assertion per test (although this is
the subject of a lot of debate within the TDD world).

23.6.3 Refactoring

The emphasis on refactoring within TDD makes it more than just testing or Test
First Development. This focus on refactoring is really a focus on (re)design and
incremental improvement. The tests provide the specification of what is needed as
well as the verification that existing behaviour is maintained, but refactoring leads
to better design software. Thus, without refactoring TDD is not TDD!

23.7 Design for Testability

Testability has a number of facets

1. Configurability. Set up the object under test to an appropriate configuration for
the test.

2. Controllability. Control the input (and internal state).
3. Observability. Observe its output.
4. Verifiability. That we can verify that output in an appropriate manner.

23.7.1 Testability Rules of Thumb

If you cannot test code, then change it so that you can!
If your code is difficult to validate, then change it so that it isn’t!
Only one concrete class should be tested per Unit test and then Mock the Rest!
If you code is hard to reconfigure to work with mocks, then make it so that your
code can use Mocks!
Design your code for testability!

23.8 Online Resources

See the following online resources for more information on testing and Test-Driven
Development (TDD).

1. https://www.test-institute.org/Introduction_To_Software_Testing.php Introduc-
tion to Software Testing.

2. https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing
Introduction to software Testing wiki book.

https://www.test-institute.org/Introduction_To_Software_Testing.php
https://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Testing

256 23 Introduction to Testing

3. https://en.wikipedia.org/wiki/Test-driven_development Test-Driven Develop-
ment wikipedia page.

4. http://agiledata.org/essays/tdd.html an introduction to Test-Driven Development.
5. https://medium.freecodecamp.org/learning-to-test-with-python-997ace2d8abe a

simple introduction to TDD with Python.
6. http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd Robert

Martins three rules for TDD.
7. http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata The

Bowling Game Kata which presents a worked example of how TDD can
be used to create a Ten Pin Bowls scoring keeping application.

23.9 Book Resources

1. The Art of Software Testing, G. J. Myers, C. Sandler and T. Badgett, John Wiley &
Sons, 3rd Edition(Dec 2011), 1,118,031,962.

https://en.wikipedia.org/wiki/Test-driven_development
http://agiledata.org/essays/tdd.html
https://medium.freecodecamp.org/learning-to-test-with-python-997ace2d8abe
http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd
http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata

Chapter 24
PyTest Testing Framework

24.1 Introduction

There are several testing frameworks available for Python, although only one, unittest
comes as part of the typical Python installation. Typical libraries include unittest
(which is available within the Python distribution by default) and PyTest (which
actually builds directly on top of unittest).

In this chapter we will look at PyTest and how it can be used to write unit tests in
Python for both functions and classes.

24.2 What is PyTest?

PyTest is a testing library for Python; it is currently one of the most popular Python
testing libraries (others include unittest and doctest). PyTest can be used for various
levels of testing, although its most common application is as a unit testing framework.
It is also often used as a testing framework within a TDD-based development project.
In fact, it is used by Mozilla and Dropbox as their Python testing framework.

PyTest offers a large number of features and great flexibility in how tests are
written and in how set up behaviour is defined. It automatically finds test based on
naming conventions and can be easily integrated into a range of editors and IDEs
including PyCharm.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_24

258 24 PyTest Testing Framework

24.3 Setting up PyTest

You will probably need to set up PyTest so that you can use it from within your
environment. If you are using the PyCharm editor, then you will need to add the
PyTest module to the current PyCharm project and tell PyCharm that you want to
use PyTest to run all tests for you. At the time of writing this is PyTest version
7.3.2—you can use pip to install PyTest.

24.4 A Simple PyTest Example

Something to test

To be able to explore PyTest we first need something to test; we will therefore define
a simple Calculator class. The calculator keeps a running total of the operations
performed; it allows a new value to be set, and then this value can be added to, or
subtracted from, that accumulated total.

class Calculator:
def __init__(self):

self.current = 0
self.total = 0

def set(self, value):
self.current = value

def add(self):
self.total += self.current

def sub(self):
self.total -= self.current

def total(self):
return self.total

Save this class into a file called calculator.py.

Writing a Test

We will now create a very simple PyTest unit test for our Calculator class. This
test will be defined in a class called test_calculator.py.

You will need to import the calculator class we wrote above into your test_
caclculator.py file (remember each file is a module in Python).

The exact import statement will depend on where you placed the calculator file
relative to the test class. In this case the two files are both in the same directory and
so we can write:

from calculator import Calculator

We will now define a test, the test should be pre-fixed with test_ for PyTest to
find them. In fact PyTest uses several conventions to find tests, which are:

24.4 A Simple PyTest Example 259

• Search for test_*.py or *_test.py files.
• From those files, collect test items:

– test_ pre-fixed test functions,
– test_ pre-fixed test methods inside Test pre-fixed test classes (without an__
init__ method)

Note that we keep test files and the files containing the code to be tested separate;
indeed in many cases they are kept in different directory structures. This means that
there is no chance of developers accidentally using tests in production code, etc.

Now we will add to the file a function that defines a test. We will call the func-
tion test_add_one; it needs to start with test_ due to the above convention.
However, we have tried to make the rest of the function name descriptive, so that it
is clear what it is testing. The function definition is given below:

from calculator import Calculator

def test_add_one():
calc = Calculator()
calc.set(1)
calc.add()
assert calc.total == 1

The test function creates a new instance of the Calculator class and then calls
several methods on it; to set up the value to add, then the call to the add() method
itself, etc.

The final part of the test is the assertion. The assert verifies that the behaviour
of the calculator is as expected. The PyTest assert statement works out what is
being tested and what it should do with the result—including adding information to
a test run report. It avoids the need to have to learn a load of assertSomething type
methods (unlike some other testing frameworks).

Note that a test without an assertion is not a test; i.e. it does not test anything.
Many IDEs provide direct support for testing frameworks including PyCharm.

For example, PyCharm will now detect that you have written a function with an
assert statement in it and add a Run Test icon to the grey area to the left of the editor.
This can be seen in the following picture where a green arrow has been added at line
4; this is the ‘Run Test’ button:

260 24 PyTest Testing Framework

The developer can click on the green arrow to run the test. They will then be
presented with the Run menu that is pre-configured to use PyTest for you:

If the developer now selects the Run option, this will use the PyTest runner to
execute the test and collect information about what happened and present it in a
PyTest output view at the bottom of the IDE:

Here you can see a tree in the left-hand panel that currently holds the one test
defined in the test_calculator.py file. This tree shows whether tests have
passed or failed. In this case we have a green tick showing that the test passed.

To the right of this tree is the main output panel which shows the results of
running the tests. In this case it shows that PyTest ran only one test and that this was
the test_add_one test which was defined in test_calculator.py and that
one test passed.

If you now change the assertion in the test to check to see that the result is 0, the
test will fail. The IDE display will update accordingly.

The tree in the left-hand pane now shows the test as failed while the right-hand
pane provides detailed information about the test that failed including where in the
test the failed assertion was defined. This is very helpful when trying to debug test
failures.

24.5 Working with PyTest 261

24.5 Working with PyTest

Testing Functions

We can test stand-alone functions as well as classes using PyTest. For example, given
the function increment below (which merely adds one to any number passed into
it):

def increment(x):
return x + 1

We can write a PyTest test for this as follows:

def test_increment_integer_3():
assert increment(3) == 4

The only real difference is that we have not had to make an instance of a class:

262 24 PyTest Testing Framework

Organising Tests

Tests can be grouped together into one or more files; PyTest will search for all files
following the naming convention (file names that either start or end with ‘test’) in
specified locations:

• If no arguments are specified when PyTest is run, then the search for suitably
named test files starts from the testpaths environment variable (if configured)
or the current directory. Alternatively, command line arguments can be used in
any combination of directories or filenames, etc.

• PyTest will recursively search down into subdirectories, unless they
match norecursedirs environment variable.

• In those directories, it will search for files that match the naming conven-
tions test_*.py or *_test.py files.

Tests can also be arranged within test files into test classes. Using test classes
can be helpful in grouping tests together and managing the setup and tear down
behaviours of separate groups of tests. However, the same effect can be achieved by
separating the tests relating to different functions or classes into different files.

Test Fixtures

It is not uncommon to need to run some behaviour before or after each test or indeed
before or after a group of tests. Such behaviours are defined within what is commonly
known as test fixtures.

We can add specific code to run:

• at the beginning and end of a test class module of test code (setup_module/
teardown_module).

• at the beginning and end of a test class (setup_class/teardown_class) or using the
alternate style of the class level fixtures (setup/teardown).

• before and after a test function call (setup_function/teardown_function).
• before and after a test method call (setup_method/teardown_method).

To illustrate why we might use a fixture, let us expand our Calculator test:

24.5 Working with PyTest 263

def test_initial_value():
calc = Calculator()
assert calc.total == 0

def test_add_one():
calc = Calculator()
calc.set(1)
calc.add()
assert calc.total == 1

def test_subtract_one():
calc = Calculator()
calc.set(1)
calc.sub()
assert calc.total == -1

def test_add_one_and_one():
calc = Calculator()
calc.set(1)
calc.add()
calc.set(1)
calc.add()
assert calc.total == 2

We now have four tests to run (we could go further but this is enough for now).
One of the issues with this set of tests is that we have repeated the creation of

the Calculator object at the start of each test. While this is not a problem in
itself it does result in duplicated code and the possibility of future issues in terms of
maintenance if we want to change the way a calculator is created. It may also not be
as efficient as reusing the calculator object for each test.

We can, however, define a fixture that can be run before each individual
test function is executed. To do this we will write a new function and use the
pytest.fixture decorator on that function. This marks the function as being
special and that it can be used as a fixture on an individual function.

Functions that require the fixture should accept a reference to the fixture as an argu-
ment to the individual test function. For example, for a test to accept a fixture called
calculator, it should have an argument with the fixture name, i.e.calculator.
This name can then be used to access the object returned. This is illustrated below:

import pytest
from calculator import Calculator

@pytest.fixture
def calculator():

"""Returns a Calculator instance"""
return Calculator()

def test_initial_value(calculator):
assert calculator.total == 0

def test_add_one(calculator):
calculator.set(1)
calculator.add()

264 24 PyTest Testing Framework

assert calculator.total == 1
def test_subtract_one(calculator):

calculator.set(1)
calculator.sub()
assert calculator.total == -1

def test_add_one_and_one(calculator):
calculator.set(1)
calculator.add()
calculator.set(1)
calculator.add()
assert calculator.total == 2

In the above code, each of the test functions accepts the calculator fixture that
is used to instantiate the Calculator object. We have therefore de-duplicated our
code; there is now only one piece of code that defines how a calculator object should
be created for our tests. Note each test is supplied with a completely new instance
of the Calculator object; there is therefore no chance of one test impacting on
another test.

It is also considered good practice to add a docstring to your fixtures as we have
done above. This is because PyTest can produce a list of all fixtures available along
with their docstrings. From the command line this is done using:

> pytest fixtures

From the command line.
The PyTest fixtures can be applied to functions (as above), classes, modules,

packages or sessions. The scope of a fixture can be indicated via the (optional)
scope parameter to the fixture decorator. The default is “function” which is why we
did not need to specify anything above. The scope determines at what point a fixture
should be run. For example, the session will be run once for the test session, the
module will be run once for the module (i.e. the fixture and anything it generates will
be shared across all tests in the current module), the class scope indicates a fixture
that is run for each new instance of a test class created, etc.

Another parameter to the fixture decorator is autousewhich if set to True will
activate the fixture for all tests that can see it. If it is set to False (which is the
default), then an explicit reference in a test function (or method, etc.) is required to
activate the fixture.

If we add some additional fixtures to our tests, we can see when they are run:

import pytest
from calculator import Calculator

@pytest.fixture(scope='session', autouse=True)
def session_scope_fixture():

print('session_scope_fixture')

@pytest.fixture(scope='module', autouse=True)
def module_scope_fixture():

print('module_scope_fixture')

24.6 Parameterised Tests 265

@pytest.fixture(scope='class', autouse=True)
def class_scope_fixture():

print('class_scope_fixture')

@pytest.fixture
def calculator():

"""Returns a Calculator instance"""
print('calculator fixture')
return Calculator()

def test_initial_value(calculator):
assert calculator.total == 0

def test_add_one(calculator):
calculator.set(1)
calculator.add()
assert calculator.total == 1

def test_subtract_one(calculator):
calculator.set(1)
calculator.sub()
assert calculator.total == -1

def test_add_one_and_one(calculator):
calculator.set(1)
calculator.add()
calculator.set(1)
calculator.add()
assert calculator.total == 2

If we run this version of the tests, then the output shows when the various fixtures
are run:

session_scope_fixture
module_scope_fixture
class_scope_fixture
calculator fixture
.class_scope_fixture
calculator fixture
.class_scope_fixture
calculator fixture
.class_scope_fixture
calculator fixture

Note that higher scoped fixtures are instantiated first.

24.6 Parameterised Tests

One common requirement of a test is to run the same tests multiple times with
several different input values. This can greatly reduce the number of tests that must
be defined. Such tests are referred to as parametrised tests, with the parameter values
for the test specified using the @pytest.mark.parametrize decorator.

266 24 PyTest Testing Framework

@pytest.mark.parametrize('input1,input2,expected', [
(3, 1, 4),
(3, 2, 5),

])
def test_calculator_add_operation(calculator, input1, input2,
expected):

calculator.set(input1)
calculator.add()
calculator.set(input2)
calculator.add()
assert calculator.total == expected

This illustrates setting up a parametrised test for the Calculator in which two
input values are added together and compared with the expected value. Note that the
parameters are named in the decorator and then a list of tuples is used to define the
values to be used for the parameters. In this case the test_calculator_add_
operation will be run two passing in 3, 1 and 4 and then passing in 3, 2 and 5 for
the parameters input1, input2 and expected, respectively.

Testing for Exceptions

You can write tests that verify that an exception was raised. This is useful as testing
negative behaviour is as important as testing positive behaviour. For example, we
might want to verify that a particular exception is raised when we attempt to withdraw
money from a bank account which will take us over our overdraft limit.

To verify the presence of an exception in PyTest, use the with statement and
pytest.raises. This is a context manager that will verify on exit that the
specified exception was raised. It is used as follows:

with pytest.raises(accounts.BalanceError):
current_account.withdraw(200.0)

Ignoring tests

In some cases it is useful to write a test for functionality that has not yet been
implemented; this may be to ensure that the test is not forgotten or because it helps
to document what the item under test should do. However, if the test is run, then the
test suite as a whole will fail because the test is running against behaviour that has
yet to be written.

One way to address this problem is to decorate a test with the
@pytest.mark.skip decorator:

@pytest.mark.skip(reason='not implemented yet')
def test_calculator_multiply(calculator):

calculator.multiply(2, 3)
assert calculator.total == 6

This indicates that PyTest should record the presence of the test but should not try
to execute it. PyTest will then note that the test was skipped; for example in PyCharm
this is shown using a circle with a line through it.

24.8 Exercises 267

It is generally considered best practice to provide a reason why the test has been
skipped so that it is easier to track. This information is also available when PyTest
skips the test:

24.7 Online Resources

See the following online resources for information on PyTest:

• http://pythontesting.net/framework/PyTest/PyTest-introduction/ PyTest intro-
duction.

• https://github.com/pluralsight/intro-to-PyTest An example based introduction to
PyTest.

• https://docs.pytest.org/en/latest/ PyTest home page.
• https://docs.pytest.org/en/latest/#documentation PyTest documentation.

24.8 Exercises

Create a simple Calculator class that can be used for testing purposes. This
simple calculator can be used to add, subtract, multiple and divide numbers.

http://pythontesting.net/framework/PyTest/PyTest-introduction/
https://github.com/pluralsight/intro-to-PyTest
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/#documentation

268 24 PyTest Testing Framework

This will be a purely command-driven application that will allow the user to
specify.

• the operation to perform.
• the two numbers to use with that operation.

The Calculator object will then return a result. The same object can be used
to repeat this sequence of steps. This general behaviour of the Calculator is
illustrated below in flow chart form:

You should also provide a memory function that allows the current result to be
added to or subtracted from the current memory total. It should also be possible to
retrieve the value in memory and clear the memory.

Next write a PyTest set of tests for the Calculator class.
Think about what tests you need to write; remember you can’t write tests for

every value that might be used for an operation; but consider the boundaries, 0, − 1,
1, − 10, + 10, etc.

Of course you also need to consider the cumulative effect of the behaviour of
the memory feature of the calculator; that is multiple memory adds or memory
subtractions and combinations of these.

As you identify tests you may find that you have to update your implementation of
the Calculator class. Have you taken into account all input options; for example
dividing by zero, what should happen in these situations?

Chapter 25
Mocking for Testing

25.1 Introduction

Testing software systems is not an easy thing to do; the functions, objects, methods,
etc., that are involved in any program can be complex things in their own right. In
many cases they depend on and interact with other functions, methods and objects;
very few functions and methods operate in isolation. Thus the success of failure of
a function or method or the overall state of an object is dependent on other program
elements.

However, in general it is a lot easier to test a single unit in isolation rather than
to test it as part of a larger more complex system. For example, let us take a Python
class as a single unit to be tested. If we can test this class on its own, we only have
to take into account the state of the classes object and the behaviour defined for the
class when writing our tests and determining appropriate outcomes.

However, if that class interacts with external systems such as external services,
databases, third-party software and data sources, then the testing process becomes
more complex:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_25

270 25 Mocking for Testing

It may now be necessary to verify data updates made to the database, or informa-
tion sent to a remote service, etc., to confirm that the operation of a class’s object
is correct. This makes not only the software being tested more complex but it also
makes the tests themselves more complex. This means that there is greater chance
that the test will fail, that the tests will contain bugs or issues themselves and that
the test will be harder for someone to understand and maintain. Thus a common
objective when writing unit tests or subsystem tests is to be able to test elements/
units in isolation.

The question is how to do this when a function or method relies on other elements?
The key to decoupling functions, methods and objects from other program or

system elements is to use mocks. These mocks can be used to decouple one object
from another, one function from another and one system from another, thereby simpli-
fying the testing environment. These mocks are only intended to be used for testing
purposes; for example the above scenario could be simplified by mocking out each
of the external systems as shown below:

Mocking is not a Python specific concept, and there are many mocking libraries
available for many different languages. However, in this chapter we will be focussing

25.2 Why Mock? 271

on the unittest.mock library which has been part of the standard Python distribution
since Python 3.3.

25.2 Why Mock?

A useful first question considered with regard to mocking in software testing is ‘Why
mock?’. That is, why bother with the concept of a mock in the first place; why not
test with the real thing?

There are several answers to this, some of which are discussed below:

• Testing in isolation is easier. As mentioned in the introduction, testing a unit
(whether that is a class, a function, a module, etc.) is easier in isolation and then
when dependent on external classes, functions, modules, etc.

• The real thing is not available. In many cases it is necessary to mock out part of a
system or an interface to another system because the real thing is just not available.
This could be for several reasons including that it has not been developed yet. In
the natural course of software development some parts of a system are likely to
be developed and ready for testing before other parts. If one part relies on another
part for some element of its operation, then the system that is not yet available
can be mocked out. In other situations the development team or test team may not
have access to the real thing. This may be because it is only available within a
production context. For example, if a software development house is developing
one subsystem, it may not have access to another subsystem as it is proprietary and
only accessible once the software has been deployed within the client organisation.

• Real elements can be time consuming. We want our tests to run as quickly as
possible and certainly within a Continuous Integration (CI) environment we want
them to run fast enough that we can repeatedly test a system throughout the day.
In some situations the real thing may take a significant amount of time to process
the test scenario. As we want to test our own code we may not be worried about
whether a system outside of our control operates correctly or not (at least at this
level testing; it may still be a concern for integration and system testing). We can
therefore improve the response times of our tests if we mock out the real system
and replace it with a mock that provides much faster response times (possibly
because it uses canned responses).

• The real thing takes time to set up. In a Continuous Integration (CI) environment,
new bulls of system are regularly and repeatedly tested (e.g. whenever a change is
made to their codebase). In such situations it may be necessary to configure and
deploy the final system to a suitable environment to perform appropriate tests. If
an external system is time consuming to configure, deploy and initialise, it may
be more effective to mock that system out.

272 25 Mocking for Testing

• Difficult to emulate certain situations. It can be difficult within a test scenario
to emulate specific situations. These situations are often related to error or excep-
tional circumstances that should never happen within a correctly functioning envi-
ronment. However, it may well be necessary to validate that if such a situation
does occur, then the software can deal with that scenario. If these scanners are
related to how external (the unit under test) system fails or operates incorrectly,
then it may be necessary to mock out these systems to be able to generate the
scenarios.

• We want repeatable tests. By their very nature when you run a test, you either
want it to pass or fail each time it is run with the same inputs. You certainly do not
want tests that pass sometimes and fail other times. This means that there is no
confidence in the tests, and people often start ignoring failed tests. This situation
can happen if the data provided by systems that a test depends on does not supply
repeatable data. This can happen for several different reasons, but a common
cause is because they return real data. Such real data may be subject to change,
for example consider a system that uses a data feed for the current exchange rate
between funds and dollars. If the associated test confirms that a trade when priced
in dollars is correctly converted to funds using the current exchange rate, then
that test is likely to generate a different result every time it is run. In this situation
it would lie better to mock out the current exchange rate service so that a fixed/
known exchange rate is used.

• The Real System is not reliable enough. In some cases the real system may not
be reliable enough itself to allow for repeatable tests.

• The Real System may not allow tests to be repeated. Finally, the real system may
not allow tests to be easily repeated. For example, a test which involves lodging
a trade for a certain number of IBM shares with an trade order management
system may not allow that trade, with those shares, for that customer to be run
several times (as it would then appear to be multiple trades). However, for the
purposes of testing we may want to test submitting such a trade in multiple different
scenarios, multiple times. It may therefore be necessary to mock out the real order
management system so that such tests can be written.

25.3 What is Mocking?

The previous section gave several reasons to use mocks; the next thing to consider
then is what is a mock?

Mocks, both mock functions, methods and mock objects are things that:

• Possess the same interface as the real thing, whether they are mock functions,
methods or whole objects. They thus take the same range and types of parameters
and return similar information using similar types.

• Define behaviour that in some way represents/mimics real exemplar behaviour
but typically in very controlled ways. This behaviour may be hard coded, may be

25.4 Common Mocking Framework Concepts 273

really on a set of rules or simplified behaviour and may be very simplistic or quite
sophisticated in its own right.

They thus emulate the real system and from outside of the mock may actually
appear to be the real system.

In many cases the term mock is used to cover a range of different ways in which
the real thing can be emulated; each type of mock has its own characteristics. It is
therefore useful to distinguish the different types of mocks as this can help determine
the style of mock to be adopted in a particular test situation.

There are different types of mock include:

• Test Stubs. A test stub is typically a hand coded function, method or object used
for testing purposes. The behaviour implemented by a test stub may represent a
limited subset of the functionality of the real thing.

• Fakes. Fakes typically provide addition functionality compared with a test stub.
Fakes may be considered to be a test specific version of the real thing, such as
an in memory database used for testing rather than the real database. Such fakes
typically still have some limitations on their functionality; for example when the
tests are terminated all data is purged from the in memory database rather than
stored permanently on disc.

• Autogenerated Test Mocks. These are typically generated automatically using
a supporting framework. As part of the setup of the test the expectations are
associated with the test mock. These expectations may specify the results to return
for specific inputs as well as whether the test mock was called, etc.

• Test Mock Spy. If we are testing a particular unit and it returns the correct result,
we might decide that we do not need to consider the internal behaviour of the unit.
However, it is common to want to confirm that the test mock was invoked in the
way we expected. This helps verify the internal behaviour of the unit under test.
This can be done using a test mock spy. Such a test mock records how many times
it was called and what the parameters used were (as well as other information).
The test can then interrogate the test mock to validate that it was invoked as
expected/as many times as expected/with the correct parameters, etc.

25.4 Common Mocking Framework Concepts

As has been mentioned there are several mocking frameworks around for not only
Python but other languages such as Java, C# and Scala. All of these frameworks
have a common core behaviour. This behaviour allows a mock function, method or
object to be created based on the interface presented by the real thing. Of course
unlike languages such as C# and Java Python do not have a formal interface concept,
however this does not stop the mocking framework from still using the same idea.

In general once a mock has been created it is possible to define how that mock
should appear to behave; in general this involves specifying the return result to use

274 25 Mocking for Testing

for a function or method. It is also possible to verify that the mock has been invoked
as expected with the parameters expected.

The actual mock can be added to a test or a set of tests either programmatically or
via some form of decorator. In either case for the duration of the test the mock will
be used instead of the real thing.

Assertions can then be used to verify the results returned by the unit under test,
while mock specific methods are typically used to verify (spy on) the methods defined
on the mock.

25.5 Mocking Frameworks for Python

Due to Python’s dynamic nature it is well suited to the construction of mock functions,
methods and objects. In fact there are several widely used mocking frameworks
available for Python including:

• unittest.mock The unittest.mock (included in the Python distribution from
Python 3.3 onwards). This is the default mocking library provided with Python
for creating mock objects in Python tests.

• pymox This is a widely used making framework. It is an open-source framework
and has a more complete set of facilities for enforcing the interface of a mocked
class.

• Mocktest This is another popular mocking framework. It has its own Domain
Specific Language (DSL) to support mocking and a wide set of expectation
matching behaviour for mock objects.

In the remainder of this chapter we will focus on the unittest.mock library
as it is provided as part of the standard Python distribution.

25.6 The Unittest.Mock Library

The standard Python mocking library is the unittest.mock library. It has been
included in the standard Python distribution since Python 3.3 and provides a simple
way to define mocks for unit tests.

The key to the unites.mock library is the mock class and its subclass MagicMock.
Mock and MagicMock objects can be used to mock functions, methods and even
while classes. These mock objects can have canned responses defined so that when
they are involved by the unit under test, they will respond appropriately. Existing
objects can also have attributes or individual methods mocked allowing an object to
be tested with a known state and specified behaviour.

To make it easy to work with mock objects, the library provides the
@unittest.mock.pactch() decorator. This decorator can be used to replace
real functions and objects with mock instances. The function behind the decorator

25.6 The Unittest.Mock Library 275

can also be used as a context manager allowing it to be used in with-as statements
providing for fine-grained control over the scope of the mock if required.

25.6.1 Mock and Magic Mock Classes

The unittest.mock library provides the Mock
class and the MagicMock class. The Mock class is the base class for mock
objects. The MagicMock class is a subclass of the Mock class. It is called the
MagicMock class as it provides default implementations for several magic method
such as.__len__(),.__str__(), and.__iter__().

As a simple example consider the following class to be tested:

class SomeClass():

def _hidden_method(self):
return 0

def public_method(self, x):
return self.hidden_method() + x

This class defines two methods; one is intended as part of the public interface
of the class (the public_method()) and one is intended only for internal or
private use (the _hidden_method()). Notice that the hidden method uses the
convention of preceding its name by an underbar (‘_’).

Let us assume that we wish to test the behaviour of the public_method()
and want to mock out the _hidden_method().

We can do this by writing a test that will create a mock object and use this in
place of the real _hidden_method(). We could probably use either the Mock
class or the MagicMock class for this; however due to the additional functionality
provided by the MagicMock class it is a common practice to use that class. We will
therefore do the same.

The test to be created will be defined within a method within a test class. The
names of the test method and the test class are by convention descriptive and thus
will describe what is being tested, for example:

from unittest.mock import *

from unittest import TestCase
from unittest import main

class test_SomeClass_public_interface(TestCase):

def test_public_method(self):
test_object = SomeClass()
Set up canned response on mock method
test_object._hidden_method = MagicMock(name = ’hidden_

method’)
test_object._hidden_method.return_value = 10

276 25 Mocking for Testing

Test the object
result = test_object.public_method(5)
self.assertEqual(15, result,’return value from public_

method incorrect’)

In this case note that the class being tested is initiated first. The MagicMock
is then instantiated and assigned to the name of the method to be mocked. This in
effect replaces that method for the test_object. The MagicMock object is given a
name as this helps with treating any issues in the report generated by the unites
framework. Following this the canned response from the mock version of the
_hidden_method() is defined; it will always return the value 10.

At this point we have set up the mock to be used for the test and are now ready to
run the test. This is done in the next line where the public_method() is called
on the test_object with the parameter 5. The result is then stored.

The test then validated the result to ensure that it is correct; i.e. that the returned
value is 15.

Although this is a very simple example it illustrates how a method can be mocked
out using the MagicMock class.

25.6.2 The Patchers

The unittest.mock.patch(), unittest.mock.patch.object()
and unittest.patch.dict() decorators can be used to simplify the creation
of mock objects.

• The patch decorator takes a target for the patch and returns a MagicMock object
in its place. It can be used as a TastCase method or class decorator. As a class
decorator it decorates each test method in the class automatically. It can also be
used as a context manager via the with and with-as statements.

• The patch.object decorator can be provided with either two or three argu-
ments. When given three arguments, it will replace the object to be patched, with a
mock for the given attribute/method name. When given two arguments the object
to be patched is given a default MagicMock object for the specified attribute/
function.

• The patch.dict decorator patches a dictionary or dictionary like object.

For example, we can rewrite the example presented in the previous section using
the @patch.object decorator to provide the mock object for the _hidden_
method() (it returns a MagicMock linked to SomeClass):

25.6 The Unittest.Mock Library 277

class test_SomeClass_public_interface(TestCase):

@patch.object(SomeClass, ’_hidden_method’)
def test_public_method(self, mock_method):

Set up canned response
mock_method.return_value = 10
Create object to be tested
test_object = SomeClass()
result = test_object.public_method(5)
self.assertEqual(15, result, ’return value from public_

method incorrect’)

In the above code the _hidden_method() is replaced with a mock version for
SomeClass within the test_public_method() method. Note that the mock
version of the method is passed in as a parameter to the test method so that the canned
response can be specified.

You can also use the @patch() decorator to mock a function from a module. For
example, given some external module with a function api_call, we can mock
that function out using the @patch() decorator:

@patch(’external_module.api_call’)
def test_some_func(self, mock_api_call):

You used patch() as a decorator and passed the target object’s path. The target
path was ‘external_module.api_call’ which consists of the module name and the
function to mock.

25.6.3 Mocking Returned Objects

In the examples looked at so far the results returned from the mock functions or
methods have been simple integers. However, in some cases the returned values
must themselves be mocked as the real system would return a complex object with
multiple attributes and methods.

The following example uses a MagicMock object to represent an object returned
from a mocked function. This object has two attributes: one is a response code and
the other is a JSON string. JSON stands for the JavaScript Object Notation and is a
commonly used format in web services.

import external_module

from unittest.mock import *

from unittest import TestCase
from unittest import main
import json

def some_func():
Calls out to external API - which we want to mock
response = external_module.api_call()

278 25 Mocking for Testing

return response

class test_some_func_calling_api(TestCase):

@patch(’external_module.api_call’)
def test_some_func(self, mock_api_call):

Sets up mock version of api_call
mock_api_call.return_value = MagicMock(status_code=200,

response=json.dumps({’key’: ’value’}))
Calls some_func() that calls the (mock) api_call()

function
result = some_func()

Check that the result returned from some_func() is what
was expected

self.assertEqual(result.status_code, 200, "returned status
code is not 200")

self.assertEqual(result.response, ’{"key": "value"}’,
"response JSON incorrect")

In this example the function being tested is some_func(), but some_
func() calls out to the mocked function external_module.api_call().
This mocked function returns a MagicMock object with a pre-specified status_
code and response. The assertions then validate that the object returned by
some_func() contains the correct status code and response.

25.6.4 Validating Mocks Have Been Called

Using unittest.mock it is possible to validate that a mocked function or method
was called appropriately using assert_called(), assert_called_with()
or assert_called_once_with() depending on whether the function takes
parameters or not.

The following version of the test_some_func_with_params() test
method verifies that the mock api_call() function was called with the correct
parameter.

@patch(’external_module.api_call_with_param’)
def test_some_func_with_param(self, mock_api_call):

Sets up mock version of api_call
mock_api_call.return_value = MagicMock(status_code=200,

response=json.dumps({’age’: ’23’}))
result = some_func_with_param(’Phoebe’)

Check result returned from some_func() is what was
expected

self.assertEqual(result.response, ’{age": "23"}’, ’JSON
result incorrect’)

Verify that the mock_api_call was called with the correct
params
mock_api_call.api_call_with_param.assert_called_with(’Phoebe’)

If we wished to validate that it had only been called once, we could use the
assert_called_once_with() method.

25.7 Mock and MagicMock Usage 279

25.7 Mock and MagicMock Usage

25.7.1 Naming Your Mocks

It can be useful to give your mocks a name. The name is used when the mock appears
in test failure messages. The name is also propagated to attributes or methods of the
mock:

mock = MagicMock(name=’foo’)

25.7.2 Mock Classes

As well as mocking an individual method on a class it is possible to mock a whole
class. This is done by providing the patch() decorator with the name of the class to
patch (with no named attribute/method). In this case the while class is replaced by a
MagicMock object. You must then specify how that class should behave.

import people

from unittest.mock import *
from unittest import TestCase
from unittest import main

class MyTest(TestCase):

@patch(’people.Person’)
def test_one(self, MockPerson):

self.assertIs(people.Person, MockPerson)
instance = MockPerson.return_value
instance.calculate_pay.return_value = 250.0
payroll = people.Payroll()
result = payroll.generate_payslip(instance)

self.assertEqual(’You earned 250.0’, result, ’payslip
incorrect’)

In this example the people.Person class has been mocked out. This class has a
method calculate_pay() which is being mocked here. The payroll class has a method
generate_payslip() that expects to be given a person object. It then uses
the information provided by the person objects calculate_pay() method to
generate the string returned by the generate_payslip() method.

25.7.3 Attributes on Mock Classes

Attributes on a mock object can be easily defined; for example if we want to set an
attribute on a mock object, then we can just assign a value to the attribute:

280 25 Mocking for Testing

import people
from unittest.mock import *
from unittest import TestCase

class MyTest(TestCase):

@patch(’people.Person’)
def test_one(self, MockPerson):

self.assertIs(people.Person, MockPerson)
instance = MockPerson.return_value
instance.age = 24
instance.name = ’Adam’
self.assertEqual(24, instance.age, ’age incorrect’)
self.assertEqual(’Adam’, instance.name, ’name incorrect’)

In this case the attribute age and name have been added to the mock instance of
the people.Person class.

If the attribute itself needs to be a mock object, then all that is required is to assign
a MagicMock (or Mock) object to that attribute:

instance.address = MagicMock(name=’Address’)

25.7.4 Mocking Constants

It is very easy to mock out a constant; this can be done using the@patch() decorator
and proving the name of the constant and the new value to use. This value can be
a literal value such as 42 or ‘Hello’ or it can be a mock object itself (such as a
MagicMock object). For example:

@patch(’mymodule.MAX_COUNT’, 10)
def test_something(self):

Test can now use mymodule.MAX_COUNT

25.7.5 Mocking Properties

It is also possible to mock Python properties. This is done again using the @patch
decorator but using the unittest.mock.PropertyMock class and the new_
callable parameter. For example:

@patch(’mymoule.Car.wheels’, new_callable=mock.PropertyMock)
def test_some_property(self, mock_wheels):

mock_wheels.return_value = 6
Rest of test method

25.7 Mock and MagicMock Usage 281

25.7.6 Raising Exceptions with Mocks

A very useful attribute that can be specified when a mock object is created is the
side_effect. If you set this to an exception class or instance, then the exception
will be raised when the mock is called, for example:

mock = Mock(side_effect=Exception(’Boom!’))
mock()

This will result in the exception being raised when the mock() is invoked.

25.7.7 Applying Patch to Every Test Method

If you want to mock out the thing for every test in a test class, then you can decorate
the whole class rather than each individual method. The effect of decorating the class
is that the patch will be automatically applied to all test methods in the class (i.e. to
all methods starting with the word ‘test’). For example:

import people

from unittest.mock import *
from unittest import TestCase
from unittest import main

@patch(’people.Person’)
class MyTest(TestCase):

def test_one(self, MockPerson):
self.assertIs(people.Person, MockPerson)

def test_two(self, MockSomeClass):
self.assertIs(people.Person, MockSomeClass)

def do_something(self):
return ’something’

In the above test class, the tests test_one and test_two are supplied with
the mock version of the Person class. However the do_something() method
is not affected.

25.7.8 Using Patch as a Context Manager

The patch function can be used as a context manager. This gives fine-grained control
over the scope of the mock object.

In the following example the test_one() method contains a with-as state-
ment that we used to patch (mock) the person class as MockPerson. This mock
class is only available within the with-as statement.

282 25 Mocking for Testing

import people

from unittest.mock import *
from unittest import TestCase
from unittest import main

class MyTest(TestCase):

def test_one(self):
with patch(’people.Person’) as MockPerson:

self.assertIs(people.Person, MockPerson)
instance = MockPerson.return_value
instance.calculate_pay.return_value = 250.0
payroll = people.Payroll()
result = payroll.generate_payslip(instance)

self.assertEqual(’You earned 250.0’, result, ’payslip
incorrect’)

25.8 Mock Where You Use It

The most common error made by people using the unittest.mock library is
mocking in the wrong place. The rule is that you must mock out where you are going
to use it; or to put it another way you must always mock the real thing where it is
imported into, not where it’s imported from.

25.9 Patch Order Issues

It is possible to have multiple patch decorators on a test method. However, the order
in which you define the patch decorators is significant. The key to understanding
what the order should be is to work backwards so that when the mocks are passed
into the test method, they are presented to the right parameters. For example:

@patch(’mymodule.sys’)
@patch(’mymodule.os’)
@patch(’mymodule.os.path’)
def test_something(self,

mock_os_path,
mock_os,
mock_sys):

The rest of the test method

Notice that the last patch’s mock is passed into the second parameter passed to the
test_something() method (self is the first parameter to all methods). In turn
the first patch’s mock is passed into the last parameter. Thus the mocks are passed
into the test method in the reverse order to that which they are defined in.

25.11 Mocking Considerations 283

25.10 How Many Mocks?

An interesting question to consider is how many mocks should you use per test?
This is the subject or a lot of debate within the software testing community. The

general rules of thumb around this topic are given below; however it should be borne
in mind that these are guidelines rather than hard and fast rules.

• Avoid more than 2 or 3 mocks per test. You should avoid more than 2 to
3 mocks as the mocks themselves get harder to manage. Many also consider
that if you need more than 2 to 3 mocks per test, then there are probably some
underlying design issues that need to be considered. For example, if you are testing
a Python class, then that class may have too many dependencies. Alternatively
the class may have too many responsibilities and should be broken down into
several independent classes; each with a distinct responsibility. Another cause
might be that the class’s behaviour may not be encapsulated enough and that you
are allowing other elements to interact with the class in more informal ways (i.e.
the interface between the class and other elements is not clean/exploit enough).
The result is that it may be necessary to refactor your class before progressing
with your development and testing.

• Only mock you nearest neighbour. You should only ever mock your nearest
neighbour whether that is a function, method or object. You should try to avoid
mocking dependencies of dependencies. If you find yourself doing this, then it
will become harder to configure, maintain, understand and develop. It is also
increasingly likely that you are testing the mocks rather than your own function,
method or class.

25.11 Mocking Considerations

The following provide some rules of thumb to consider when using mocks with your
tests:

• Don’t over mock—if you do then you can end up just testing the mocks themselves.
• Decide what to mock, typical examples of what to mock include those elements

that are not yet available, those elements that are not by default repeatable (such
as live data feeds) or those elements of the system that are time consuming or
complex.

• Decide where to mock such as the interfaces for the unit under test. You want to
test the unit so any interface it has with another system, function, class might be
a candidate for a mock.

• Decide when to mock so that you can determine the boundaries for the test.
• Decide how you will implement your mocks. For example you need to consider

which mocking framework(s) you will use or how to mock larger components
such as a database.

284 25 Mocking for Testing

25.12 Online Resources

There is a great deal of information available on how to mock, when to mock and
what mock libraries to use; however the following provides useful starting points for
Python mocking:

• https://docs.python.org/3/library/unittest.mock.html The Python Standard
Library documentation on the unitest.mock library.

• https://docs.python.org/3/library/unittest.mock-examples.html A set of examples
you can use to explore mocking using unites.mock.

• https://pymox.readthedocs.io/en/latest/index.html Pymox is an alternative open-
source mock object framework for Python.

• http://gfxmonk.net/dist/doc/mocktest/doc mocktest its yet another mocking
library for Python.

25.13 Exercises

One of the reasons for mocking is to ensure that tests are repeatable. In this exercise
we will mock out the use of a random number generated to ensure that our tests can
be easily repeated.

The following program generates a deck of cards and randomly picks a card from
the deck:

import random

def create_suite(suite):
return [(i, suite) for i in range(1, 14)]

def pick_a_card(deck):
print(’You picked’)
position = random.randint(0, 52)
print(deck[position][0], "of", deck[position][1])
return (deck[position])

Set up the data
hearts = create_suite(’hearts’)
spades = create_suite(’spades’)
diamonds = create_suite(’diamonds’)
clubs = create_suite(’clubs’)
Make the deck of cards
deck = hearts + spades + diamonds + clubs
Randomly pick from the deck of cards
card = pick_a_card(deck)

Each time the program is run a different card is picked; for example in two
consecutive runs the following output is obtained:

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock-examples.html
https://pymox.readthedocs.io/en/latest/index.html
http://gfxmonk.net/dist/doc/mocktest/doc

25.13 Exercises 285

You picked
13 of clubs
You picked
1 of hearts

We now want to write a test for the pick_a_card() function. You should mock out
the random.randint(0) function to do this.

Part V
File Input/Output

Chapter 26
Introduction to Files, Paths and IO

26.1 Introduction

The operating system is a critical part of any computer systems. It is comprised of
elements that manage the processes that run on the CPU, how memory is utilised
and managed, how peripheral devices are used (such as printers and scanners), it
allows the computer system to communicate with other systems, and it also provides
support for the file system used.

The file system allows programs to permanently store data. This data can then
be retrieved by applications at a later date, potentially after the whole computer has
been shut down and restarted.

The File Management System is responsible for managing the creation, access
and modification of the long-term storage of data in files.

This data may be stored locally or remotely on discs, tapes, DVD drives, USB
drives, etc.

Although this was not always the case, most modern operating systems organise
files into a hierarchical structure, usually in the form of an inverted tree. For example
in the following diagram the root of the directory structure is shown as ‘/’. This root
directory holds six subdirectories. In turn the users subdirectory holds three further
directories and so on:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_26&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_26

290 26 Introduction to Files, Paths and IO

Each file is contained within a directory (also known as a folder on some operating
systems such as Windows). A directory can hold zero or more files and zero or more
directories.

For any give directory there are relationships with other directories as shown
below for the directory jhunt:

The root directory is the starting point for the hierarchical directory tree structure.
A child directory of a given directory is known as a subdirectory. The directory
that holds the given directory is known as the parent directory. At any one time, the

26.1 Introduction 291

directory within which the program or user is currently working is known as the
current working directory.

A user or a program can move around this directory structure as required. To do
this, the user can typically either issue a series of commands at a terminal or command
window, such as DC to change directory or pwd to print the working directory.
Alternatively graphical user interfaces (GUIs) to operating systems usually include
some form of file manager application that allows a user to view the file structure in
terms of a tree. The finder program for the Mac is shown below with a tree structure
displayed for a pycharmprojects directory. A similar view is also presented for
the Windows Explorer program.

292 26 Introduction to Files, Paths and IO

26.2 File Attributes

A file will have a set of attributes associated with it such as the data that it was
created, the date it was last updated/modified, how large the file is, etc. It will also
typically have an attribute indicating who the owner of the file is. This may be the
creator of the file; however the ownership of a file can be changed either from the
command line or through the GUI interface. For example, on Linux and Mac OS X
the command chown can be used to change the file ownership.

It can also have other attributes which indicate who can read, write or execute the
file. In Unix style systems (such as Linux and Mac OS X) these access rights can be
specified for the file owner, for the group that the file is associated with and for all
other users.

The file owner can have rights specified for reading, writing and executing a
file. These are usually represented by the symbols ‘r’, ‘w’ and ‘x’, respectively. For
example the following uses the symbolic notation associated with Unix files and
indicates that the file owner is allowed to read, write and execute a file:

-rwx------

Here the first dash is left blank as it is to do with special files (or directories),
then the next set of three characters represent the permissions for the owner, the
following set of three the permissions for all other users. As this example has rwx
in the first group of three characters this indicates that the user can read ‘r’, write
‘w’ and execute ‘x’ the file. However the next six characters are all dashes indicating
that the group and all other users cannot access the file at all.

The group that a file belongs to is a group that can have any number of users as
members. A member of the group will have the access rights as indicated by the
group settings on the file. As for the owner of a file these can be to read, write or
execute the file. For example, if group members are allowed to read and execute a
file, then this would be shown using the symbolic notation as:

----r-x---

Now this example indicates that only members of the group can read and execute
the file; note that group members cannot write the file (they therefore cannot modify
the file).

If a user is not the owner of a file, nor a member of the group that the file is part of,
then their access rights are in the ‘everyone else’ category. Again this category can
have read, write or execute permissions. For example, using the symbolic notation,
if all users can read the file but are not able to do anything else, then this would be
shown as:

-------r--

26.3 Paths 293

Of course a file can mix the above permissions together, so that an owner may be
allowed to read, write and execute a file, the group may be able to read and execute
the file, but all other users can only read the file. This would be shown as:

-rwxr-xr--

In addition to the symbolic notation there is also a numeric notation that is used
with Unix style systems. The numeric notation uses three digits to represent the
permissions. Each of the three rightmost digits represents a different component of
the permissions: owner, group, and others.

Each of these digits is the sum of its component bits in the binary numeral system.
As a result, specific bits add to the sum as it is represented by a numeral:

• The read bit adds 4 to its total (in binary 100),
• The write bit adds 2 to its total (in binary 010), and
• The execute bit adds 1 to its total (in binary 001).
• The following symbolic notations can be represented by an equivalent numeric

notation:

Symbolic notation Numeric notation Meaning

rwx------ 0700 Read, write, and execute only for owner

-rwxrwx--- 0770 Read, write, and execute for owner and group

-rwxrwxrwx 0777 Read, write, and execute for owner, group, and others

Directories have similar attributes and access rights to files. For example, the
following symbolic notation indicates that a directory (indicated by the ‘d’) has read
and executed permissions for the directory owner and for the group. Other users
cannot access this directory:

dr-xr-x---

The permissions associated with a file or directory can be changed either using
a command from a terminal or command window (such as chmod which is used to
modify the permissions associated with a file or directory) or interactively using the
file explorer style tool.

26.3 Paths

A path is a particular combination of directories that can lead to a specific subdirectory
or file.

This concept is important as Unix/Linux/macOS X and Windows file systems
represent an inverted tree of directories and files. It is thus important to be able to
uniquely reference locations with the tree.

294 26 Introduction to Files, Paths and IO

For example, in the following diagram the path /Users/jhunt/workspaces/
pycharmprojects/furtherpython/chapter 2 is highlighted:

A path may be absolute or relative. An absolute path is one which provides
a complete sequence of directories from the root of the file system to a specific
subdirectory or file.

A relative path provides a sequence from the current working directory to a
particular subdirectory or file.

The absolute path will work wherever a program or user is currently located within
the directory tree. However, a relative path may only be relevant in a specific location.

For example, in the following diagram, the relative path pycharmprojects/
furtherpython/chapter 2 is only meaningful relative to the directory workspaces:

26.4 File Input/Output 295

Note that an absolute path starts from the root directory (represented by
‘/’), whereas a relative path starts from a particular subdirectory (such as
pychamprojects).

26.4 File Input/Output

File input/output (often just referred to as File I/O) involves reading and writing data
to and from files. The data being written can be in different formats.

For example a common format used in Unix/Linux and Windows systems is the
ASCII text format. The ASCII format (or American Standard Code for Information
Interchange) is a set of codes that represent various characters that is widely used
by operating systems. The following table illustrates some of the ASCII character
codes and what they represent:

Decimal code Character Meaning

42 * Asterisk

43 + Plus

48 0 Zero

(continued)

296 26 Introduction to Files, Paths and IO

(continued)

Decimal code Character Meaning

49 1 One

50 2 Two

51 3 Three

65 A Uppercase A

66 B Uppercase B

67 C Uppercase C

68 D Uppercase D

97 a Lowercase a

98 b Lowercase b

99 c Lowercase c

100 d Lowercase d

ASCII is a very useful format to use for text files as they can be read by a wide
range of editors and browsers. These editors and browsers make it very easy to create
human readable files. However, programming languages such as Python often use
a different set of character encodings such as a Unicode character encoding (such
as UTF-8). Unicode is another standard for representing characters using various
codes. Unicode encoding systems offer a wider range of possible character encodings
than ASCII; for example the latest version of Unicode in May 2019, Unicode 12.1,
contains a repertoire of 137,994 characters covering 150 modern and historic scripts,
as well as multiple symbol sets and emojis.

However, this means that it can be necessary to translate ASCII into Unicode (e.g.
UTF-8) and vice versa when reading and writing ASCII files in Python.

Another option is to use a binary format for data in a file. The advantage of
using binary data is that there is little or no translation required from the internal
representation of the data used in the Python program into the format stored in the
file. It is also often more concise than an equivalent ASCII format, and it is quicker
for a program to read and write and takes up less disc space, etc. However, the down
side of a binary format is that it is not in an easily human readable format. It may
also be difficult for other programs, particularly those written in other programming
languages such as Java or C#, to read the data in the files.

26.5 Sequential Access versus Random Access

Data can be read from (or indeed written to) a file either sequentially or via a random
access approach.

Sequential access to data in a file means that the program reads (or writes) data
to a file sequentially, starting at the beginning of a file and processing the data an

26.7 Online Resources 297

item at a time until the end of the file is reached. The read process only ever moves
forward and only to the next item of data to read.

Random access to a data file means that the program can read (or write) data
anywhere into the file at any time. That is the program can position itself at a particular
point in the file (or rather a pointer can be positioned within the file), and it can then
start to read (or write) at that point. If it is reading, then it will read the next data item
relative to the pointer rather than the start of the file. If it is writing data, then it will
write data from that point rather than at the end of the file. If there is already data at
that point in the file, then it will be overwritten. This type of access is also known as
direct access as the computer program needs to know where the data is stored within
the file and thus goes directly to that location for the data. In some cases the location
of the data is recorded in an index and thus is also known as indexed access.

Sequential file access has advantages when a program needs to access information
in the same order each time the data is read. It is also faster to read or write all the
data sequentially than via direct access as there is no need to move the file pointer
around.

Random access files however are more flexible as data does not need to be written
or read in the order in which it is obtained. It is also possible to jump to just the
location for the data required and read that data (rather than needing to sequentially
read through all the data to find the data items of interest).

26.6 Files and I/O in Python

In the remainder of this section of the book we will explore the basic facilities
provided for reading and writing files in Python. We will also look at the underlying
streams model for file I/O. After this we will explore the widely used CSV and
Excel file formats and libraries available to support those. This section concludes
by exploring the regular expression facilities in Python. While this last topic is not
strictly part of file I/O it is often used to parse data read from files to screen out
unwanted information.

26.7 Online Resources

See the following online resources for information on the topics in this chapter:

• https://en.wikipedia.org/wiki/ASCII Wikipedia page on ASCII.
• https://en.wikipedia.org/wiki/Unicode Wikipedia page on Unicode.
• https://en.wikipedia.org/wiki/UTF-8 Wikipedia page on UTF-8.

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 27
Reading and Writing Files

27.1 Introduction

Reading data from and writing data to a file are very common within many programs.
Python provides a large amount of support for working with files of various types.
This chapter introduces you to the core file IO functionality in Python.

27.2 Obtaining References to Files

Reading from, and writing to, text files in Python is relatively straightforward. The
built-in open() function creates a file object for you that you can use to read and/
or write data from and/or to a file.

The function requires as a minimum the name of the file you want to work with.
Optionally you can specify the access mode (e.g. read, write, append, etc.). If you

do not specify a mode then the file is open in read-only mode. You can also specify
whether you want the interactions with the file to be buffered which can improve
performance by grouping data reads together.

The syntax for the open() function is

file_object = open(file_name, access_mode, buffering)

where

• file_name indicates the file to be accessed.
• access_mode: The access_mode determines the mode in which the file is

to be opened, i.e. read, write, append, etc. A complete list of possible values is
given below in the table. This is an optional parameter, and the default file access
mode is read (r).

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_27

300 27 Reading and Writing Files

• buffering: If the buffering value is set to 0, no buffering takes place. If the
buffering value is 1, line buffering is performed while accessing a file.

The access_mode values are given in the following table.

Mode Description

r Opens a file for reading only. The file pointer is placed at the beginning of the file. This
is the default mode

rb Opens a file for reading only in binary format. The file pointer is placed at the
beginning of the file. This is the default mode

r+ Opens a file for both reading and writing. The file pointer placed at the beginning of the
file

rb+ Opens a file for both reading and writing in binary format. The file pointer placed at the
beginning of the file

w Opens a file for writing only. Overwrites the file if the file exists. If the file does not
exist, it creates a new file for writing

wb Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, it creates a new file for writing

w+ Opens a file for both writing and reading. Overwrites the existing file if the file exists. If
the file does not exist, it creates a new file for reading and writing

wb+ Opens a file for both writing and reading in binary format. Overwrites the existing file
if the file exists. If the file does not exist, it creates a new file for reading and writing

a Opens a file for appending. The file pointer is at the end of the file if the file exists. That
is, the file is in the append mode. If the file does not exist, it creates a new file for writing

ab Opens a file for appending in binary format. The file pointer is at the end of the file if
the file exists. That is, the file is in the append mode. If the file does not exist, it creates
a new file for writing

a+ Opens a file for both appending and reading. The file pointer is at the end of the file if
the file exists. The file opens in the append mode. If the file does not exist, it creates a
new file for reading and writing

ab+ Opens a file for both appending and reading in binary format. The file pointer is at the
end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing

The file object itself has several useful attributes such as

• file.closed returns True if the file has been closed (can no longer be
accessed because the close() method has been called on it).

• file.mode returns the access mode with which the file was opened.
• file.name the name of the file.

The file.close() method is used to close the file once you have finished
with it. This will flush any unwritten information to the file (this may occur because
of buffering) and will close the reference from the file object to the actual underlying
operating system file. This is important to do as leaving a reference to a file open can
cause problems in larger applications as typically there are only a certain number of

27.3 Reading Files 301

file references possible at one time, and over a long period of time these may all be
used up resulting in future errors being thrown as files can no longer be opened.

The following short code snippet illustrates the above ideas:

file = open('myfile.txt', 'r+')
print('file.name:', file.name)
print('file.closed:', file.closed)
print('file.mode:', file.mode)
file.close()
print('file.closed now:', file.closed)

The output from this is:

file.name: myfile.txt
file.closed: False
file.mode: r+
file.closed now: True

27.3 Reading Files

Of course, having set up a file object we want to be able to either access the contents
of the file or write data to that file (or do both). Reading data from a text file is
supported by the read(), readline() and readlines() methods:

• The read() method will return the entire contents of the file as a single string.
• The readline() method reads the next line of text from a file. It returns all

the text on one line up to and including the newline character. It can be used to
read a file a line at a time.

• The readlines() method returns a list of all the lines in a file, where each
item of the list represents a single line.

Note that once you have read some text from a file using one of the above opera-
tions then that line is not read again. Thus using readlines() would result in a
further readlines() returning an empty list whatever the contents of the file.

The following illustrates using the readlines() method to read all the text in
a text file into a program and then print each line out in turn:

file = open('myfile.txt', 'r')
lines = file.readlines()
for line in lines:

print(line, end='')
file.close()

Notice that within the for loop we have indicated to the print function that we
want the end character to be '' rather than a newline; this is because the line string
already possesses the newline character read from the file.

302 27 Reading and Writing Files

27.4 File Contents Iteration

As suggested by the previous example, it is very common to want to process the
contents of a file one line at a time. In fact Python makes this extremely easy by
making the file object support iteration. File iteration accesses each line in the file
and makes that line available to the for loop. We can therefore write:

file = open('myfile.txt', 'r')
for line in file:

print(line, end='')
file.close()

It is also possible to use the list comprehension to provide a very concise way to
load and process lines in a file into a list. It is similar to the effect of readlines()
but we are now able to pre-process the data before creating the list:

file = open('myfile.txt', 'r')
lines = [line.upper() for line in file]
file.close()
print(lines)

27.5 Writing Data to Files

Writing a string to a file is supported by the write() method. Of course, the file
object we create must have an access mode that allows writing (such as ‘w’). Note
that the write method does not add a newline character (represented as'\n') to the
end of the string—you must do this manually.

An example short program to write a text file is given below:

print('Writing file')
f = open('my-new-file.txt', 'w')
f.write('Hello from Python!!\n')
f.write('Working with files is easy...\n')
f.write('It is cool ...\n')
f.close()

This creates a new file called my-new-file.txt. It then writes three strings
to the file each with a newline character on the end; it then closes the file.

27.7 The Fileinput Module 303

The effect of this is to create a new file called myfile.txt with three lines in
it:

27.6 Using Files and with Statements

Like several other types where it is important to shut down resources, the file object
class implements the Context Manager Protocol and thus can be used with the with
statement. It is therefore common to write code that will open a file using the with
as structure thus ensuring that the file will be closed when the block of code is
finished with, for example:

with open('my-new-file.txt', 'r') as f:
lines = file.readlines()
for line in lines:

print(line, end='')

27.7 The Fileinput Module

In some situations, you may need to read the input from several files in one go. You
could do this by opening each file independently and then reading the contents and
appending that contents to a list, etc. However, this is a common enough requirement
that the fileinput module provides a function fileinput.input() that can
take a list of files and treat all the files as a single input significantly simplifying this
process, for example:

with fileinput.input(files=('spam.txt', 'eggs.txt')) as f:
for line in f:

process(line)

Features provided by the fileinput module include

• Return the name of the file currently being read.
• Return the integer “file descriptor” for the current file.

304 27 Reading and Writing Files

• Return the cumulative line number of the line that has just been read.
• Return the line number in the current file. Before the first line has been read this

returns 0.
• A Boolean function that indicates if the current line just read is the first line of its

file.

Some of these are illustrated below:

with fileinput.input(files=('textfile1.txt', 'textfile2.txt'))
as f:

line = f.readline()
print('f.filename():', f.filename())
print('f.isfirstline():', f.isfirstline())
print('f.lineno():', f.lineno())
print('f.filelineno():', f.filelineno())
for line in f:

print(line, end='')

27.8 Renaming Files

A file can be renamed using the os.rename() function. This function takes two
arguments, the current filename and the new filename. It is part of the Python os
module which provides methods that can be used to perform a range of file processing
operations (such as renaming a file). To use the module, you will first need to import
it. An example of using the rename function is given below:

import os
os.rename('myfileoriginalname.txt', 'myfilenewname.txt')

27.9 Deleting Files

A file can be deleted using the os.remove() method. This method deletes the
file specified by the filename passed to it. Again, it is part of the os module, and
therefore this must be imported first:

import os
os.remove('somefilename.txt')

27.10 Random Access Files 305

27.10 Random Access Files

All the examples presented so far suggest that files are accessed sequentially, with
the first line read before the second and so on. Although this is (probably) the most
common approach it is not the only approach supported by Python; it is also possible
to use a random access approach to the contents within a file.

To understand the idea of random file access it is useful to understand that we can
maintain a pointer into a file to indicate where we are in that file in terms of reading
or writing data. Before anything is read from a file the pointer is before the beginning
of the file, and reading the first line of text would, for example, advance the point to
the start of the second line in the file, etc. This idea is illustrated below:

When randomly accessing the contents of a file the programmer manually moves
the pointer to the location required and reads or writes text relative to that pointer.
This means that they can move around in the file reading and writing data.

The random access aspect of a file is provided by the seek method of the file
object:

• file.seek (offset, whence) this method determines where the next
read or write operation (depending on the mode used in the open() call) takes
place.

In the above the offset parameter indicates the position of the read/write pointer
within the file. The move can also be forwards or backwards (represented by a
negative offset).

The optional whence parameter indicates where the offset is relative to. The values
used for whence are:

306 27 Reading and Writing Files

• 0 indicates that the offset is relative to start of file (the default).
• 1 means that the offset is relative to the current pointer position.
• 2 indicates the offset is relative to end of file.

Thus, we can move the pointer to a position relative to the start of the file, to the
end of the file or to the current position.

For example, in the following sample code we create a new text file and write a
set of characters into that file. At this point the pointer is positioned after the ‘z’ in
the file. However, we then use seek() to move the point to the 10th character in
the file and now write ‘Hello’; next we reposition the pointer to the 6th character
in the file and write out ‘BOO’. We then close the file. Finally, we read all the lines
from the file using a with as statement and the open() function, and from this
we will see that the text is the file is now abcdefBOOjHELLOpqrstuvwxyz:

f = open('text.txt', 'w')
f.write('abcdefghijklmnopqrstuvwxyz\n')
f.seek(10,0)
f.write('HELLO')
f.seek(6, 0)
f.write ('BOO')
f.close()
with open('text.txt', 'r') as f:

for line in f:
print(line, end='')

27.11 Directories

Both Unix style and Windows operating systems are hierarchical structures
comprising directories and files. The os module has several functions that can help
with creating, removing and altering directories. These include:

• mkdir() This function is used to create a directory, and it takes the
name of the directory to create as a parameter. If the directory already
exists FileExistsError is raised.

• chdir() This function can be used to change the current working directory.
This is the directory that the application will read from/write to by default.

• getcwd() This function returns a string representing the name of the current
working directory.

• rmdir() This function is used to remove/delete a directory. It takes the name
of the directory to delete as a parameter.

• listdir() This function returns a list containing the names of the entries in the
directory specified as a parameter to the function (if no name is given the current
directory is used).

27.12 Temporary Files 307

A simple example illustrating the use of some of these functions is given below:

import os
print('os.getcwd(:', os.getcwd())
print('List contents of directory')
print(os.listdir())
print('Create mydir')
os.mkdir('mydir')
print('List the updated contents of directory')
print(os.listdir())
print('Change into mydir directory')
os.chdir('mydir')
print('os.getcwd(:', os.getcwd())
print('Change back to parent directory')
os.chdir('..')
print('os.getcwd(:', os.getcwd())
print('Remove mydir directory')
os.rmdir('mydir')
print('List the resulting contents of directory')
print(os.listdir())

Note that '..' is a short hand for the parent directory of the current directory
and '.' is short hand for the current directory.

An example of the type of output generated by this program for a specific set up
on a Mac is given below:

os.getcwd(: /Users/Shared/workspaces/pycharm/pythonintro/
textfiles
List contents of directory
['my-new-file.txt', 'myfile.txt', 'textfile1.txt',
'textfile2.txt']
Create mydir
List the updated contents of directory
['my-new-file.txt', 'myfile.txt', 'textfile1.txt',
'textfile2.txt', 'mydir']
Change into mydir directory
os.getcwd(: /Users/Shared/workspaces/pycharm/pythonintro/
textfiles/mydir
Change back to parent directory
os.getcwd(: /Users/Shared/workspaces/pycharm/pythonintro/
textfiles
Remove mydir directory
List the resulting contents of directory
['my-new-file.txt', 'myfile.txt', 'textfile1.txt',
'textfile2.txt']

27.12 Temporary Files

During the execution of many applications it may be necessary to create a temporary
file that will be created at one point and deleted before the application finishes. It is of
course possible to manage such temporary files yourself; however, the tempfile

308 27 Reading and Writing Files

module provides a range of facilities to simplify the creation and management of
these temporary files.

Within the tempfile module TemporaryFile, NamedTemporaryFile,
TemporaryDirectory and SpooledTemporaryFile are high-level file
objects which provide automatic clean-up of temporary files and directories. These
objects implement the Context Manager Protocol.

The tempfile module also provides the lower-level functionsmkstemp() and
mkdtemp() that can be used to create temporary files that require the developer to
manage them and delete them at an appropriate time.

The high-level features for the tempfile module are:

• TemporaryFile(mode = 'w + b') Returns an anonymous file-like
object that can be used as a temporary storage area. On completion of the managed
context (via a with statement) or destruction of the file object, the temporary file
will be removed from the filesystem. Note that by default all data is written to the
temporary file in binary format which is generally more efficient.

• NamedTemporaryFile(mode = 'w + b') This function operates
exactly as TemporaryFile() does, except that the file has a visible name in
the filesystem.

• SpooledTemporaryFile(max_size = 0, mode = 'w + b')
This function operates exactly as TemporaryFile() does, except that
data is spooled in memory until the file size exceeds max_size, or until the
file’s fileno()method is called, at which point the contents are written to disc
and operation proceeds as with TemporaryFile().

• TemporaryDirectory(suffix = None, prefix = None, dir
= None) This function creates a temporary directory. On completion of the
context or destruction of the temporary directory object the newly created
temporary directory and all its contents are removed from the filesystem.

The lower-level functions include:

• mkstemp() Creates a temporary file that is only readable or writable by the user
who created it.

• mkdtemp() Creates a temporary directory. The directory is readable, writable
and searchable only by the creating user ID.

• gettempdir() Returns the name of the directory used for temporary files. This
defines the default value for the default temporary directory to be used with the
other functions in this module.

An example of using the TemporaryFile function is given below. This code
imports the tempfile module then prints out the default directory used for tempo-
rary files. It then creates a TemporaryFile object and prints its name and mode
(the default mode is binary but for this example we have overwritten this so that plain
text is used). We have then written a line to the file. Using seek we are repositioning
ourselves at the start of the file and then reading the line we have just written.

27.13 Working with Paths 309

import tempfile

print('tempfile.gettempdir():', tempfile.gettempdir())
temp = tempfile.TemporaryFile('w+')
print('temp.name:', temp.name)
print('temp.mode:', temp.mode)
temp.write('Hello world!')
temp.seek(0)
line = temp.readline()
print('line:', line)

The output from this when run on an Apple Mac is:

tempfile.gettempdir():
/var/folders/6n/8nrnt9f93pn66ypg9s5dq8y80000gn/T
temp.name: 4
temp.mode: w+
line: Hello world!

Note that the file name is ‘4’ and that the temporary directory is not a meaningful
name!

27.13 Working with Paths

The pathlib module provides a set of classes representing filesystem paths, that
is paths through the hierarchy of directories and files within an operating systems
file structure. It was introduced in Python 3.4. The core class in this module is the
Path class.

A Path object is useful because it provides operations that allow you to manipu-
late and manage the path to a file or directory. The Path class also replicates some of
the operations available from the os module (such as mkdir, rename and rmdir)
which means that it is not necessary to work directly with the os module.

A path object is created using thePath constructor function; this function actually
returns a specific type of Path depending on the type of operating system being used
such as a WindowsPath or a PosixPath (for Unix style systems). The Path()
constructor takes the path to create for example ‘D:/mydir’ (on Windows) or ‘/
Users/user1/mydir’ on a Mac or ‘/var/temp’ on Linux, etc.

You can then use several different methods on the Path object to obtain information
about the path such as:

• exists() returns True of False depending on whether the path points to an
existing file or directory.

• is_dir() returns True if the path points to a directory. False if it references
a file. False is also returned if the path does not exist.

• is_file() returns True of the path points to a file, it returns False if the
path does not exist or the path references a directory.

310 27 Reading and Writing Files

• absolute() A Path object is considered absolute if it has both a root and (if
appropriate) a drive.

• is_absolute() returns a Boolean value indicating whether the Path is
absolute or not.

An example of using some of these methods is given below:

from pathlib import Path

print('Create Path object for current directory')
p = Path('.')
print('p:', p)
print('p.exists():', p.exists())
print('p.is_dir():', p.is_dir())
print('p.is_file():', p.is_file())
print('p.absolute():', p.absolute())

Sample output produced by this code snippet is:

Create Path object for current directory
p: .
p.exists(): True
p.is_dir(): True
p.is_file(): False
p.absolute(): /Users/Shared/workspaces/pycharm/pythonintro/
textfiles

There are also several methods on the Path class that can be used to create and
remove directories and files such as:

• mkdir() is used to create a directory path if it does not exist. If the path already
exists, then a FileExistsError is raised.

• rmdir() removes this directory; the directory must be empty; otherwise an
error will be raised.

• rename(target) renames this file or directory to the given target.
• unlink() removes the file referenced by the path object.
• joinpath(*other) appends elements to the path object, e.g. path.joinpath(‘/

temp’).
• with_name(new_name) returns a new path object with the name changed.
• The ‘/’ operator can also be used to create new path objects from existing paths

for example path / ‘test’ / ‘output’ which would append the directories test and
out to the path object.

TwoPath class methods can be used to obtain path objects representing key direc-
tories such as the current working directory (the directory the program is logically
in at that point) and the home directory of the user running the program:

• Path.cwd() returns a new path object representing the current directory.
• Path.home() returns a new path object representing the user’s home

directory.

27.13 Working with Paths 311

An example using several of the above features is given below. This example
obtains a path object representing the current working directory and then appends
‘text’ to this. The result path object is then checked to see if the path exists (on the
computer running the program), assuming that the path does not exist; it is created;
and the exists() method is rerun.

p = Path.cwd()
print('Set up new directory')
newdir = p / 'test'
print('Check to see if newdir exists')
print('newdir.exists():', newdir.exists())
print('Create new dir')
newdir.mkdir()
print('newdir.exists():', newdir.exists())

The effect of creating the directory can be seen in the output:

Set up new directory
Check to see if newdir exists
newdir.exists(): False
Create new dir
newdir.exists(): True

A very useful method in the Path object is the glob(pattern) method. This
method returns all elements within the path that meet the pattern specified.

For example path.glob('*.py') will return all the files ending.py within
the current path.

Note that '**/*.py' would indicate the current directory and any subdirectory.
For example, the following code will return all files where the file name ends with
‘.txt’ for a given path:

print('-'* 10)

for file in path.glob('*.txt'):
print('file:', file)

print('-'* 10)

An example of the output generated by this code is:

file: my-new-file.txt
file: myfile.txt
file: textfile1.txt
file: textfile2.txt

Paths that reference a file can also be used to read and write data to that file. For
example the open() method can be used to open a file that by default allows a file
to be read:

• open(mode='r') this can be used to open the file referenced by the path
object.

312 27 Reading and Writing Files

This is used below to read the contents of a file a line at a time (note that with
as statement is used here to ensure that the file represented by the Path is closed):

p = Path('mytext.txt')
with p.open() as f:

print(f.readline())

However, there are also some high-level methods available that allow you to easily
write data to a file or read data from a file. These include the Path methods write_
text and read_text methods:

• write_text(data) opens the file pointed to in text mode and writes the data
to it and then closes the file.

• read_text() opens the file in read mode, reads the text and closes the file; it
then returns the contents of the file as a string.

These are used below.

dir = Path('./test')
print('Create new file')
newfile = dir / 'text.txt'
print('Write some text to file')
newfile.write_text('Hello Python World!')
print('Read the text back again')
print(newfile.read_text())
print('Remove the file')
newfile.unlink()

which generates the following output:

Create new file
Write some text to file
Read the text back again
Hello Python World!
Remove the file

27.14 Online Resources

See the following online resources for information on the topics in this chapter:

• https://docs.python.org/3/tutorial/inputoutput.html for the Python Standard Tuto-
rial on file input and output.

• https://pymotw.com/3/os.path/index.html for platform independent manipulation
of filenames.

• https://pymotw.com/3/pathlib/index.html for information filesystem Path objects.
• https://pymotw.com/3/glob/index.html for filename pattern matching using glob.
• https://pymotw.com/3/tempfile/index.html for temporary filesystem objects.
• https://pymotw.com/3/gzip/index.html for information on reading and writing

GNU Zip files.

https://docs.python.org/3/tutorial/inputoutput.html
https://pymotw.com/3/os.path/index.html
https://pymotw.com/3/pathlib/index.html
https://pymotw.com/3/glob/index.html
https://pymotw.com/3/tempfile/index.html
https://pymotw.com/3/gzip/index.html

27.15 Exercise 313

27.15 Exercise

The aim of this exercise is to explore the creation of, and access to, the contents of
a file.

You should write two programs, and these programs are outlined below:

1. Create a program that will write todays date into a file—the name of the file can
be hard coded or supplied by the user. You can use the datetime.today()
function to obtain the current date and time. You can use the str() function
to convert this date time object into a string so that it can be written out to a file.

2. Create a second program to reload the date from the file and convert the string into
a date object. You can use the datetime.strptime() function to convert
a string into a date time object (see https://docs.python.org/3/library/datetime.
html#datetime.datetime.strptime for documentation on this function). This func-
tions takes a string containing a date and time in it and a second string which
defines the format expected. If you use the approach outlined in step 1 above to
write the string out to a file then you should find that the following defines an
appropriate format to parse the date_str so that a date time object can be created:

datetime_object = datetime.strptime(date_str, '%Y-%m-%d
%H:%M:%S.%f')

https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime
https://docs.python.org/3/library/datetime.html#datetime.datetime.strptime

Chapter 28
Stream IO

28.1 Introduction

In this chapter we will explore the stream I/O model that under pins the way in which
data is read from and written to data sources and sinks. One example of a data source
or sink is a file but another might be a byte array.

This model is actually what sits underneath the file access mechanisms discussed
in the previous chapter.

It is not actually necessary to understand this model to be able to read and write
data to and from a file; however in some situations it is useful to have an understanding
of this model so that you can modify the default behaviour when necessary.

The remainder of this chapter first introduces the stream model, discusses Python
streams in general and then presents the classes provided by Python. It then considers
what is the actual effect of using the open() function presented in the last chapter.

28.2 What is a Stream?

Streams are objects which serve as sources or sinks of data. At first this concept can
seem a bit strange. The easiest way to think of a stream is as a conduit of data flowing
from or into a pool. Some streams read data straight from the “source of the data”,
and some streams read data from other streams. These latter streams then do some
“useful” processing of the data such as converting the raw data into a specific format.
The following figure illustrates this idea.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_28

316 28 Stream IO

In the above figure the initial FileIO stream reads raw data from the actual data
source (in this case a file). The BufferedReader then buffers the data reading
process for efficiency. Finally the TextIOWrapper handles string encoding; that
is it converts strings from the typical ASCII representation used in a file into the
internal representation used by Python (which uses Unicode).

You might ask at this point why have a streams model at all, after all we read and
wrote data to files without needing to know about streams in the last chapter? The
answer is that a stream can read or write data to or from a source of data rather than
just from a file. Of course a file can be a source of data but so can a socket, a pipe, a
string, a web service, etc. It is therefore a more flexible data I/O model.

28.3 Python Streams

The Python io module provides Python’s main facilities for dealing with data input
and output. There are three main types of input/output; these are text I/O, binary I/O
and raw I/.O. These categories can be used with various types of data source/sinks.

Whatever the category, each concrete stream can have a number of properties such
as being read-only, write-only or read-write. It can also support sequential access or
random access depending on the nature of the underlying data sink. For example,
reading data from a socket or pipe is inherently sequential whereas reading data from
a file can be performed sequentially or via a random access approach.

Whichever stream is used, however, they are aware of the type of data they can
process. For example, attempting to supply a string to a binary write-only stream
will raise a TypeError. As indeed will be presenting binary data to a text stream,
etc.

As suggested by this there are a number of different types of stream provided by
the Python io module, and some of these are presented below:

28.4 IOBase 317

The abstract IOBase class is at the root of the stream IO class hierarchy. Below
this class are stream classes for unbuffered and buffered IO and for text-oriented IO.

28.4 IOBase

This is the abstract base class for all I/O stream classes. The class provides many
abstract methods that subclasses will need to implement.

The IOBase class (and its subclasses) all supports the iterator protocol. This
means that an IOBase object (or an object of a subclass) can iterate over the input
data from the underling stream.
IOBase also implements the Context Manager Protocol, and therefore it can be

used with the with and with-as statements.
The IOBase class defines a core set of methods and attributes including:

• close() flush and close the stream.
• closed an attribute indicating whether the stream is closed.
• flush() flush the write buffer of the stream if applicable.
• readable() returns True if the stream can be read from.
• readline(size=-1) return a line from the stream. If size is specified at most

size bytes will be read.
• readline(hint=-1) read a list of lines. If hint is specified then it is used to

control the number of lines read.
• seek(offset[, whence]) This method moves the current the stream posi-

tion/pointer to the given offset. The meaning of the offset depends on the whence
parameter. The default value for whence is SEEK_SET.

• SEEK_SET or 0: seek from the start of the stream (the default); offset must
either be a number returned by TextIOBase.tell(), or zero. Any other offset value
produces undefined behaviour.

• SEEK_CUR or 1: “seek” to the current position; offset must be zero, which is a
no-operation (all other values are unsupported).

• SEEK_END or 2: seek to the end of the stream; offset must be zero (all other
values are unsupported).

• seekable() does the stream support seek().
• tell() return the current stream position/pointer.

318 28 Stream IO

• writeable() returns true if data can be written to the stream.
• writelines(lines) write a list of lines to the stream.

28.5 Raw IO/UnBuffered IO Classes

Raw IO or unbuffered IO is provided by the RawIOBase and FileIO classes.
RawIOBase This class is a subclass of IOBase and is the base class for raw

binary (aka unbuffered) I/O. Raw binary I/O typically provides low-level access to
an underlying OS device or API and does not try to encapsulate it in high-level
primitives (this is the responsibility of the Buffered I/O and Text I/O classes that can
wrap a raw I/O stream). The class adds methods such as:

• read(size=-1) This method reads up to size bytes from the stream and returns
them. If size is unspecified or − 1 then all available bytes are read.

• readall() This method reads and returns all available bytes within the stream.
• readint(b) This method reads the bytes in the stream into a pre-allocated,

writable bytes-like object b (e.g. into a byte array). It returns the number of bytes
read.

• write(b) This method writes the data provided by b (a bytes -like object such
as a byte array) into the underlying raw stream.

FileIO The FileIO class represents a raw unbuffered binary IO stream linked to
an operating system level file. When the FileIO class is instantiated it can be given
a file name and the mode (such as ‘r’ or ‘w’). It can also be given a flag to indicate
whether the file descriptor associated with the underlying OS level file should be
closed or not.

This class is used for the low-level reading of binary data and is at the heart of all
file-oriented data access (although it is often wrapped by another stream such as a
buffered reader or writer).

28.6 Binary IO/Buffered IO Classes

Binary IO aka Buffered IO is a filter stream that wraps a lower-level RawIOBase
stream (such as a FileIO stream). The classes implementing buffered IO all extend
the BufferedIOBase class and are:

BufferedReader When reading data from this object, a larger amount of data
may be requested from the underlying raw stream and kept in an internal buffer. The
buffered data can then be returned directly on subsequent reads.

BufferedWriter When writing to this object, data is normally placed into an
internal buffer. The buffer will be written out to the underlying RawIOBase object
under various conditions, including:

28.6 Binary IO/Buffered IO Classes 319

• When the buffer gets too small for all pending data.
• When flush() is called.
• When the BufferedWriter object is closed or destroyed.

BufferedRandom A buffered interface to random access streams. It
supports seek() and tell() functionality.

BufferedRWPair A buffered I/O object combining two unidirec-
tional RawIOBase objects—one readable, the other writeable—into a single
bidirectional endpoint.

Each of the above classes wraps a lower-level byte-oriented stream class such as
the io.FileIO class, for example:

f = io.FileIO('data.dat’)
br = io.BufferedReader(f)
print(br.read())

This allows data in the form of bytes to be read from the file ‘data.dat’. You can
of course also read data from a different source, such as an in memory BytesIO
object:

binary_stream_from_file =
io.BufferedReader(io.BytesIO(b'starship.png'))
bytes = binary_stream_from_file.read(4)
print(bytes)

In this example the data is read from the BytesIO object by the
BufferedReader. The read() method is then used to read the first 4 bytes,
and the output is:

b'star'

Note the ‘b’ in front of both the string’starship.png’ and the result ‘star’. This
indicates that the string literal should become a bytes literal in Python 3. Bytes
literals are always prefixed with ‘b’ or ‘B’; they produce an instance of the bytes
type instead of the str type. They may only contain ASCII characters.

The operations supported by buffered streams include, for reading:

• peek(n) returns up to n bytes of data without advancing the stream pointer.
The number of bytes returned may be less or more than requested depending on
the amount of data available.

• read(n) returns n bytes of data as bytes, if n is not supplied (or is negative) the
read all available data.

• readl(n) reads up to n bytes of data using a single call on the raw data stream.

The operations supported by buffered writers include:

• write(bytes) writes the bytes-like data and returns the number of bytes
written.

• flush() This method forces the bytes held in the buffer into the raw stream.

320 28 Stream IO

28.7 Text Stream Classes

The text stream classes are the TextIOBase class and its two subclasses
TextIOWrapper and StringIO.

TextIOBase This is the root class for all Text Stream classes. It provides a char-
acter and line-based interface to stream I/O. This class provides several additional
methods to that defined in its parent class:

• read(size=-1) This method will return at most size characters from the
stream as a single string. If size is negative or None, it will read all remaining
data.

• readline(size=-1) This method will return a string representing the current
line (up to a newline or the end of the data whichever comes first). If the stream
is already at EOF, an empty string is returned. If size is specified, at most size
characters will be read.

• seek(offset, [, whence]) changes the stream position/pointer by the
specified offset. The optional whence parameter indicates where the seek should
start from:

– SEEK_SET or 0: (the default) seek from the start of the stream.
– SEEK_CUR or 1: seek to the current position; offset must be zero, which is a

no-operation.
– SEEK_END or 2: seek to the end of the stream; offset must be zero.

• tell() Returns the current stream position/pointer as an opaque number. The
number does not usually represent a number of bytes in the underlying binary
storage.

• write(s) This method will write the string s to the stream and return the number
of characters written.

TextIOWrapper. This is a buffered text stream that wraps a buffered binary
stream and is a direct subclass of TextIOBase. When a TextIOWrapper is created
there are a range of options available to control its behaviour:

io.TextIOWrapper(buffer, encoding=None, errors=None, newline=None,
line_buffering=False, write_through=False)

where

1. buffer is the buffered binary stream.
2. encoding represents the text encoding used such as UTF-8.
3. errors defines the error handling policy such as strict or ignore.
4. newline controls how line endings are handled for example should they be

ignored (None) or represented as a linefeed, carriage return or a newline/carriage
return, etc.

5. line_buffering if True then flush() is implied when a call to write
contains a newline character or a carriage return.

28.8 Stream Properties 321

6. write_through if True then a call to write is guaranteed not to be buffered.

The TextIOWrapper is wrapped around a lower-level binary buffered I/O
stream, for example:

f = io.FileIO('data.txt')
br = io.BufferedReader(f)
text_stream = io.TextIOWrapper(br, 'utf-8')

StringIO This is an in memory stream for text I/O. The initial value of the buffer
held by the StringIO object can be provided when the instance is created, for
example:

in_memory_text_stream = io.StringIO('to be or not to be that is
the question')
print('in_memory_text_stream', in_memory_text_stream)
print(in_memory_text_stream.getvalue())
in_memory_text_stream.close()

This generates:

in_memory_text_stream <_io.StringIO object at 0x10fdfaee8>
to be or not to be that is the question

Note that the underlying buffer (represented by the string passed into the
StringIO instance) is discarded when the close() method is called.

The getvalue() method returns a string containing the entire contents of the
buffer. If it is called after the stream was closed then an error is generated.

28.8 Stream Properties

It is possible to query a stream to determine what types of operations it supports.
This can be done using the readable, seeable and writable methods. For example:

f = io.FileIO('myfile.txt')
br = io.BufferedReader(f)
text_stream = io.TextIOWrapper(br, encoding='utf-8')

print('text_stream', text_stream)
print('text_stream.readable():', text_stream.readable())
print('text_stream.seekable()', text_stream.seekable())
print('text_stream.writeable()', text_stream.writable())

text_stream.close()

The output from this code snippet is:

text_stream <_io.TextIOWrapper name='myfile.txt'encoding='utf-
8'>
text_stream.readable(): True
text_stream.seekable() True
text_stream.writeable() False

322 28 Stream IO

28.9 Closing Streams

All opened streams must be closed. However, you can close the top-level stream, and
this will automatically close lower-level streams, for example:

f = io.FileIO('data.txt’)
br = io.BufferedReader(f)
text_stream = io.TextIOWrapper(br, 'utf-8')
print(text_stream.read())
text_stream.close()

28.10 Returning to the Open() Function

If streams are so good then why don’t you use them all the time? Well actually in
Python 3 you do! The core open function (and indeed the io.open() function)
both return a stream object. The actual type of object returned depends on the file
mode specified, whether buffering is being used, etc. For example:

import io

Text stream
f1 = open('myfile.txt', mode='r', encoding='utf-8')
print(f1)

Binary IO aka Buffered IO
f2 = open('myfile.dat', mode='rb')
print(f2)

f3 = open('myfile.dat', mode='wb')
print(f3)

Raw IO aka Unbufferedf IO
f4 = open('starship.png', mode='rb', buffering=0)
print(f4)

When this short example is run the output is:

<_io.TextIOWrapper name='myfile.txt'mode='r'encoding='utf-8'>
<_io.BufferedReader name='myfile.dat'>
<_io.BufferedWriter name='myfile.dat'>
<_io.FileIO name='starship.png'mode='rb'closefd=True>

As you can see from the output, four different types of object have been
returned from the open() function. The first is a TextIOWrapper, the second
a BufferedReader, the third a BufferedWriter and the final one is a FileIO
object. This reflects the differences in the parameters passed into the open(0 func-
tion. For example, f1 references an io.TextIOWrapper because it must encode
(convert) the input text into Unicode using the UTF-8 encoding scheme. While f2

28.12 Exercise 323

holds an io.BufferedReader because the mode indicates that we want to read
binary data while f3 holds a io.BufferedWriter because the mode used indicates
we want to write binary data. The final call to open returns a FileIO because we
have indicated that we do not want to buffer the data and thus we can use the lowest
level of stream object.

In general the following rules are applied to determine the type of object returned
based on the modes and encoding specified:

Class Mode Buffering

FileIO binary no

BufferedReader ‘rb’ yes

BufferedWriter ‘wb’ yes

BufferedRandom ‘rb+ ‘ ‘wb + ‘ ‘ab + ‘ yes

TextIOWrapper Any text yes

Note that not all mode combinations make sense, and thus some combinations
will generate an error.

In general you don’t therefore need to worry about which stream you are using
or what that stream does; not least because all the streams extend the IOBase class
and thus have a common set of methods and attributes.

However, it is useful to understand the implications of what you are doing so that
you can make better informed choices. For example, binary streams (that do less
processing) are faster than Unicode-oriented streams that must convert from ASCII
into Unicode.

Also understanding the role of streams in input and output can also allow you to
change the source and destination of data without needing to rewrite the whole of
your application. You can thus use a file or stdin for testing and a socket for reading
data in production.

28.11 Online Resource

See the following online resource for information on the topics in this chapter:

1. https://docs.python.org/3/library/io.html This provides the Python Standard
Library Guide to the core tools available for working with streams.

28.12 Exercise

Use the underlying streams model to create an application that will write binary data
to a file. You can use the ‘b’ prefix to create a binary literal to be written, for example
b’Hello World’.

https://docs.python.org/3/library/io.html

324 28 Stream IO

Next create another application to reload the binary data from the file and print it
out.

Chapter 29
Working with CSV Files

29.1 Introduction

This chapter introduces a module that supports the generation of Comma Separated
Values (CSV) files.

29.2 CSV Files

The Comma Separated Values (CSV) format is the most common import and export
format for spreadsheets and databases. However, CSV is not a precise standard with
multiple different applications having different conventions and specific standards.

The Python csv module implements classes to read and write tabular data in CSV
format. As part of this it supports the concept of a dialect which is a CSV format
used by a specific application or suite of programs; for example, it supports an Excel
dialect.

This allows programmers to say, “write this data in the format preferred by Excel”,
or “read data from this file which was generated by Excel”, without knowing the
precise details of the CSV format used by Excel.

Programmers can also describe the CSV dialects understood by other applications
or define their own special-purpose CSV dialects.

The csv module provides a range of functions including:

• csv.reader (csvfile, dialect = ’excel’, **fmtparams)
Returns a reader object which will iterate over lines in the given csvfile.
An optional dialect parameter can be given. This may be an instance of a
subclass of the Dialect class or one of the strings returned by the list_
dialects() function. The other optional fmtparams keyword arguments
can be given to override individual formatting parameters in the current dialect.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_29

326 29 Working with CSV Files

• csv.writer (csvfile, dialect = ’excel’, **fmtparams)
Returns a writer object responsible for converting the user’s data into delim-
ited strings on the given csvfile. An optional dialect parameter provided.
The fmtparams keyword arguments can be given to override individual
formatting parameters in the current dialect.

• csv.list_dialects() Return the names of all registered dialects. For
example on a macOS X the default list of dialects is [‘excel’, ‘excel-tab’, ‘unix’].

29.2.1 The CSV Writer Class

A CSV Writer is obtained from the csv.writer() function. The csvwriter
supports two methods used to write data to the CSV file:

• csvwriter.writerow(row) Writes the row parameter to the writer’s file
object, formatted according to the current dialect.

• csvwriter.writerows(rows) Write all elements in rows (an iterable
of row objects as described above) to the writer’s file object, formatted according
to the current dialect.

• Writer objects also have the following public attribute:
• csvwriter.dialect A read-only description of the dialect in use by the

writer.

The following program illustrates a simple use of the csv module which creates
a file called sample.csv.

As we have not specified a dialect, the default ‘excel’ dialect will be used. The
writerow() method is used to write each comma separate list of strings to the
CSV file.

print(’Crearting CSV file’)
with open(’sample.csv’, ’w’, newline=”) as csvfile:

writer = csv.writer(csvfile)
writer.writerow([’She Loves You’, ’Sept 1963’])
writer.writerow([’I Want to Hold Your Hand’, ’Dec 1963’])
writer.writerow([’Cant Buy Me Love’, ’Apr 1964’])
writer.writerow([’A Hard Days Night’, ’July 1964’])

The resulting file can be viewed as shown below:

29.2 CSV Files 327

However, as it is a CSV file, we can also open it in Excel:

29.2.2 The CSV Reader Class

A CSV Reader object is obtained from the csv.reader() function. It implements
the iteration protocol.

If a csv reader object is used with a for loop then each time round the loop it
supplies the next row from the CSV file as a list, parsed according to the current CSV
dialect.

Reader objects also have the following public attributes:

• csvreader.dialect A read-only description of the dialect in use by the
parser.

• csvreader.line_num The number of lines read from the source iterator. This
is not the same as the number of records returned, as records can span multiple
lines.

The following provides a very simple example of reading a CSV file using a csv
reader object:

print(’Starting to read csv file’)
with open(’sample.csv’, newline=”) as csvfile:

reader = csv.reader(csvfile)
for row in reader:

print(*row, sep=’, ’)

print(’Done Reading’)

328 29 Working with CSV Files

The output from this program based on the sample.csv file created earlier is:

Starting to read csv file
She Loves You, Sept 1963
I Want to Hold Your Hand, Dec 1963
Cant Buy Me Love, Apr 1964
A Hard Days Night, July 1964
Done Reading

29.2.3 The CSV DictWriter Class

In many cases the first row of a CSV file contains a set of names (or keys) that
define the fields within the rest of the CSV. That is the first row gives meaning to
the columns and the data held in the rest of the CSV file. It is therefore very useful
to capture this information and to structure the data written to a CSV file or loaded
from a CSV file based on the keys in the first row.

The csv.DictWriter returns an object that can be used to write values into
the CSV file based on the use of such named columns. The file to be used with the
DictWriter is provided when the class is instantiated.

import csv

with open(’names.csv’, ’w’, newline=”) as csvfile:
fieldnames = [’first_name’, ’last_name’, ’result’]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()

writer.writerow({’first_name’: ’Denise’,
’last_name’: ’Smith’,
’result’ : 54})

writer.writerow({’first_name’: ’Natalia’,
’last_name’: ’Lewis’,
’result’ : 63})

writer.writerow({’first_name’: ’Adam’,
’last_name’: ’Davies’,
’result’ : 72})

Note that when the DictWriter is created a list of the keys must be provided
that are used for the columns in the CSV file.

The method writeheader() is then used to write the header row out to the
CSV file.

The method writerow() takes a dictionary object that has keys based on the
keys defined for the DictWriter. These are then used to write data out to the CSV
(note the order of the keys in the dictionary is not important).

In the above example code the result of this is that a new file called names.csv
is created which can be opened in Excel:

29.2 CSV Files 329

Of course, as this is a CSV file it can also be opened in a plain text editor as well.

29.2.4 The CSV DictReader Class

As well as the csv.DictWriter there is a csv.DictReader. The file to be
used with the DictReader is provided when the class is instantiated. As with
the DictReader the DictWriter class takes a list of keys used to define the
columns in the CSV file. If the headings to be used for the first row can be provided
although this is optional (if a set of keys are not provided, then the values in the first
row of the CSV file will be used as the fieldnames).

The DictReader class provides several useful features including the
fieldnames property that contains a list of the keys/headings for the CSV file
as defined by the first row of the file.

The DictReader class also implements the iteration protocol, and thus it can
be used in a for loop in which each row (after the first row) is returned in turn as a
dictionary. The dictionary object representing each row can then be used to access
each column value based on the keys defined in the first row.

An example is shown below for the CSV file created earlier:

import csv

print(’Starting to read dict CSV example’)

with open(’names.csv’, newline=”) as csvfile:
reader = csv.DictReader(csvfile)
for heading in reader.fieldnames:

print(heading, end=’ ’)

print(’\n------------------------------’)

for row in reader:
print(row[’first_name’], row[’last_name’], row[’result’])

print(’Done’)

This generates the following output:

Starting to read dict CSV example
first_name last_name result

Denise Smith 54

330 29 Working with CSV Files

Natalia Lewis 63
Adam Davies 72
Done

29.3 Online Resources

See the following online resources for information on the topics in this chapter:

• https://docs.python.org/3/library/csv.html for the Python Standard documentation
on CSV file reading and writing.

• https://pymotw.com/3/csv/index.html for the Python Module of the Week page
on CSV files.

• https://pythonprogramming.net/reading-csv-files-python-3 for a tutorial on
reading CSV files.

29.4 Exercises

In this exercise you will create a CSV file based on a set of transactions stored in a
current account.

1. To do this first define a new Account class to represent a type of bank account.
2. When the class is instantiated you should provide the account number, the name

of the account holder, an opening balance and the type of account (which can
be a string representing ‘current’, ‘deposit’, ‘investment’, etc.). This means that
there must be a __init__ method, and you will need to store the data within the
object.

3. Provide three instance methods for the Account: deposit(amount), with-
draw(amount) and get_balance(). The behaviour of these methods should be as
expected, deposit will increase the balance, withdraw will decrease the balance,
and get_balance() returns the current balance.

Your Account class should also keep a history of the transactions it is involved
in.

A Transaction is a record of a deposit or withdrawal along with an amount.
Note that the initial amount in an account can be treated as an initial deposit.
The history could be implemented as a list containing an ordered sequence to

transactions. A Transaction itself could be defined by a class with an action (deposit
or withdrawal) and an amount.

Each time a withdrawal or a deposit is made a new transaction record should be
added to a transaction history list.

Next provide a function (which could be called something like write_
account_transactions_to_csv()) that can take an account and then

https://docs.python.org/3/library/csv.html
https://pymotw.com/3/csv/index.html
https://pythonprogramming.net/reading-csv-files-python-3

29.4 Exercises 331

write each of the transactions it holds out to a CSV file, with each transaction type
and the transaction amount separated by a comma.

The following sample application illustrates how this function might be used:

print(’Starting’)
acc = accounts.CurrentAccount(’123’, ’John’, 10.05, 100.0)
acc.deposit(23.45)
acc.withdraw(12.33)

print(’Writing Account Transactions’)
write_account_transaction_to_csv(’accounts.csv’, acc)

print(’Done’)

The contents of the CSV file would then be:

Chapter 30
Working with Excel Files

30.1 Introduction

This chapter introduces the openpyxl module that can be used when working with
Excel files. Excel is a software application developed by Microsoft that allows users
to work with spreadsheets. It is a very widely used tool, and files using the Excel
file format are commonly encountered within many organisations. It is in effect the
industry standard for spreadsheets and as such is a very useful tool to have in the
developers’ toolbox.

30.2 Excel Files

Although CSV files are a convenient and simple way to handle data; it is very
common to need to be able to read or write Excel files directly. To this end there are
several libraries available in Python for this purpose. One widely used library is the
OpenPyXL library. This library was originally written to support access to Excel
2010 files. It is an open-source project and is well documented.

The OpenPyXL library provides facilities for

• Reading and writing Excel workbooks.
• Creating/accessing Excel worksheets.
• Creating Excel formulas.
• Creating graphs (with support from additional modules).

As OpenPyXL is not part of the standard Python distribution you will need to
install the library yourself using a tool such as Anaconda or pip (e.g. pip install
openpyxl). Alternatively, if you are using PyCharm you will be able to add the
OpenPyXL library to your project.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_30

334 30 Working with Excel Files

30.3 The Openpyxl. Workbook Class

The key element in the OpenPyXL library is the Workbook class. This can be
imported from the module:

from openpyxl import Workbook

A new instance of the (in memory) Workbook can be created using the
Workbook class (note at this point it is purely a structure within the Python program
and must be saved before an actual Excel file is created).

wb = Workbook()

30.4 The Openpyxl. WorkSheet Objects

A workbook is always created with at least one worksheet. You can get hold of the
currently active worksheet using the Workbook.active property:

ws = wb.active

You can create additional worksheets using the workbooks’ create_
sheet() method:

ws = wb.create_sheet(’Mysheet’)

You can access or update the title of the worksheet using the title property:

ws.title = ’New Title’

The background colour of the tab holding this title is white by default. You
can change this providing an RRGGBB colour code to the worksheet.sheet_
properties.tabColor attribute, for example:

ws.sheet_properties.tabColor = "1072BA"

30.5 Working with Cells

It is possible to access the cells within a worksheet. A cell can be accessed directly
as keys on the worksheet, for example:

ws[’A1’] = 42

or

cell = ws[’A1’]

30.6 Sample Excel File Creation Application 335

This returns a cell object; you can obtain the value of the cell using the value
property, for example.

print(cell.value)

There is also the Worksheet.cell() method. This provides access to cells
using row and column notation:

d = ws.cell(row=4, column=2, value=10)

A row of values can also be added at the current position within the Excel file
using append:

ws.append([1, 2, 3])

This will add a row to the Excel file containing 1, 2 and 3.
Ranges of cells can be accessed using slicing:

cell_range = ws[’A1’:’C2’]

Ranges of rows or columns can also be obtained:

col = ws[’C’]
col_range = ws[’C:D’]
row10 = ws[10]
row_range = ws[5:10]

The value of a cell can also be an Excel formula such as

ws[’A3’] = ’=SUM(A1, A2)’

A workbook is actually only a structure in memory; it must be saved to a file for
permanent storage. These workbooks can be saved using the save() method. This
method takes a filename and writes the Workbook out in Excel format.

workbook = Workbook()
...
workbook.save(’balances.xlsx’)

30.6 Sample Excel File Creation Application

The following simple application creates a Workbook with two worksheets. It also
contains a simple Excel formula that sums the values held in to other cells:

from openpyxl import Workbook

def main():
print(’Starting Write Excel Example with openPyXL’)
workbook = Workbook()
Get the current active worksheet

336 30 Working with Excel Files

ws = workbook.active
ws.title = ’my worksheet’
ws.sheet_properties.tabColor = ’1072BA’
ws[’A1’] = 42
ws[’A2’] = 12
ws[’A3’] = ’=SUM(A1, A2)’
ws2 = workbook.create_sheet(title=’my other sheet’)
ws2[’A1’] = 3.42
ws2.append([1, 2, 3])
ws2.cell(column=2, row=1, value=15)

workbook.save(’sample.xlsx’)

print(’Done Write Excel Example’)

if __name__ == ’__main__’:
main()

The Excel file generated from this can be viewed in Excel as shown below:

30.7 Loading a Workbook from an Excel File

Of course, in many cases it is necessary not just to create Excel files for data export but
also to import data from an existing Excel file. This can be done using the OpenPyXL
load_workbook() function. This function opens the specified Excel file (in
read-only mode by default) and returns a Workbook object.

from openpyxl import load_workbook

workbook = load_workbook(filename=’sample.xlsx’)

30.7 Loading a Workbook from an Excel File 337

You can now access a list of sheets and their names and obtain the currently active
sheet, etc. using properties provided by the workbook object:

• workbook.active returns the active worksheet object.
• workbook.sheetnames returns the names (strings) of the worksheets in this

workbook.
• workbook.worksheets returns a list of worksheet objects.

The following sample application reads the Excel file created earlier in this
chapter:

from openpyxl import load_workbook

def main():
print(’Starting reading Excel file using openPyXL’)

workbook = load_workbook(filename=’sample.xlsx’)
print(workbook.active)
print(workbook.sheetnames)
print(workbook.worksheets)

print(’-’ * 10)
ws = workbook[’my worksheet’]
print(ws[’A1’])
print(ws[’A1’].value)
print(ws[’A2’].value)
print(ws[’A3’].value)

print(’-’ * 10)
for sheet in workbook:

print(sheet.title)

print(’-’ * 10)
cell_range = ws[’A1’:’A3’]
for cell in cell_range:

print(cell[0].value)
print(’-’ * 10)

print(’Finished reading Excel file using openPyXL’)

if __name__ == ’__main__’:
main()

The output from this application is illustrated below:

Starting reading Excel file using openPyXL
<Worksheet "my worksheet">
[’my worksheet’, ’my other sheet’]
[<Worksheet "my worksheet">, <Worksheet "my other sheet">]

<Cell ’my worksheet’.A1>
42
12
=SUM(A1, A2)

338 30 Working with Excel Files

my worksheet
my other sheet

42
12
=SUM(A1, A2)

Finished reading Excel file using openPyXL

30.8 Online Resources

See the following online resources for information on the topics in this chapter:

• https://openpyxl.readthedocs.io/en/stable for documentation on the OpenPyXL
Python to Excel library.

30.9 Exercises

Using the Account class that you created in the last chapter; write the account
transaction information to an Excel file instead of a CSV file.

To do this create a function called write_account_transaction_to_
excel() that takes the name of the Excel file and the account to store. The function
should then write the data to the file using the excel format.

The following sample application illustrates how this function might be used:

print(’Starting’)
acc = accounts.CurrentAccount(’123’, ’John’, 10.05, 100.0)
acc.deposit(23.45)
acc.withdraw(12.33)

print(’Writing Account Transactions’)
write_account_transaction_to_excel(‘accounts.xlsx’, acc)

print(’Done’)

The contents of the Excel file would then be:

https://openpyxl.readthedocs.io/en/stable

30.9 Exercises 339

Chapter 31
Regular Expressions in Python

31.1 Introduction

Regular expression is a very powerful way of processing text while looking for
recurring patterns; they are often used with data held in plain text files (such as log
files), CSV files as well as Excel files. This chapter introduces regular expressions,
discusses the syntax used to define a regular expression pattern and presents the
Python re module and its use.

31.2 What Are Regular Expressions?

A regular expression (also known as a regex or even just re) is a sequence of characters
(letters, numbers and special characters) that form a pattern that can be used to search
text to see if that text contains sequences of characters that match the pattern.

For example, you might have a pattern defined as three characters followed by
three numbers. This pattern could be used to look for such a pattern in other strings.
Thus, the following strings either match (or contain) this pattern or they do not:

Abc123 Matches the pattern

A123A Does not match the pattern

123AAA Does not match the pattern

Regular expression is very widely used for finding information in files, for
example.

• Finding all lines in a log file associated with a specific user or a specific operation.
• For validating input such as checking that a string is a valid email address or

postcode/ZIP code, etc.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_31&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_31

342 31 Regular Expressions in Python

• Support for regular expressions is wide spread within programming languages
such as Java, C#, PHP and particularly Perl. Python is no exception and has
the built-in module re (as well as additional third-party modules) that supports
regular expressions.

31.3 Regular Expression Patterns

You can define a regular expression pattern using any ASCII character or number.
Thus, the string ‘John’ can be used to define a regex pattern that can be used to match
any other string that contains the characters ‘J’, ‘o’, ‘h’ and ‘n’. Thus each of the
following strings will match this pattern:

• ‘John Hunt’
• ‘John Jones’
• ‘Andrew John Smith’
• ‘Mary Helen John’
• ‘John John John’
• ‘I am going to visit the John’
• ‘I once saw a film by John Wayne’

But the following strings would not match the pattern:

• ‘Jon Davies’ in this case because the spelling of John is different.
• ‘John williams’ in this case because the capital J does not match the lowercase j.
• ‘David James’ in this case because the string does not contain the string John!

Regular expressions (regexs) use special characters to allow more complex
patterns to be described. For example, we can use the special characters ‘[]’ to
define a set of characters that can match. For example, if we want to indicate that the
J may be a capital or a lowercase letter then we can write ‘[Jj]’—this indicates that
either ‘J’ or ‘j’ can match the first.

• [Jj]ohn—this states that the pattern starts with either a capital J or a lowercase j
followed by ‘own’.

Now both ‘john williams’ and ‘John Williams’ will match this regex pattern.

31.3.1 Pattern Metacharacters

There are several special characters (often referred to as metacharacters) that have a
specific meaning within a regex pattern; these are listed in the following table:

31.3 Regular Expression Patterns 343

Character Description Example

[] A set of characters [a–d] characters in the sequence ‘a’ to ‘d’

\ Indicates a special sequence
(can also be used to escape
special characters)

‘\d’ indicates the character should be an integer

. Any character with the
exception of the newline
character

‘J.hn’ indicates that there can be any character after
the ‘J’ and before the ‘h’

^ Indicates a string must start
with the following pattern

“^hello” indicates the string must start with ‘hello’

$ Indicates a string must end
with the preceding pattern

“world$” indicates the string must end with ‘world’

* Zero or more occurrences of
the preceding pattern

“Python*” indicates we are looking for zero or
more times Python is in a string

+ One or more occurrences of
preceding pattern

“info+“ indicates that we must find info in the
string at least once

? Indicates zero or 1 occurrences
of the preceding pattern

“John?” indicates zero or one instance of the ‘John’

{} Exactly the specified number
of occurrences

“John{3}” indicates we expect to see the ‘John’ in
the string three times. “X{1,2}” indicates that there
can be one or two Xs next to each other in the string

| Either or “True|OK” indicates we are looking for either True
or OK

() Groups together a regular
expression; you can then apply
another operator to the whole
group

“(abc|xyz){2}” indicates that we are looking for the
string abc or xyz repeated twice

31.3.2 Special Sequences

A special sequence is a combination of a ‘\’ (backslash) followed by a character
combination which then has a special meaning. The following table lists the common
special sequences used in regular expressions:

Sequence Description Example

\A Returns a match if the following characters are at the
beginning of the string

“\AThe” must start
with ‘The’

\b Returns a match where the specified characters are at the
beginning or at the end of a word

“\bon” or “on\b”
indicates a string must
start or end with ‘on’

(continued)

344 31 Regular Expressions in Python

(continued)

Sequence Description Example

\B Indicates that the following characters must be present in
a string but not at the start (or at the end) of a word

r”\Bon” or r”on\B”
must not start or end
with ‘on’

\d Returns a match where the string contains digits (numbers
from 0 to 9)

“\d”

\D Returns a match where the string DOES NOT contain
digits

“\D”

\s Returns a match where the string contains a white space
character

“\s~ ”

\S Returns a match where the string DOES NOT contain a
white space character

“\S”

\w Returns a match where the string contains any word
characters (characters from a to Z, digits from 0 to 9, and
the underscore _ character)

“\w”

\W Returns a match where the string DOES NOT contain any
word characters

“\W”

\Z Returns a match if the following characters are present at
the end of the string

“Hunt\Z”

31.3.3 Sets

A set is a sequence of characters inside a pair of square brackets which have specific
meanings. The following table provides some examples.

Set Description

[jeh] Returns a match where one of the specified characters (j, e or h) is present

[a–x] Returns a match for any lowercase character, alphabetically between a and x

[^zxc] Returns a match for any character EXCEPT z, x and c

[0123] Returns a match where any of the specified digits (0, 1, 2 or 3) is present

[0–9] Returns a match for any digit between 0 and 9

[0–9][0–9] Returns a match for any two-digit numbers from 00 and 99

[a–zA–Z] Returns a match for any character alphabetically between a and z or A and Z

31.5 Working with Python Regular Expressions 345

31.4 The Python re Module

The Python re module is the built-in module provided by Python for working with
regular expressions.

You might also like to examine the third-party regex module (see https://pypi.
org/project/regex) which is backwards compatible with the default re module but
provides additional functionality.

31.5 Working with Python Regular Expressions

31.5.1 Using Raw Strings

An important point to note about many of the strings used to define the regular
expression patterns is that they are preceded by an ‘r’ for example r’/bin/sh$’.

The ‘r’ before the string indicates that the string should be treated as a raw string.
A raw string is a Python string in which all characters are treated as exactly that

individual characters. It means that backslash (‘\’) is treated as a literal character
rather than as a special character that is used to escape the next character.

For example, in a standard string ‘\n’ is treated as a special character representing
a newline, thus if we wrote the following:

s = ’Hello \n world’
print(s)

We will get as output:

Hello
World

However, if we prefix the string with an ‘r’ then we are telling Python to treat it
as a raw string. For example:

s = r’Hello \n world’
print(s)

The output is now

Hello \n world

This is important for regular expression as characters such as backslash (‘\’) are
used within patterns to have a special regular expression meaning, and thus we do
not want Python to process them in the normal way.

https://pypi.org/project/regex
https://pypi.org/project/regex

346 31 Regular Expressions in Python

31.5.2 Simple Example

The following simple Python program illustrates the basic use of the re module. It
is necessary to import the re module before you can use it.

import re

text1 = ’John williams’
pattern = ‘[Jj]ohn’
print(’looking in’, text1, ’for the pattern’, pattern)

if re.search(pattern, text1):
print(’Match has been found’)

When this program is run, we get the following output:

looking in John williams for the pattern [Jj]ohn
Match has been found

If we look at the code, we can see that the string that we are examining contains
‘John williams’ and that the pattern used with this string indicates that we are looking
for a sequence of ‘J’ or ‘j’ followed by ‘ohn’. To perform this test we use the
re.search() function passing the regex pattern, and the text to test, as param-
eters. This function returns either None (which is taken as meaning False by the
If statement) or a Match object (which always has a Boolean value of True). As
of course ‘John’ at the start of text1 does match the pattern, the re.search()
function returns a match object and we see the ‘Match has been found’ message is
printed out.

Both the Match object and search() method will be described in more
detail below; however, this short program illustrates the basic operation of a regular
expression.

31.5.3 The Match Object

Match objects are returned by the search() and match() functions.
They always have a Boolean value of True.
The functions match() and search() return None when there is no match

and a Match object when a match is found. It is therefore possible to use a match
object with an if statement:

import re

match = re.search(pattern, string)
if match:

process(match)

31.5 Working with Python Regular Expressions 347

Match objects support a range of methods and attributes including:

• match.re The regular expression object whosematch()or search()method
produced this match instance.

• match.string The string passed to match() or search().
• match.start([group]) / match.end([group]) Returns the

indices of the start and end of the substring matched by group.
• match.group() Returns the part of the string where there was a match.

31.5.4 The search() Function

The search() function searches the string for a match and returns a Match object if
there is a match. The signature of the function is:

re.search(pattern, string, flags=0)

The meaning of the parameters is:

• pattern: This is the regular expression pattern to be used in the matching
process.

• string: This is the string to be searched.
• flags: These (optional) flags can be used to modify the operation of the search.

The re module defines a set of flags (or indicators) that can be used to indicate
any optional behaviours associated with the pattern. These flags include:

Flag Description

re.IGNORECASE Performs case-insensitive matching

re.LOCALE Interprets words according to the current locale. This interpretation affects
the alphabetic group (\w and \W), as well as word boundary behaviour (\b
and \B)

re.MULTILINE Makes $ match the end of a line (not just the end of the string) and makes ̂
match the start of any line (not just the start of the string)

re.DOTALL Makes a period (dot) match any character, including a newline

re.UNICODE Interprets letters according to the Unicode character set. This flag affects
the behaviour of \w, \W, \b, \B

re.VERBOSE Ignores whitespace within the pattern (except inside a set [] or when
escaped by a backslash) and treats unescaped # as a comment marker

If there is more than one match, only the first occurrence of the match will be
returned:

348 31 Regular Expressions in Python

import re

line1 = ’The price is 23.55’
containsIntegers = r’\d+’
if re.search(containsIntegers, line1):

print(’Line 1 contains an integer’)
else:

print(’Line 1 does not contain an integer’)

In this case the output is

Line 1 contains an integer

Another example of using the search() function is given below. In this case
the pattern to look for defines three alternative strings (that is the string must contain
either Beatles, Adele or Gorillaz):

import re

Alternative words
music = r’Beatles|Adele|Gorillaz’
request = ’Play some Adele’
if re.search(music, request):

print(’Set Fire to the Rain’)
else:

print(’No Adele Available’)

In this case we generate the output:

Set Fire to the Rain

31.5.5 The match() Function

This function attempts to match a regular expression pattern at the beginning of a
string. The signature of this function is given below:

re.match(pattern, string, flags=0)

The parameters are:

• pattern: This is the regular expression to be matched.
• string: This is the string to be searched.
• flags: Modifier flags that can be used.

The re.match() function returns a Match object on success, None on failure.

31.5 Working with Python Regular Expressions 349

31.5.6 The Difference Between Matching and Searching

Python offers two different primitive operations based on regular expressions:

• match() checks for a match only at the beginning of the string.
• search() checks for a match anywhere in the string.

31.5.7 The finadall() Function

The findall() function returns a list containing all matches. The signature of this
function is:

re.findall(pattern, string, flags=0)

This function returns all non-overlapping matches of pattern in string, as
a list of strings.

The string is scanned left to right, and matches are returned in the order found.
If one or more groups are present in the pattern, then a list of groups is returned;
this will be a list of tuples if the pattern has more than one group. If no matches are
found, an empty list is returned.

An example of using thefindall() function is given below. This example looks
for a substring starting with two letters and followed by ‘ai’ and a single character.
It is applied to a sentence and returns only the substring ‘Spain’ and ‘plain’.

import re

str = ’The rain in Spain stays mainly on the plain’
results = re.findall(’[a-zA-Z]{2}ai.’, str)
print(results)
for s in results:

print(s)

The output from this program is

[’Spain’, ’plain’]
Spain
plain

31.5.8 The finditer() Function

This function returns an iterator yielding matched objects for the regular expres-
sion pattern in the string supplied. The signature for this function is:

350 31 Regular Expressions in Python

re.finditer(pattern, string, flags=0)

The string is scanned left to right, and matches are returned in the order found.
Empty matches are included in the result. Flags can be used to modify the matches.

31.5.9 The split() Function

The split() function returns a list where the string has been split at each match.
The syntax of the split() function is

re.split(pattern, string, maxsplit=0, flags=0)

The result is to split a string by the occurrences of pattern. If capturing parentheses
are used in the regular expression pattern, then the text of all groups in the
pattern is also returned as part of the resulting list. If maxsplit is nonzero,
at most maxsplit splits occur, and the remainder of the string is returned as the
final element of the list. Flags can again be used to modify the matches.

import re

str = ’It was a hot summer night’
x = re.split(’\s’, str)
print(x)

The output is

[’It’, ’was’, ’a’, ’hot’, ’summer’, ’night’]

31.5.10 The sub() Function

The sub() function replaces occurrences of the regular expression pattern in the
string with the repl string.

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the regular expres-
sion pattern in string with repl, substituting all occurrences unless max is
provided. This method returns the modified string.

import re

pattern = ’(England|Wales|Scotland)’
input = ’England for football, Wales for Rugby and Scotland for
the Highland games’
print(re.sub(pattern, ’England’, input))

which generates:

31.5 Working with Python Regular Expressions 351

England for football, England for Rugby and England for the Highland
games

You can control the number of replacements by specifying the count parameter:
The following code replaces the first 2 occurrences:

import re

pattern = ’(England|Wales|Scotland)’
input = ’England for football, Wales for Rugby and Scotland for
the Highland games’

x = re.sub(pattern, ’Wales’, input, 2)
print(x)

which produces

Wales for football, Wales for Rugby and Scotland for the Highland
games

You can also find out how many substitutions were made using the subn()
function. This function returns the new string and the number of substitutions in a
tuple:

import re

pattern = ’(England|Wales|Scotland)’
input = ’England for football, Wales for Rugby and Scotland for
the Highland games’

print(re.subn(pattern,’Scotland’, input))

The output from this is:

(’Scotland for football, Scotland for Rugby and Scotland for the
Highland games’, 3)

31.5.11 The compile() Function

Most regular expression operations are available as both module-level functions (as
described above) and as methods on a compiled regular expression object.

352 31 Regular Expressions in Python

The module-level functions are typically simplified or standardised ways to use
the compiled regular expression. In many cases these functions are sufficient but if
finer grained control is required then a compiled regular expression may be used.

re.compile(pattern, flags=0)

The compile() function compiles a regular expression pattern into
a regular expression object, which can be used for matching using
its match(), search() and other methods as described below.

The expression’s behaviour can be modified by specifying a flags value. V
The statements:

prog = re.compile(pattern)
result = prog.match(string)

are equivalent to.

result = re.match(pattern, string)

but using re.compile() and saving the resulting regular expression object for
reuse is more efficient when the expression will be used several times in a single
program.

Compiled regular expression objects support the following methods and attributes:

• Pattern.search(string, pos, endpos) Scan
through string looking for the first location where this regular expres-
sion produces a match and returns a corresponding Match object. Return None if
no position in the string matches the pattern. Starting at pos if provided and
ending at endpos if this is provided (otherwise process the whole string).

• Pattern.match(string, pos, endpos)If zero or more characters
at the beginning of string match this regular expression, return a corre-
sponding match object. Return None if the string does not match the pattern.
The pos and endpos are optional and specify the start and end positions within
which to search.

• Pattern.split(string, maxsplit = 0)Identical to
the split() function, using the compiled pattern.

• Pattern.findall(string[, pos[, endpos]])Similar to
the findall() function, but also accepts
optional pos and endpos parameters that limit the search region like
for search().

• Pattern.finditer(string[, pos[, endpos]])Similar to
the finditer() function, but also accepts
optional pos and endpos parameters that limit the search region like
for search().

• Pattern.sub(repl, string, count = 0)Identical to
the sub() function, using the compiled pattern.

• Pattern.subn(repl, string, count = 0)Identical to
the subn() function, using the compiled pattern.

31.6 Online Resources 353

• Pattern.pattern the pattern string from which the pattern object was
compiled.

An example of using the compile() function is given below. The pattern to be
compiled is defined as containing 1 or more digits (0 to 9):

import re

line1 = ’The price is 23.55’
containsIntegers = r’\d+’
rePattern = re.compile(containsIntegers)
matchLine1 = rePattern.search(line1)
if matchLine1:

print(’Line 1 contains a number’)
else:

print(’Line 1 does not contain a number’)

The compiled pattern can then be used to apply methods such as search() to
a specific string (in this case held in line1). The output generated by this is:

Line 1 contains a number

Of course the compiler pattern object supports a range of methods in addition to
search() as illustrated by the spilt method:

p = re.compile(r’\W+’)
s = ’20 High Street’
print(p.split(s))

The output from this is

[’20’, ’High’, ’Street’]

31.6 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/howto/regex.html Standard Library regular expression
how to.

• https://pymotw.com/3/re/index.html the Python Module of the Week page for the
re module.

• Other online resources include
• https://regexone.com An introduction to regular expressions.
• https://www.regular-expressions.info/tutorial.html a regular expressions tutorial.
• https://www.regular-expressions.info/quickstart.html regular expressions quick

start.
• https://pypi.org/project/regex A well-known third-party regular expression

module that extends the functionality offered by the built-in re module.

https://docs.python.org/3/howto/regex.html
https://pymotw.com/3/re/index.html
https://regexone.com
https://www.regular-expressions.info/tutorial.html
https://www.regular-expressions.info/quickstart.html
https://pypi.org/project/regex

354 31 Regular Expressions in Python

31.7 Exercises

Write a Python function to verify that a given string only contains letters (uppercase
or lowercase) and numbers. Thus spaces and underbars (‘_’) are not allowed. An
example of the use of this function might be:

print(contains_only_characters_and_numbers(’John’)) # True
print(contains_only_characters_and_numbers(‘John_Davies’)) #
False
print(contains_only_characters_and_numbers(’42’)) # True
print(contains_only_characters_and_numbers(‘John42’)) # True
print(contains_only_characters_and_numbers(’John 42’)) # False

Write a function to verify a UK Postcode format (call it verify_postcode).
The format of a postcode is two letters followed by 1 or 2 numbers, followed by
a space, followed by one or two numbers and finally two letters. An example of a
postcode is SY23 4ZZ; another postcode might be BB1 3PO; and finally we might
have AA1 56NN (note this is a simplification of the UK Postcode system but is
suitable for our purposes).

Using the output from this function you should be able to run the following test
code:

True
print("verify_postcode(’SY23 3AA’):", verify_postcode(’SY23
33AA’))
True
print("verify_postcode(’SY23 4ZZ’):", verify_postcode(’SY23
4ZZ’))
True
print("verify_postcode(’BB1 3PO’):", verify_postcode(’BB1 3PO’))
False
print("verify_postcode(’AA111 NN56’):", verify_postcode(’AA111
NN56’))
True
print("verify_postcode(’AA1 56NN’):", verify_postcode(’AA1
56NN’))
False
print("verify_postcode(’AA156NN’):", verify_
postcode(’AA156NN’))
False
print("verify_postcode(’AA NN’):", verify_postcode(’AA NN’))

Write a function that will extract the value held between two strings or characters
such as ‘<’ and ‘>’. The function should take three parameters, the start character,
the end character and the string to process. For example, the following code snippet:

print(extract_values(’<’, ’>’, ’<John>’))
print(extract_values(’<’, ’>’, ’<42>’))
print(extract_values(’<’, ’>’, ’<John 42>’))
print(extract_values(’<’, ’>’, ’The <town> was in the
<valley>’))

31.7 Exercises 355

should generate output such as:

[’John’]
[’42’]
[’John 42’]
[’town’, ’valley’]

Part VI
Database Access

Chapter 32
Introduction to Databases

32.1 Introduction

There are several different types of database system in common use today including
Object databases, NoSQL databases and (probably the most common) Relational
databases. This chapter focusses on Relational databases as typified by database
systems such as Oracle, Microsoft SQL Server and MySQL. The database we will
use in this book is MySQL.

32.2 What Is a Database?

A database is essentially a way to store and retrieve data.
Typically, there is some form of query language used with the database to help

select the information to retrieve such as SQL or Structured Query Language.
In most cases there is a structure defined that is used to hold the data (although

this is not true of the newer NoSQL or non-relational unstructured databases such as
CouchDB or MongoDB).

In Relational database the data is held in tables, where the columns define the
properties or attributes of the data and each row defines the actual values being held,
for example:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_32&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_32

360 32 Introduction to Databases

In this diagram there is a table called students; it is being used to hold infor-
mation about students attending a meeting. The table has 5 attributes (or columns)
defined for id, name, surname, subject and email.

In this case, the id is probably what is known as a primary key. The primary key
is a property that is used to uniquely identify the student row; it cannot be omitted
and must be unique (within the table). Obviously names and subjects may well be
duplicated as there may be more than one student studying Animation or Games
and students may have the same first name or surname. It is probable that the email
column is also unique as students probably don’t share an email address but again
this may not necessarily be the case.

You might at this point wonder why the data in a Relational database is called
relational and not tables or tabular? The reason is because of a topic known as rela-
tional algebra that underpins Relational database theory. Relational Algebra takes its
name from the mathematical concept known as a relation. However, for the purposes
of this chapter you don’t need to worry about this and just need to remember that
data is held in tables.

32.2.1 Data Relationships

When the data held in one table has a link or relationship to data held in another
table then an index or key is used to link the values in one table to another. This
is illustrated below for a table of addresses and a table of people who live in that
address. This shows for example, that ‘Phoebe Gates’ lives at address ‘addr2’ which
is 12 Queen Street, Bristol, BS42 6YY.

32.2 What Is a Database? 361

This is an example of a many to one (often written as many: 1) relationship; that
is there are many people who can live at one address (in the above Adam Smith also
lives at address ‘addr2’). In Relational databases there can be several different types
of relationship such as:

• One: one where only one row in one table references one and only one row in
another table. An example of a one to one relationship might be from a person to
an order for a unique piece of jewellery.

• One: many this is the same as the above address example; however in this case
the direction of the relationship is reversed (that is to say that one address in the
addresses table can reference multiple persons in the people table).

• Many: many this is where many rows in one table may reference many rows
in a second table. For example, many students may take a particular class and a
student may take many classes. This relationship usually involves an intermediate
(join) table to hold the associations between the rows.

32.2.2 The Database Schema

The structure of a Relational database is defined using a Data Definition Language
or Data Description Language (a DDL).

Typically, the syntax of such a language is limited to the semantics (meaning)
required to define the structure of the tables. This structure is known as the
database schema. Typically, the DDL has commands such as CREATE TABLE,
DROP TABLE (to delete a table) and ALTER TABLE (to modify the structure of an
existing table).

362 32 Introduction to Databases

Many tools provided with a database allow you to define the structure of the
database without getting too bound up in the syntax of the DDL; however, it is useful
to be aware of it and to understand that the database can be created in this way. For
example, we will use the MySQL database in this chapter. The MySQL Workbench
is a tool that allows you to work with MySQL databases to manage and query the
data held within a particular database instance. For references for MySQL and the
MySQL Workbench see the links at the end of this chapter.

As an example, within the MySQL Workbench we can create a new table using a
menu option on a database:

Using this we can interactively define the columns that will comprise the table:

Here each column name, its type and whether it is the primary key (PK), not
empty (or Not Null NN) or unique (UQ) have been specified. When the changes are
applied, the tool also shows you the DDL that will be used to create the database:

32.3 SQL and Databases 363

When this is applied a new table is created in the database as shown below:

The tool also allows us to populate data into the table; this is done by entering
data into a grid and hitting apply as shown below:

32.3 SQL and Databases

We can now use query languages to identify and return data held in the database
often using specific criteria.

For example, let us say we want to return all the people who have the surname
Jones from the following table:

364 32 Introduction to Databases

We can do this by specifying that data should be returned where the surname
equals ‘Jones’; in SQL this would look like:

SELECT * FROM students where surname=’Jones’;

The above SELECT statement states that all the properties (columns or attributes)
in a row in the table students are to be returned where the surname equals ‘Jones’.
The result is that two rows are returned:

Note we need to specify the table we are interested in and what data we want
to return (the ‘*’ after the select indicated we want all the data). If we were only
interested in their first names then we could use:

SELECT name FROM students where surname=’Jones’;

This would return only the names of the students:

32.4 Data Manipulation Language

Data can also be inserted into a table or existing data in a table can be updated. This
is done using the Data Manipulation Language (DML).

For example, to insert data into a table we merely need to write an INSERT SQL
statement providing the values to be added and how they map to the columns in the
table:

INSERT INTO ’students’ (’id’, ’name’, ’surname’, ’subject’,
’email’) VALUES (’6’, ’James’, ’Andrews’, ’Games’, ’ja@my.com’);

This would add the row 6 to the table students with the result that the table
would now have an additional row:

mailto:ja@my.com

32.5 Transactions in Databases 365

Updating an existing row is a little more complicated as it is first necessary to iden-
tify the row to be updated and then the data to modify. Thus an UPDATE statement
includes a where clause to ensure the correct row is modified:

UPDATE ’students’ SET ’email’=’grj@my.com’ WHERE ’id’=’2’;

The effect of this code is that the second row in the students table is modified with
the new email address:

32.5 Transactions in Databases

Another important concept within a database is that of a Transaction. A Transaction
represents a unit of work performed within a database management system (or similar
system) against a database instance and is independent of any other transaction.

Transactions in a database environment have two main purposes.

• To provide a unit of work that allows recovery from failures and keeps a database
consistent even in cases of system failure, when execution stops (completely
or partially). This is because either all the operations within a transaction are
performed or none of them are. Thus, if one operation causes an error then all the
changes being made by the transaction thus far are rolled back and none of them
will have been made.

• To provide isolation between programs accessing a database concurrently. This
means that the work being done by one program will not interact with another
programs work.

A database transaction, by definition, must be atomic, consis-
tent, isolated and durable:

mailto:grj@my.com

366 32 Introduction to Databases

• Atomic This indicates that a transaction represents an atomic unit of work; that
is either all the operations in the transaction are performed or none of them are
performed.

• Consistent Once completed the transaction must leave the data in a consistent
state with any data constraints met (such as a row in one table must not reference
a non-existent row in another table in a one to many relationship, etc.).

• Isolated This relates to the changes being made by concurrent transactions; these
changes must be isolated from each other. That is, one transaction cannot see the
changes being made by another transaction until the second transaction completes
and all changes are permanently saved into the database.

• Durable This means that once a transaction completes then the changes it has
made are permanently stored into the database (until some future transaction
modifies that data).

Database practitioners often refer to these properties of database transactions
using the acronym ACID (for Atomic, Consistent, Isolated, Durable).

Not all databases support transactions although all commercial, production quality
databases such as Oracle, Microsoft SQL Server and MySQL do support transactions.

32.6 Further Reading

If you want to know more about databases and database management systems here
are some online resources:

• https://en.wikipedia.org/wiki/Database which is the Wikipedia entry for databases
and thus acts as a useful quick reference and jumping off point for other material.

• https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Sys
tems/Database which provides a short introduction to databases.

• https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-dat
abases another useful starting point for delving deeper into databases.

• https://en.wikipedia.org/wiki/Object_database for information on Object
databases.

• https://en.wikipedia.org/wiki/NoSQL for an introduction to No SQL or non-
relational databases.

• https://www.mysql.com/ for the MySQL database.
• https://dev.mysql.com/downloads/workbench The MySQL Workbench home

page.
• https://www.mongodb.com/ for the home page of the MongoDB site.
• http://couchdb.apache.org/ for the Apache Couch database.

If you want to explore the subject of database design (that is design of the tables
and links between tables in a database) then these references may help:

• https://en.wikipedia.org/wiki/Database_design the Wikipedia entry for database
design.

https://en.wikipedia.org/wiki/Database
https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Systems/Database
https://en.wikibooks.org/wiki/Introduction_to_Computer_Information_Systems/Database
https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-databases
https://www.techopedia.com/6/28832/enterprise/databases/introduction-to-databases
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/NoSQL
https://www.mysql.com/
https://dev.mysql.com/downloads/workbench
https://www.mongodb.com/
http://couchdb.apache.org/
https://en.wikipedia.org/wiki/Database_design

32.6 Further Reading 367

• https://www.udemy.com/cwdatabase-design-introduction/which covers most of
the core ideas within database design.

• http://en.tekstenuitleg.net/articles/software/database-design-tutorial/intro.html
which provides another tutorial that covers most of the core elements of database
design.

If you wish to explore SQL more then see:

• https://en.wikipedia.org/wiki/SQL the Wikipedia site for SQL
• https://www.w3schools.com/sql/sql_intro.asp which is the W3 school material on

SQL and as such an excellent resource.
• https://www.codecademy.com/learn/learn-sql which is a codecademy site for

SQL.

https://www.udemy.com/cwdatabase-design-introduction/which
http://en.tekstenuitleg.net/articles/software/database-design-tutorial/intro.html
https://en.wikipedia.org/wiki/SQL
https://www.w3schools.com/sql/sql_intro.asp
https://www.codecademy.com/learn/learn-sql

Chapter 33
Python DB-API

33.1 Accessing a Database from Python

The standard for accessing a database in Python is the Python DB-API. This specifies
a set of standard interfaces for modules that wish to allow Python to access a specific
database. The standard is described in PEP 249 (https://www.python.org/dev/peps/
pep-0249)—a PEP is a Python Enhancement Proposal.

Almost all Python database access modules adhere to this standard. This means
that if you are moving from one database to another, or attempting to port a Python
program from using one database to another, then the APIs you encounter should
be very similar (although the SQL processed by different database can also differ).
There are modules available for most common databases such as MySQL, Oracle
and Microsoft SQL Server.

33.2 The DB-API

There are several key elements to the DB-API; these are:

• The connect function. The connect() function that is used to connect to a
database and returns a Connection Object.

• Connection Objects. Within the DB-API access to a database is achieved through
connection objects. These connection objects provide access to cursor objects.

• Cursor objects are used to execute SQL statements on the database.
• The result of an execution. These are the results that can be fetched as a sequence

of sequences (such a tuple of tuples). The standard can thus be used to select, insert
or update information in the database.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_33&domain=pdf
https://www.python.org/dev/peps/pep-0249
https://www.python.org/dev/peps/pep-0249
https://doi.org/10.1007/978-3-031-40336-1_33

370 33 Python DB-API

These elements are illustrated below:

The standard specifies a set of functions and objects to be used to connect to
a database. These include the connection function, the Connection Object and the
Cursor object.

The above elements are described in more detail below.

33.2.1 The Connect Function

The connection function is defined as:

1. connect(parameters...)

It is used to make the initial connection to the database. The connection returns a
Connection Object. The parameters required by the connection function are database
dependent.

33.2.2 The Connection Object

The Connection Object is returned by the connect() function. The Connection
object provides several methods including:

• close() used to close the connection once you no longer need it. The connection
will be unusable from this point onwards.

33.2 The DB-API 371

• commit() used to commit a pending transaction.
• rollback() used to rollback all the changes made to the database since the last

transaction commit (optional as not all databases provide transaction support).
• cursor() returns a new Cursor object to use with the connection.

33.2.3 The Cursor Object

The Cursor object is returned from the connection.cusor() method. A Cursor
Object represents a database cursor, which is used to manage the context of a fetch
operation or the execution of a database command. Cursors support a variety of
attributes and methods:

• cursor.execute(operation, parameters) Prepare and execute a
database operation (such as a query statement or an update command). Parameters
may be provided as a sequence or mapping and will be bound to variables in the
operation. Variables are specified in a database-specific notation.

• cursor.rowcount A read-only attribute providing the number of rows that the
last cursor.execute() call returned (for select style statements) or affected
(for update or insert style statements).

• cursor.description A read-only attribute providing information on the
columns present in any results returned from a SELECT operation.

• cursor.close() Closes the cursor. From this point on the cursor will not be
usable.

In addition, the Cursor object also provides several fetch style methods. These
methods are used to return the results of a database query. The data returned is made
up of a sequence of sequences (such as a tuple of tuples) where each inner sequence
represents a single row returned by the SELECT statement. The fetch methods defined
by the standard are:

• cursor.fetchone() Fetch the next row of a query result set, returning a
single sequence, or None when no more data is available.

• cursor.fetchall() Fetch all (remaining) rows of a query result, returning
them as a sequence of sequences.

• cursor.fetchman(size) Fetch the next set of rows of a query result,
returning a sequence of sequences (e.g. a tuple of tuples). An empty sequence
is returned when no more rows are available. The number of rows to fetch per call
is specified by the parameter.

372 33 Python DB-API

33.2.4 Mappings from Database Types to Python Types

The DB-API standard also specifies a set of mappings from the types used in a
database to the types used in Python. For a full listing see the DB-API standard itself
but the key mappings include:

Date(year, month,
day)

Represents a database date

Time(hour, minute,
second)

Represents a time database value

Timestamp(year,
month, day, hour,
minute, second)

Holds a database timestamp value

String Used to represent string like database data (such as VARCHARs)

33.2.5 Generating Errors

The standard also specifies a set of Exceptions that can be thrown in different
situations. These are presented below and in the following table:

33.2 The DB-API 373

The above diagram illustrates the inheritance hierarchy for the errors and warning
associated with the standard. Note that the DB-API Warning and Error both
extend the Exception class from standard Python; however, depending on the
specific implementation there may be one or more additional classes in the hier-
archy between these classes. For example, in the PyMySQL module there is
a MySQLError class that extends Exception and is then extended by both
Warning and Error.

Also note that Warning and Error have no relationship with each other. This is
because Warnings are not considered Errors and thus have a separate class hierarchies.
However, the Error is the root class for all database Error classes.

A description of each Warning or Error class is provided below.

Warning Used to warn of issues such as data truncations during inserting, etc

Error The base class of all other error exceptions

InterfaceError Exception raised for errors that are related to the database interface
rather than the database itself

DatabaseError Exception raised for errors that are related to the database

DataError Exception raised for errors that are due to problems with the data
such as division by zero and numeric value out of range

OperationalError Exception raised for errors that are related to the database’s
operation and not necessarily under the control of the programmer,
e.g. an unexpected disconnect occurs, etc

IntegrityError Exception raised when the relational integrity of the database is
affected

InternalError Exception raised when the database encounters an internal error, e.g.
the cursor is not valid anymore, the transaction is out of sync, etc

ProgrammingError Exception raised for programming errors, e.g. table not found,
syntax error in the SQL statement, wrong number of parameters
specified, etc

NotSupportedError Exception raised in case a method or database API was used which is
not supported by the database, e.g. requesting a .rollback() on a
connection that does not support transactions or has transactions
turned off

33.2.6 Row Descriptions

The Cursor object has an attribute description that provides a sequence of
sequences; each subsequence provides a description of one of the attributes of the
data returned by a SELECT statement. The sequence describing the attribute is made
up of up to seven items, these include:

374 33 Python DB-API

• name representing the name of the attribute.
• type_code which indicates what Python type this attribute has been mapped

to.
• display_size the size used to display the attribute.
• internal_size the size used internally to represent the value.
• precision if a real numeric value the precision supported by the attribute.
• scale indicates the scale of the attribute.
• null_ok indicates whether null values are acceptable for this attribute.

The first two items (name and type_code) are mandatory; the other five are
optional and are set to None if no meaningful values can be provided.

33.3 Transactions in PyMySQL

Transactions are managed in PyMySQL via the database connection object. This
object provides the following method:

• connection.commit() This causes the current transaction to commit all
the changes made permanently to the database. A new transaction is then started.

• connection.rollback() This causes all changes that have been made so far
(but not permanently stored in to the database, i.e. not committed) to be removed.
A new transaction is then started.

The standard does not specify how a database interface should manage turning
on and off transaction (not least because not all databases support transactions).
However, MySQL does support transactions and can work in two modes; one supports
the use of transactions as already described; the other uses an autocommit mode. In
autocommit mode each command sent to the database (whether a SELECT statement
or an INSERT/UPDATE statement) is treated as an independent transaction, and any
changes are automatically committed at the end of the statement. This autocommit
mode can be turned on in PyMySQL using:

• connection.autocommit(True) turns on autocommit (False to turn off
autocommit which is the default).

Other associated methods include

• connection.get_autocommit() which returns a Boolean indicating
whether autocommit is turned on or not.

• connection.begin() to explicitly begin a new transaction.

33.4 Online Resources 375

33.4 Online Resources

See the following online resources for more information on the Python Database
API:

1. https://www.python.org/dev/peps/pep-0249/ Python Database API Specification
V2.0.

2. https://wiki.python.org/moin/DatabaseProgramming Database Programming in
Python.

3. https://docs.python-guide.org/scenarios/db/ Databases and Python.

https://www.python.org/dev/peps/pep-0249/
https://wiki.python.org/moin/DatabaseProgramming
https://docs.python-guide.org/scenarios/db/

Chapter 34
PyMySQL Module

34.1 The PyMySQL Module

The PyMySQL module provides access to a MySQL database from Python. It imple-
ments the Python DB-API v 2.0. This module is a pure Python database interface
implementation meaning that it is portable across different operating systems; this is
notable because some database interface modules are merely wrappers around other
(native) implementations that may or may not be available on different operating
systems. For example, a native Linux-based database interface module may not be
available for the Windows operating system. If you are never going to switch between
different operating systems, then this is not a problem of course.

To use the PyMySQL module you will need to install it on your computer. This
will involve using a tool such as Anaconda or adding it to your PyCharm project.
You can also use pip to install it:

> pip install PyMySQL

34.2 Working with the PyMySQL Module

To use the PyMySQL module to access a database you will need to follow these
steps.

1. Import the module.
2. Make a connection to the host machine running the database and to the database

you are using.
3. Obtain a cursor object from the connection object.
4. Execute some SQL using the cursor.execute() method.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_34&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_34

378 34 PyMySQL Module

5. Fetch the result(s) of the SQL using the cursor object (e.g. fetchall,
fetchmany or fetchone).

6. Close the database connection.

These steps are essentially boiler plate, code that is you will use them whenever
you access a database via PyMySQL (or indeed any DB-API compliant module).

We will take each of these steps in turn.

34.2.1 Importing the Module

As the PyMySQL module is not one of the built-in modules provided by default with
Python you will need to import the module into your code, for example using

import pymsql

Be careful with the case used here as the module name is pymysql in the code
(if you try to import PyMySQL Python will not find it!).

34.2.2 Connect to the Database

Each database module will have their own specifics for connecting to the database
server; these usually involve specifying the machine that the database is running
on (as databases can be quite resource intensive, they are often run on a separate
physical computer), the user to use for the connection and any security information
required such as a password and the database instance to connect to. In most cases
a database is looked after by a database management system (a DBMS) that can
manage multiple database instances, and it is therefore necessary to specify which
database instance you are interested in.

For MySQL, the MySQL database server is a DBMS that can indeed look after
multiple database instances. The pymysql.connect function thus requires the
following information when connecting to the database is:

• The name of the machine hosting the MySQL database server, e.g.
dbserver.mydomain.com. If you want to connect to the same machine as your
Python program is running on, then you can use localhost. This is a special name
reserved for the local machine and avoids you needing to worry about the name
of your local computer.

• The user name to use for the connection. Most databases limit access to their
databases to named users. These are not necessary users such as humans that log
into a system but rather entities that are allowed to connect to the database and
perform certain operations. For example, one user may only be able to read data in
the database where as another user is allowed to insert new data into the database.
These users are authenticated by requiring them to provide a password.

34.2 Working with the PyMySQL Module 379

• The password for the user.
• The database instance to connect to. As mentioned in the previous chapter a

database management system (DMS) can manage multiple database instances,
and thus it is necessary to say which database instance you are interested in.

For example:

Open database connection
connection = pymysql.connect(host=’localhost’,

user=’user’,
password=’password’,
database=’uni-database’)

print(’connection:’, connection)

In this case the machine we are connecting to is ‘localhost’ (that is the same
machine as the Python program itself is running on), the user is represented by
‘username’ and ‘password’, and the database instance of interest is called ‘uni-
database’.

This returns a Connection object as per the DB-API standard.

34.2.3 Obtaining the Cursor Object

You can obtain the cursor object from the connection using the cursor() method:

prepare a cursor object using cursor() method
cursor = connection.cursor()

34.2.4 Using the Cursor Object

Once you have obtained the cursor object you can use it to execute an SQL query
or a DML insert, update or delete statement. The following example uses a simple
select statement to select all the attributes in the students table for all rows currently
stored in the students table:

execute SQL query using execute() method.
cursor.execute(’SELECT * FROM students’)

Note that this method executes the SELECT statement but does not return the
set of results directly. Instead the executed method returns an integer indicating the
number of rows either affected by the modification or returned as part of the query.
In the case of a SELECT statement the number returned can be used to determine
which type of fetch method to use.

380 34 PyMySQL Module

34.2.5 Obtaining Information About the Results

The Cursor Object can also be used to obtain information about the results to be
fetched such as how many rows there are in the results and what the type is of each
attribute in the results:

• cusor.rowcount() This is a read-only property that indicates the number
of rows returned for a SELECT statement or rows affected for a UPDATE or
INSERT statement.

• cursor.description() This is a read-only property that provides a descrip-
tion of each attribute in the results set. Each description provides the name of the
attribute and an indication of the type (via a type_code) as well as further infor-
mation on whether the value can be null or not and for numbers scale, precision
and size information.

An example of using these two properties is given below:

print(’cursor.rowcount’, cursor.rowcount)
print(’cursor.description’, cursor.description)

A sample of the output generated by these lines is given below:

cursor.rowcount 6
cursor.description ((’id’, 3, None, 11, 11, 0, False), (’name’,
253, None, 180, 180, 0, False), (’surname’, 253, None, 180, 180, 0,
False), (’subject’, 253, None, 180, 180, 0, False), (’email’, 253,
None, 180, 180, 0, False))

34.2.6 Fetching Results

Now that a successful SELECT statement has been run against the database, we can
fetch the results. The results are returned as a tuple of tuples. As mentioned in the last
chapter there are several different fetch options available including fetchone(),
fetchmany(size) and fetchall(). In the following example we use the
fetchall() option as we know that there are only up to six rows that can be
returned.

Fetch all the rows and then iterate over the data
data = cursor.fetchall()
for row in data:

print(’row:’, row)

In this case we loop through each tuple within the data collection and print that
row out. However, we could just as easily have extracted the information in the tuple
into individual elements. These elements could then be used to construct an object
that could then be processed within an application, for example:

34.3 Complete PyMySQL Query Example 381

for row in data:
id, name, surname, subject, email = row
student = Student(id, name, surname, subject, email)
print(student)

34.2.7 Close the Connection

Once you have finished with the database connection it should be closed.

disconnect from server
connection.close()

34.3 Complete PyMySQL Query Example

A complete listing illustrating connecting up to the database, running a SELECT
statement and printing out the results using a Student class is given below:

import pymysql

class Student:
def __init__(self, student_id, name, surname, subject, email,

year):
self.student_id = student_id
self.name = name
self.surname = surname
self.subject = subject
self.email = email
self.year = year

def __str__(self):
return f’Student[{self.student_id}] {self.name}

{self.surname} - {self.subject} {self.email} {self.year}’

Open database connection
connection = pymysql.connect(host=’localhost’,

user=’user’,
password=’password’,
database=’uni-database’)

prepare a cursor object using cursor() method
cursor = connection.cursor()
execute SQL query using execute() method.
cursor.execute(’SELECT * FROM students’)

Fetch all the rows
data = cursor.fetchall()

382 34 PyMySQL Module

Convert data into Student objects
for row in data:

student_id, name, surname, subject, email, year = row
student = Student(student_id, name, surname, subject, email,

year)
print(student)

disconnect from server
connection.close()

The output from this program, for the database created in the last chapter, is shown
here:

Student[1] Phoebe Cooke - Animation pc@my.com 1
Student[2] Gryff Jones - Games grj@my.com 2
Student[3] Adam Fosh - Music af@my.com MSC
Student[4] Natalia Smith - Games js@my.com PHD
Student[5] Tom Jones - Music tj@my.com 3
Student[6] James Andrews - Games ja@my.com 2
Student[7] Phoebe Cooke - Animation pc1@my.com 1
Student[8] Jill Matthews - Law jm@my.com 2

34.4 Inserting Data to the Database

As well as reading data from a database many applications also need to add new data
to the database. This is done via the Data Manipulation Language (DML) INSERT
statement. The process for this is very similar to running a query against the database
using a SELECT statement; that is, you need to make a connection, obtain a cursor
object and execute the statement. The one difference here is that you do not need to
fetch the results.

import pymysql

Open database connection
Open database connection
connection = pymysql.connect(host=’localhost’,

user=’user’,
password=’password’,

database=’uni-database’)
connection.autocommit(False)

prepare a cursor object using cursor() method
cursor = connection.cursor()
try:

Execute INSERT command
cursor.execute(
"INSERT INTO students (id, name, surname, subject, email, year)

VALUES (9, ’Denise’, ’Byrne’, ’History’, ’db@my.com’, 1)")
Commit the changes to the database

mailto:pc@my.com
mailto:grj@my.com
mailto:af@my.com
mailto:js@my.com
mailto:tj@my.com
mailto:ja@my.com
mailto:pc1@my.com
mailto:jm@my.com
mailto:db@my.com

34.4 Inserting Data to the Database 383

connection.commit()

except:
Something went wrong
rollback the changes
connection.rollback()

Close the database connection
connection.close()

The result of running this code is that the database is updated with a seventh row
for ‘Denise Byrne’. This can be seen in the MySQL Workbench if we look at the
contents of the students table:

There are a couple of points to note about this code example. The first is that we
have used the double quotes around the string defining the INSERT command—this
is because a double quotes string allows us to include single quotes within that string.
This is necessary as we need to quote any string values passed to the database (such
as ‘Denise’).

The second thing to note is that by default the PyMySQL database interface
requires the programmer to decide when to commit or rollback a transaction. A trans-
action was introduced in the last chapter as an atomic unit of work that must either be
completed or as a whole or rollback so that no changes are made. However, the way
in which we indicate that a transaction is completed is by calling the commit()
method on the database connection. In turn we can indicate that we want to rollback
the current transaction by calling rollback(). In either case, once the method has
been invoked a new transaction is started for any further database activity.

In the above code we have used a try block to ensure that if everything succeeds,
we will commit the changes made, but if an exception is thrown (of any kind) we
will rollback the transaction—this is a common pattern.

384 34 PyMySQL Module

34.5 Updating Data in the Database

If we are able to insert new data into the database, we may also want to update the
data in a database, for example to correct some information. This is done using the
UPDATE statement which must indicate which existing row is being updated as well
as what the new data should be.

import pymysql

Open database connection
connection = pymysql.connect(host=’localhost’,

user=’user’,
password=’password’,

database=’uni-database’)
connection.autocommit(False)

prepare a cursor object using cursor() method
cursor = connection.cursor()
try:

Execute UPDATE command
cursor.execute("UPDATE students SET email = ’denise@my.com’

WHERE id = 9")
Commit the changes to the database
connection.commit()

except:
rollback the changes if an exception / error
connection.rollback()

Close the database connection
connection.close()

In this example we are updating the student with id 7 such that their email address
will be changed to ‘denise@my.com’. This can be verified by examining the contents
of the students table in the MySQL Workbench:

mailto:denise@my.com
mailto:denise@my.com

34.6 Deleting Data in the Database 385

34.6 Deleting Data in the Database

Finally, it is also possible to delete data from a database, for example if a student
leaves their course. This follows the same format as the previous two examples with
the difference that the DELETE statement is used instead:

import pymysql

Open database connection
connection = pymysql.connect(host=’localhost’,

user=’user’,
password=’password’,

database=’uni-database’)
connection.autocommit(False)

prepare a cursor object using cursor() method
cursor = connection.cursor()
try:

Execute DELETE command
cursor.execute("DELETE FROM students WHERE id = 9")
Commit the changes to the database
connection.commit()

except:
rollback the changes if an exception / error
connection.rollback()

Close the database connection
connection.close()

In this case we have deleted the student with id 7. We can see that again in the
MySQL Workbench by examining the contents of the students table after this code
has run:

386 34 PyMySQL Module

34.7 Creating Tables

It is not just data that you can add to a database; if you wish you can programmatically
create new tables to be used with an application. This process follows exactly the same
pattern as those used for INSERT, UPDATE and DELETE. The only difference is that
the command sent to the database contains a CREATE statement with a description
of the table to be created. This is illustrated below:

import pymysql

Open database connection
connection = pymysql.connect(host=’localhost’,

user=’user’,
password=’password’,

database=’uni-database’)
connection.autocommit(False)

prepare a cursor object using cursor() method
cursor = connection.cursor()
try:

Execute CREATE command
cursor.execute("CREATE TABLE log (message VARCHAR(100) NOT

NULL)")

Commit the changes to the database
connection.commit()

except:
rollback the changes if an exception / error
connection.rollback()

Close the database connection
connection.close()

This creates a new table log within the uni-database; this can be seen by looking
at the tables listed for the uni-database within the MySQL Workbench.

34.8 Online Resources

See the following online resources for more information on the Python database API:

1. https://pymysql.readthedocs.io/en/latest/ PyMySQL documentation site.
2. https://github.com/PyMySQL/PyMySQL GitHub repository for the PyMySQL

library.

https://pymysql.readthedocs.io/en/latest/
https://github.com/PyMySQL/PyMySQL

34.9 Exercises 387

34.9 Exercises

In this exercise you will create a database and tables based on a set of transactions
stored in a current account. You can use the account class you created in the CSV
and Excel chapter for this.

You will need two tables, one for the account information and one for the
transaction history.

The primary key of the account information table can be used as the foreign key
for the transaction history table.

Then write a function that takes an Account object and populates the tables with
the appropriate data.

To create the account information table you might use the following DDL:

CREATE TABLE acc_info (idacc_info INT NOT NULL, name VARCHAR(255)
NOT NULL, PRIMARY KEY (idacc_info))

While for the transactions table you might use:
CREATE TABLE transactions (idtransactions INT NOT

NULL, type VARCHAR(45) NOT NULL,
type VARCHAR(45) NOT NULL, amount VARCHAR(45) NOT

NULL, account INT
NOT NULL, PRIMARY KEY (idtransactions))"

Remember to be careful with integers and decimals if you are creating an SQL
string such as:

statement = "INSERT into transactions (idtransactions, type,
amount, account) VALUES (" + str(id) + ", ’" + action + "’, " +
str(amount) + ", " + str(account_number) + ")"

Part VII
Logging

Chapter 35
Introduction to Logging

35.1 Introduction

Many programming languages have common logging libraries including Java and
C#, and of course Python also has a logging module. Indeed the Python logging
module has been part of the built-in modules since Python 2.3.

This chapter discusses why you should add logging to your programs, what you
should (and should not) log and why just using the print() function is not sufficient.

35.2 Why Log?

Logging is typically a key aspect of any production application; this is because it is
important to provide appropriate information to allow future investigation following
some event or issue in such applications. These investigations include:

• Diagnosing failures; that is why did an application fail/crash.
• Identifying unusual or unexpected behaviour; which might not cause the appli-

cation to fail but which may leave it in an unexpected state or where data may be
corrupted, etc.

• Identifying performance or capacity issues; in such situations the application
is performing as expected by it is not meeting some non-functional requirements
associated with the speed at which it is operating or its ability to scale as the
amount of data or the number of users grows.

• Dealing with attempted malicious behaviour in which some outside agent is
attempting to affect the behaviour of the system or to acquire information which
they should not have access to, etc. This could happen for example, if you are
creating a Python web application and a user tries to hack into your web server.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_35&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_35

392 35 Introduction to Logging

• Regulatory or legal compliance. In some cases records of program execution
may be required for regulatory or legal reasons. This is particularly true of the
financial sector where records must be kept for many years in case there is a need
to investigate the organisations’ or individuals’ behaviour.

35.3 What is the Purpose of Logging?

In general there are therefore two general reasons to log what an application is doing
during it operation:

• For diagnostic purposes so that recorded events/steps can be used to analyse the
behaviour of the system when something goes wrong.

• Auditing purposes that allow for later analysis of the behaviour of the system for
business, legal or regulatory purposes. For example, in this case to determine who
did what with what and when.

Without such logged information it is impossible after the event to know what
happened. For example, if all you know is that an application crashed (unexpectedly
stopped executing) how can you determine what state the application was in, what
functions, methods, etc. were being executed and which statements run?

Remember that although a developer may have been using an IDE to run their
applications during development and may possibly been using the debugging facili-
ties available that allow you to see what functions or methods, statements and even
variable values are place; this is not how most production systems are run. In general
a production Python system will be run either from a command line or possibly
through a short cut (on a Windows box) to simplify running the program. All the
user will know is that something failed or that the behaviour they expected didn’t
occur—if in fact they are aware of any issue at all!

Logs are therefore key to after the event analysis of failures, unexpected behaviour
or for analysis of the operation of the system for business reasons.

35.4 What Should You Log?

One question that you might be considering at this point is ‘what information should
I log?’.

An application should log enough information so that post-event investigators can
understand what was happening, when and where. In general this means that you
will want to log the time of the log message, the module/filename, function name or
method name executing, potentially the log level being used (see later) and in some
cases the parameter values/state of the environment, program or class involved.

35.5 What not to Log 393

In many cases developers log the entry (and to a lesser extent) the exit from a
function or method. However, it may also be useful to log what happens at branch
points within a function or method so that the logic of the application can be followed.

All applications should log all errors/exceptions. Although care is needed to ensure
that this is done appropriately. For example if an exception is caught and then re
thrown several times it is not necessary to log it every time it is caught. Indeed doing
this can make the log files much larger, cause confusion when the problem is being
investigated and result in unnecessary overheads. One common approach is to log
an exception where it is first raised and caught and not to log it after that.

35.5 What not to Log

The follow on question to consider is ‘what information should I not log?’.
One general area not to log is any personal or sensitive information including any

information that can be used to identify an individual. This sort of information is
known as PII or Personally Identification Information.

Such information includes

• User ids and passwords.
• Email addresses.
• Data of birth, birth place.
• Personally identifiable financial information such as bank account details, credit

card details.
• Biometric information.
• Medical/health information.
• Government issued personal information such as passport details, drivers’ licence

number, social security numbers, National Insurance numbers.
• Official organisational information such as professional registrations and member-

ship numbers.
• Physical addresses, phone (land-line) numbers, mobile phone numbers.
• Verification elated information such as mother’s maiden name, pets’ names, high

school, first school, favourite film.
• It also increasing includes online information relating to social media such as

Facebook or LinkedIn accounts.

All of the above is sensitive information and much of it can be used to identify an
individual; none of this information should be logged directly.

That does not mean that you cannot and shouldn’t log that a user logged in; you
may well need to do that. However, the information should at least be obfuscated
and should not include any information not required. For example you may record
that a user represented by some id attempted to log in at a specific time and whether
they were successful or not. However, you should not log their password and may
not log the actual userid—instead you may log an id that can be used to map to their
actual userid.

394 35 Introduction to Logging

You should also be careful about directly logging data input too an application
directly into a log file. One way in which a malicious agent can attack an application
(particularly a web application) is by attempting to send very large amounts of data to
it (as part of a field or as a parameter to an operation). If the application blindly logs
all data submitted to it, then the log files can fill up very quickly. This can result in
the file store being used by the application filling up and causing potential problems
for all software using the same file store. This form of attack is known as a log (or log
file) injection attack and is well documented (see https://www.owasp.org/index.php/
Log_Injection which is part of the well-respected Open Web Application Security
Project).

Another point to note is that it is not merely enough to log an error. This is not
error handling; logging an error does not mean you have handled it; only that you
have noted it. An application should still decide how it should manage the error or
exception.

In general you should also aim for empty logs in a production system; that is
only information that needs to be logged in a production system should be logged
(often information about errors, exceptions or other unexpected behaviour). However,
during testing much more detail is required so that the execution of the system should
be followed. It should therefore be possible to select how much information is logged
depending on the environment the code is running in (that is within a test environment
or within a production environment).

A final point to note is that it is important to log information to the correct place.
Many applications (and organisations) log general information to one log file, errors
and exceptions to another and security information to a third. It is therefore important
to know where your log information is being sent and not to send information to the
wrong log.

35.6 Why not Just Use Print?

Assuming that you want to log information in your application then next question is
how should you do that? Through this book we have been using the Python print()
function to print out information that indicates results generated by our code but also
at times what is happening with a function or a method, etc.

Thus we need to consider whether using the print() function the best way to
log information.

In actual fact, using print() to log information in a production system is almost
never the right answer; this is for several reasons:

• Theprint() function by default writes strings out to the standard output (stdout)
or standard error output (stderr) which by default directs output to the console/
terminal. For example, when you run an application within an IDE, the output is
displayed in the Console window. If you run an application from the command line
then the output is directed back to that command/terminal window. Both of these

https://www.owasp.org/index.php/Log_Injection
https://www.owasp.org/index.php/Log_Injection

35.7 Online Resources 395

are fine during development, but what if the program is not run from a command
window, perhaps instead it is started up by the operating system automatically (as
is typical of numerous services such as a print service or a web server). In this case
there is no terminal/console window to send the data to; instead the data is just
lost. As it happens the stdout and stderr output streams can be directed to a
file (or files). However, this is typically done when the program is launched and
may be easily omitted. In addition there is only the option of sending all stdout
to a specific file or all error output to the stderr.

• Another issue with using the print() function is that all calls to print will be
output. When using most loggers it is possible to specify the log level required.
These different log levels allow different amounts of information to be generated
depending upon the scenario. For example, in a well-tested reliable production
system we may only want error related or critical information to be logged. This
will reduce the amount of information we are collecting and reduce any perfor-
mance impact introduced by logging into the application. However, during testing
phases we may want a far more detailed level of logging.

• In other situations we may wish to change the log level being used for a running
production system without needing to modify the actual code (as this has the
potential to introduced errors into the code). Instead we would like to have the
facility to externally change the way in which the logging system behaves, for
example through a configuration file. This allows system administrators to modify
the amount and the detail of the information being logged. It typically also allows
the designation of the log information to be changed.

• Finally, when using the print() function a developer can use whatever format
they like, they can include a timestamp on the message or not; they can include
the module or function/method name or not they can include parameters of not.
Using a logging system usually standardises the information generated along with
the log message. Thus all log messages will have (or not have) a timestamp, or
all messages will include (or not include) information on the function or method
in which they were generated, etc.

35.7 Online Resources

For further information on logging see the following:

• https://en.wikipedia.org/wiki/Log_file A Wikipedia page on logging.
• https://www.codeproject.com/Articles/42354/The-Art-of-Logging An

interesting article on the art of logging.
• www.owasp.org/index.php The Open Web Application Security Project

(OWASP).

https://en.wikipedia.org/wiki/Log_file
https://www.codeproject.com/Articles/42354/The-Art-of-Logging
http://www.owasp.org/index.php

Chapter 36
Logging in Python

36.1 The Logging Module

Python has included a built-in logging module since Python 2.3. This module, the
loggingmodule, defines functions and classes which implement a flexible logging
framework that can be used in any Python application/script or in Python libraries/
modules.

Although different logging frameworks differ in the specific details of what they
offer; almost all offer the same core elements (although different names are some-
times used). The Python logging module is no different, and the core elements that
make up the logging framework and its processing pipeline are shown below (note
that a very similar diagram could be drawn for logging frameworks in Java, Scala,
C++, etc.).

The following diagram illustrates a Python program that uses the built-in Python
logging framework to log messages to a file.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_36&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_36

398 36 Logging in Python

The core elements of the logging framework (some of which are optional) are
shown above and described below:

• Log Message The is the message to be logged from the application.
• Logger Provides the programmers entry point/interface to the logging system.

The Logger class provides a variety of methods that can be used to log messages
at different levels.

• Handler Handlers determine where to send a log message, default handlers
include file handlers that send messages to a file and HTTP handlers that send
messages to a web server.

• Filter This is an optional element in the logging pipeline. They can be used to
further filter the information to be logged providing fine-grained control of which
log messages are actually output (e.g. to a log file).

• Formatter These are used to format the log message as required. This may involve
adding timestamps, module and function/method information, etc. to the original
log message.

• Configuration Information The logger (and associated handlers, filters and
formatters) can be configured either programmatically in Python or through
configuration files. These configuration files can be written using key-value pairs
or in a YAML file (which is a simple markup language). YAML stands for Yet
Another Markup Language!

It is worth noting that much of the logging framework is hidden from the developer
who really only sees the logger; the remainder of the logging pipeline is either
configured by default or via log configuration information typically in the form of a
log configuration file.

36.2 The Logger

The Logger provides the programmers interface to the logging pipeline.
A Logger object is obtained from the getLogger() function defined in the

logging module. The following code snippet illustrates acquiring the default
logger and using it to log an error message. Note that the logging module must be
imported:

import logging
logger = logging.getLogger()
logger.error(’This should be used with something unexpected’)

36.3 Controlling the Amount of Information Logged 399

The output from this short application is logged to the console as this is the default
configuration:

This should be used with something unexpected

36.3 Controlling the Amount of Information Logged

Log messages are actually associated with a log level. These log levels are intended
to indicate the severity of the message being logged. There are six different log levels
associated with the Python logging framework; these are:

• NOTSET At this level no logging takes place and logging is effectively turned
off.

• DEBUG This level is intended to provide detailed information, typically of
interest when a developer is diagnosing a bug or issues within an application.

• INFO This level is expected to provide less detail than the DEBUG log level as it
is expected to provide information that can be used to confirm that the application
is working as expected.

• WARNING This is used to provide information on an unexpected event or an
indication of some likely problem that a developer or system administration might
wish to investigate further.

• ERROR This is used to provide information on some serious issue or problem
that the application has not been able to deal with and that is likely to mean that
the application cannot function correctly.

• CRITICAL This is the highest level of issue and is reserved for critical situations
such as ones in which the program can no longer continue executing.

The log levels are relative to one another and defined in a hierarchy. Each log
level has a numeric value associated with it as shown below (although you should
never need to use the numbers). Thus INFO is a higher log level than DEBUG, in turn
ERROR is a higher log level than WARNING, INFO, DEBUG, etc.

400 36 Logging in Python

Associated with the log level that a message is logged with, a logger also has a log
level associated with it. The logger will process all messages that are at the loggers
log level or above that level. Thus if a logger has a log level of WARNING then it will
log all messages logged using the warning, error and critical log levels.

Generally speaking, an application will not use the DEBUG level in a production
system. This is usually considered inappropriate as it is only intended for debug
scenarios. The INFO level may be considered appropriate for a production system
although it is likely to produce large amounts of information as it typically traces
the execution of functions and methods. If an application has been well tested and
verified then it is only really warnings and errors which should occur/be of concern.
It is therefore not uncommon to default to the WARNING level for production systems
(indeed this is why the default log level is set to WARNING within the Python logging
system).

If we now look at the following code that obtains the default logger object and
then uses several different logger methods, we can see the effect of the log levels on
the output:

import logging

logger = logging.getLogger()
logger.debug(’This is to help with debugging’)
logger.info(’This is just for information’)
logger.warning(’This is a warning!’)
logger.error(’This should be used with something unexpected’)
logger.critical(’Something serious’)

The default log level is set to warning, and thus only messages logged at the
warning level or above will be printed out:

This is a warning!
This should be used with something unexpected
Something serious

As can be seen from this, the messages logged at the debug and info level have
been ignored.

However, the Logger object allows us to change the log
level programmatically using the setLevel() method, for
example logger.setLevel(logging.DEBUG) or via the
logging.basicConfig(level=logging.DEBUG) function; both of
these will set the logging level to DEBUG. Note that the log level must be set before
the logger is obtained.

36.4 Logger Methods 401

If we add one of the above approaches to setting the log level to the previous
program we will change the amount of log information generated:

import logging

logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
logger.warning(’This is a warning!’)
logger.info(’This is just for information’)
logger.debug(’This is to help with debugging’)
logger.error(’This should be used with something unexpected’)
logger.critical(’Something serious’)

This will now output all the log messages as debug is the lowest logging level.
We can of course turn off logging by setting the log level to NOTSET.

logger.setLevel(logging.NOTSET)

Alternatively you can set the Loggers disabled attribute to True:

logging.Logger.disabled = True

36.4 Logger Methods

The Logger class provides a number of methods that can be used to control what is
logged including:

• setLevel(level) sets this loggers log level.
• getEffectiveLevel() returns this loggers log level.
• isEnabledFor(level) checks to see if this logger is enabled for the log

level specified.
• debug(message) logs messages at the debug level.
• info(message) logs messages at the info level.
• warning(message) logs messages at the warning level.
• error(message) logs messages at the error level.
• critical(message) logs messages at the critical level.
• exception(message) logs a message at the error level. However, it can only

be used within an exception handler and includes a stack trace of any associated
exception, for example:

402 36 Logging in Python

import logging

logger = logging.getLogger()
try:

print(’starting’)
x = 1 / 0
print(x)

except:
logger.exception(’an exception message’)

print(’Done’)

• log(level, message) logs messages at the log level specified as the first
parameter.

In addition there are several methods that are used to manage handlers and filters:

• addFilter(filter) This method adds the specified filter to this logger.
• removeFilter(filter) The specified filter is removed from this logger

object.
• addHandler(handler) The specified handler is added to this logger.
• removeHandler(handler) Removes the specified handler from this

logger.

36.5 Default Logger

A default (or root) logger is always available from the logging framework.
This logger can be accessed via the functions defined in the logging module.

These functions allow messages to be logged at different levels using methods such
as info(), error(), warning() but without the need to obtain a reference to
a logger object first. For example:

import logging

Set the root logger level
logging.basicConfig(level=logging.DEBUG)

Use root (default) logger
logging.debug(’This is to help with debugging’)
logging.info(’This is just for information’)
logging.warning(’This is a warning!’)
logging.error(’This should be used with something unexpected’)
logging.critical(’Something serious’)

This example sets the logging level for the root or default logger to DEBUG (the
default is WARNING). It then uses the default logger to generate a range of log
messages at different levels (from DEBUG up to CRITICAL). The output from this
program is given below:

36.6 Module Level Loggers 403

DEBUG:root:This is to help with debugging
INFO:root:This is just for information
WARNING:root:This is a warning!
ERROR:root:This should be used with something unexpected
CRITICAL:root:Something serious

Note that the format used by default with the root logger prints the log level, the
name of the logger generating the output and the message. From this you can see
that it is the root longer that is generating the output.

36.6 Module Level Loggers

Most modules will not use the root logger to log information; instead they will use
a named or module level logger. Such a logger can be configured independently of
the root logger. This allows developers to turn on logging just for a module rather
than for a whole application. This can be useful if a developer wishes to investigate
an issue that is located within a single module.

Previous code examples in this chapter have used the getLogger() function
with no parameters to obtain a logger object, for example:

logger = logging.getLogger()

This is really just another way of obtaining a reference to the root logger
which is used by the stand alone logging functions such as logging.info(),
logging.debug() function, thus:

logging.warning(’my warning’)

and

logger = logging.getLogger()
logger.warning(’my warning’)

Have exactly the same effect; the only difference is that the first version involves
less code.

However, it is also possible to create a named logger. This is a separate logger
object that has its own name and can potentially have its own log level, handlers,
formatters, etc. To obtain a named logger pass a name string into the getLogger()
method:

logger1 = logging.getLogger(’my logger’)

This returns a logger object with the name ‘my logger’. Note that this may be
a brand new logger object; however if any other code within the current system
has previously requested a logger called ‘my logger’ then that logger object will be
returned to the current code. Thus multiple calls to getLogger() with the same
name will always return a reference to the same Logger object.

404 36 Logging in Python

It is common practice to use the name of the module as the name of the logger; as
only one module with a specific name should exist within any specific system. The
name of the module does not need to be hard coded as it can be obtained using the
__name__ module attribute, it is thus common to see:

logger2 = logging.getLogger(__name__)

We can see the effect of each of these statements by printing out each logger:

logger = logging.getLogger()
print(’Root logger:’, logger)

logger1 = logging.getLogger(’my logger’)
print(’Named logger:’, logger1)

logger2 = logging.getLogger(__name__)
print(’Module logger:’, logger2)

When the above code is run the output is:

Root logger: <RootLogger root (WARNING)>
Named logger: <Logger my logger (WARNING)>
Module logger: <Logger __main__ (WARNING)>

This shows that each logger has their own name (the code was run in the main
module, and thus the module name was __main__), and all three loggers have an
effective log level of WARNING (which is the default).

36.7 Logger Hierarchy

There is in fact a hierarchy of loggers with the root logger at the top of this hierarchy.
All named loggers are below the root logger.
The name of a logger can actually be a period-separated hierarchical value such

as util, util.lib and util.lib.printer. Loggers that are further down
the hierarchy are children of loggers further up the logger hierarchy.

For example given a logger called lib, then it will be below the root logger but
above the logger with the name util.lib. This logger will in turn be above the
logger called util.lib.printer. This is illustrated in the following diagram:

36.8 Formatters 405

The logger name hierarchy is analogous to the Python package hierarchy and iden-
tical to it if you organise your loggers on a per-module basis using the recommended
construction logging.getLogger(__name__).

This hierarchy is important when considering the log level. If a log level has not
been set for the current logger then it will look to its parent to see if that logger has a
log level set. If it does that will be the log level used. This search back up the logger
hierarchy will continue until either an explicit log level is found or the root logger is
encountered which has a default log level of WARNING.

This is useful as it is not necessary to explicitly set the log level for every logger
object used in an application. Instead it is only necessary to set the root log level (or
for a module hierarchy an appropriate point in the module hierarchy). This can then
be overridden where specifically required.

36.8 Formatters

The are two levels at which you can format the messages logged, and these are within
the log message passed to a logging method (such as info() or warn()) and via
the top-level configuration that indicates what additional information may be added
to the individual log message.

406 36 Logging in Python

36.8.1 Formatting Log Messages

The log message can have control characters that indicate what values should be
placed within the message, for example:

logger.warning(’%s is set to %d’, ’count’, 42)

This indicates that the format string expects to be given a string and a number.
The parameters to be substituted into the format string follow the format string as a
comma separated list of values.

36.8.2 Formatting Log Output

The logging pipeline can be configured to incorporate standard information with
each log message. This can be done globally for all handlers. It is also possible to
programmatically set a specific formatter on an individual handler; this is discussed
in the next section.

To globally set the output format for log messages use the
logging.basicConfig() function using the named parameter format.

The format parameter takes a string that can contain LogRecord attributes
organised as you see fit. There is a comprehensive list of LogRecord attributes which
can be referenced at https://docs.python.org/3/library/logging.html#logrecord-attrib
utes. The key ones are:

• args a tuple listing the arguments used to call the associated function or method.
• asctime indicates the time that the log message was created.
• filename the name of the file containing the log statement.
• module the module name (the name portion of the filename).
• funcName the name of the function or method containing the log statement.
• levelname the log level of the log statement.
• message the log message itself as provided to the log method.

The effect of some of these is illustrated below.

import logging

logging.basicConfig(format=’%(asctime)s %(message)s’,
level=logging.DEBUG)

logger = logging.getLogger(__name__)
def do_something():

logger.debug(’This is to help with debugging’)
logger.info(’This is just for information’)
logger.warning(’This is a warning!’)
logger.error(’This should be used with something unexpected’)
logger.critical(’Something serious’)

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/logging.html#logrecord-attributes

36.8 Formatters 407

do_something()

The above program generates the following log statements:

2023-06-16 12:05:05,903 This is to help with debugging
2023-06-16 12:05:05,903 This is just for information
2023-06-16 12:05:05,903 This is a warning!
2023-06-16 12:05:05,903 This should be used with something unex-
pected
2023-06-16 12:05:05,903 Something serious

However, it might be useful to know the log level associated with the log
statements, as well as the function that the log statements were called from. It
is possible to obtain this information by changing the format string passed to the
logging.basicConfig() function:

logging.basicConfig(format=’%(asctime)s[%(levelname)s]
%(funcName)s: %(message)s’, level=logging.DEBUG)

which will now generate the output within log level information and the function
involved:

2023-06-16 12:05:24,307[DEBUG] do_something: This is to help with
debugging
2023-06-16 12:05:24,307[INFO] do_something: This is just for infor-
mation
2023-06-16 12:05:24,307[WARNING] do_something: This is a warning!
2023-06-16 12:05:24,307[ERROR] do_something: This should be used
with something unexpected
2023-06-16 12:05:24,307[CRITICAL] do_something: Something serious

We can even control the format of the date time information associated with the
log statement using the datafmt parameter of the logging.basicConfig()
function:

logging.basicConfig(format=’%(asctime)s %(message)s’,
datefmt=’%m/%d/%Y %I:%M:%S %p’, level=logging.DEBUG)

This format string uses the formatting options used by the
datetime.strptime() function (see https://docs.python.org/3/library/dat
etime.html#strftime-strptime-behavior) for information on the control characters,
in this case.

• %m Month as a zero-padded decimal number, e.g. 01, 11, 12.
• %d Day of the month as a zero-padded decimal number, e.g. 01, 12, etc.
• %Y Year with century as a decimal number, e.g. 2020.
• %I Hour (12-h clock) as a zero-padded decimal number, e.g. 01, 10, etc.
• %M Minute as a zero-padded decimal number, e.g. 0, 01, 59, etc.
• %S Second as a zero-padded decimal number, e.g. 00, 01, 59, etc.
• %p Either AM or PM.

Thus the output generated using the above datefmt string is:

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

408 36 Logging in Python

06/16/2023 12:05:43 PM This is to help with debugging
06/16/2023 12:05:43 PM This is just for information
06/16/2023 12:05:43 PM This is a warning!
06/16/2023 12:05:43 PM This should be used with something unexpected
06/16/2023 12:05:43 PM Something serious

To set a formatter on an individual handler see the next section.

36.9 Online Resources

For further information on the Python logging framework see the following:

• https://docs.python.org/3/library/logging.html The standard library documenta-
tion on the logging facilities in Python.

• https://docs.python.org/3/howto/logging.html A how to guide on logging from
the Python standard library documentation.

• https://pymotw.com/3/logging/index.html Python Module of the Week logging
page.

36.10 Exercises

This exercise will involve adding logging to the Account class you have been
working on in this book.

You should add log methods to each of the methods in the class using either the
debug or info methods. You should also obtain a module logger for the account
classes.

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/howto/logging.html
https://pymotw.com/3/logging/index.html

Chapter 37
Advanced Logging

37.1 Introduction

In this chapter we go further into the configuration and modification of the Python
logging module. In particular we will look at Handlers (used to determine the desti-
nation of log messages), Filters which can be used by Handlers to provide finer
grained control of log output and logger configuration files. We conclude the chapter
by considering performance issues associated with logging.

37.2 Handlers

Within the logging pipeline, it is handlers that send the log message to their final
destination.

By default the handler is set up to direct output to the console/terminal associated
with the running program. However, this can be changed to send the log messages
to a file, to an email service, to a web server, etc. Or indeed to any combination of
these as there can be multiple handlers configured for a logger. This is shown in the
diagram below:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_37&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_37

410 37 Advanced Logging

In the above diagram the logger has been configured to send all log messages to
four different handlers which allow a log message to be written to the console, to
a web server to a file and to an email service. Such a behaviour may be required
because:

• The web server will allow developers access to a web interface that allows them
to see the log files even if they do not have permission to access a production
server.

• The log file ensures that all the log data is permanently stored in a file within the
file store.

• An email message may be sent to a notification system so that someone will be
notified that there is an issue to be investigated.

• The console may still be available to the system administrators who may wish to
look at the log messages generated.

The Python logging framework comes with several different handlers as suggested
above and listed below:

• logging.Stream Handler sends messages to outputs such as stdout,
stderr, etc.

• logging.FileHandler sends log messages to files. There are several
varieties of File Handler in addition to the basic FileHandler;
these include the logging.handlers.RotatingFileHandler
(which will rotate log files based on a maximum file size) and
logging.handlers.TimeRotatingFileHandler (which rotates
the log file at specified time intervals, e.g. daily).

• logging.handlers.SocketHandler which sends messages to a TCP/IP
socket where it can be received by a TCP server.

37.2 Handlers 411

• logging.handlers.SMTPHandler that sends messages by the Simple
Mail Transfer Protocol (SMTP) to a email server.

• logging.handlers.SysLogHandler that sends log messages to a Unix
syslog program.

• logging.handlers.NTEventLogHandler that sends message to a
Windows event log.

• logging.handlers.HTTPHandler which sends messages to a HTTP
server.

• logging.NullHandler that does nothing with error messages. This is often
used by library developers who want to include logging in their applications but
expect developers to set up an appropriate handler when they use the library.

All of these handlers can be configured programmatically or via a configuration
file.

37.2.1 Setting the Root Output Handler

The following example uses the logging.basicConfig() function to set up
the root logger to use a FileHandler that will write the log messages to a file
called ‘example.log’:

import logging

Sets a file handler on the root logger to
save log messages to the example.log file
logging.basicConfig(filename=’example.log’,level=logging.DEBUG)

If no handler is explicitly set on the name logger
it will delegate the messages to the parent logger to handle
logger = logging.getLogger(__name__)
logger.debug(’This is to help with debugging’)
logger.info(’This is just for information’)
logger.warning(’This is a warning!’)
logger.error(’This should be used with something unexpected’)
logger.critical(’Something serious’)

Note that if no handler is specified for a named logger then it delegates output to
the parent (in this case the root) logger. The file generated for the above program is
shown below:

412 37 Advanced Logging

As can be seen from this the default formatter is now configured for a
FileHandler. This FileHandler adds the log message level before the log message
itself.

37.2.2 Programmatically Setting the Handler

It is also possible to programmatically create a handler and set it for the logger.
This is done by instantiating one of the existing handler classes (or by subclassing
an existing handler such as the root Handler class or the FileHander). The
instantiated handler can then be added as a handler to the logger (remember the
logger can have multiple handlers this is why the method is called addHandler()
rather than something such as setHandler).

An example of explicitly setting the FileHandler for a logger is given below:

import logging

Empty basic config turns off default console handler
logging.basicConfig()

logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

create file handler which logs to the specified file
file_handler = logging.FileHandler(’detailed.log’)
Add the handler to the Logger
logger.addHandler(file_handler)

’application’ code
def do_something():

logger.debug(’debug message’)
logger.info(’info message’)
logger.warning(’warn message’)
logger.error(’error message’)
logger.critical(’critical message’)

logger.info(’Starting’)
do_something()
logger.info(’Done’)

The result of running this code is that a log file is created with the logged messages:

37.2 Handlers 413

Given that this is a lot more code than using the basicConfig() function; the
question here might be ‘Why bother?’. The answer is twofold:

• You can have different handlers for different loggers rather than setting the handler
to be used centrally.

• Each handler can have its own format set so that logging to a file has a different
format to logging to the console.

We can set the format for the handler by instantiating thelogging.Formatter
class with an appropriate format string. The formatter object can then be applied to
a handler using the setFormatter() method on the handler object.

For example, we can modify the above code to include a formatter that is then set
on the file handler as shown below.

create file handler which logs to the specified file
file_handler = logging.FileHandler(’detailed.log’)
Create formatter for the file_handler
formatter = logging.Formatter(’%(asctime)s - %(funcName)s -
%(message)s’)
file_handler.setFormatter(formatter)

logger.addHandler(file_handler)

The log file now generated is modified such that each message includes a times-
tamp, the function name (or module if at the module level) as well as the log message
itself.

37.2.3 Multiple Handlers

As suggested in the previous section we can create multiple handlers to send log
messages to different locations; for example from the console, to files and even

414 37 Advanced Logging

email servers. The following program illustrates setting up both a file handler and a
console handler for a module level logger.

To do this we create two handlers the file_handler and the console_
handler. As a side effect we can also give them different log levels and different
formatters. In this case the file_handler inherits the log level of the logger itself
(which is DEBUG) while the console_handler has its log level set explicitly at
WARNING. This means different amounts of information will be logged to the log
file than the console output.

We have also set different formatters on each handler; in this case the log file
handler’s formatter provides more information than the console handlers formatter.

Both handlers are then added to the logger before it is used.

Multiple Handlers and formatters
import logging

Set up the default root logger to do nothing
logging.basicConfig(handlers=[logging.NullHandler()])

Obtain the module level logger and set level to DEBUG
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

Create file handler
file_handler = logging.FileHandler(’detailed.log’)
Create console handler with a higher log level
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.WARNING)

Create formatter for the file handler
fh_formatter = logging.Formatter(’%(asctime)s [%(levelname)s]
%(name)s.%(funcName)s: %(message)s’,

datefmt=’%m-%d-%Y %I:%M:%S %p’)
file_handler.setFormatter(fh_formatter)

Create formatter for the console handler
console_formatter = logging.Formatter(’%(asctime)s -
%(funcName)s - %(message)s’)
console_handler.setFormatter(console_formatter)

Add the handlers to logger
logger.addHandler(console_handler)
logger.addHandler(file_handler)

’application’ code
def do_something():

logger.debug(’debug message’)
logger.info(’info message’)
logger.warning(’warn message’)
logger.error(’error message’)
logger.critical(’critical message’)

logger.info(’Starting’)
do_something()

37.3 Filters 415

logger.info(’Done’)

The output from this program is now split between the log file and the console
out, as shown below:

37.3 Filters

Filters can be used by Handlers to provide finer grained control of the log output.
A filter can be added to a logger using the logger.addFilter() method. A
Filter can be created by extending the logging.Filter class and implementing
the filter() method. This method takes a log record. This log record can be
validated to determine if the record should be output or not. If it should be output
then True is returned, if the record should be ignored False should be returned.

In the following example, a filter called MyFilter is defined that will filter out
all log messages containing the string ‘John’. It is added as a filter to the logger and
then two log messages are generated.

import logging

class MyFilter(logging.Filter):

def filter(self, record):
if ’John’ in record.msg:

return False
else:

return True

logging.basicConfig(format=’%(asctime)s %(message)s’,
level=logging.DEBUG)

416 37 Advanced Logging

logger = logging.getLogger()
logger.addFilter(MyFilter())

logger.debug(’This is to help with debugging’)
logger.info(’This is information on John’)

The output shows that only the log message that does not contain the string ‘John’
is output:

2023-06-16 11:59:48,226 This is to help with debugging

37.4 Logger Configuration

All the examples so far in this chapter have used programmatic configuration of
the logging framework. This is certainly feasible as the examples show, but it does
require a code change if you wish to alter the logging level for any particular logger
or to change where a particular handler is routing the log messages.

For most production systems a better solution is to use an external configuration
file which is loaded when the application is run and is used to dynamically configure
the logging framework. This allows system administrators and others to change the
log level, the log destination, the log format, etc. without needing to change the code.

The logging configuration file can be written using several standard formats from
the Java Script Object Notation (JSON), to Yet Another Markup Language (YAML)
format, or as a set of key-value pairs in a.conf file. For further information on the
different options available see the Python logging module documentation.

In this book we will briefly explore the YAML file format used to configure
loggers.

version: 1
formatters:
myformatter:

format: ’%(asctime)s [%(levelname)s] %(name)s.%(funcName)s:
%(message)s’
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: myformatter
stream: ext://sys.stdout

loggers:
myLogger:

level: DEBUG
handlers: [console]
propagate: no
root:
level: ERROR
handlers: [console]

37.4 Logger Configuration 417

The above YAML code is stored in a file called logging.conf.yaml;
however you can call this file anything that is meaningful.

The YAML file always starts with a version number. This is an integer value
representing the YAML schema version (currently this can only be the value 1). All
other keys in the file are optional; they include:

• formatters—this lists one or more formatters; each formatter has a name which
acts as a key and then a format value which is a string defining the format of a log
message.

• filters—this is a lit of filter names and a set of filter definitions.
• handlers—this is a list of named handlers. Each handler definition is made up

of a set of key-value pairs where the keys define the class used for the filter
(mandatory), the log level of the filter (optional), the formatter to use with the
handler (optional) and a list of filters to apply (optional).

• loggers provide one or more named loggers. Each logger can indicate the log level
(optional) and a list of handlers (optional). The propagate option can be used
to stop messages propagating to a parent logger (by setting it to False).

• root this is the configuration for the root logger.

This file can be loaded into a Python application using the PyYAML module. This
module can be installed using pip:

pip install PyYAML

The version used at the time of writing is version 6.0.
This provides a YAML parser that can load a YAML file as a dictionary structure

that can be passed to the logging.config.dictConfig() function. As this is
a file it must be opened and closed to ensure that the resource is handled appropriately;
it is therefore best managed using the with-as statement as shown below:

with open(’logging.config.yaml’, ’r’) as f:
config = yaml.safe_load(f.read())
logging.config.dictConfig(config)

This will open the YAML file in read-only mode and close it when the two
statements have been executed. This snippet is used in the following application that
loads the logger configuration from the YAML file:

import logging
import logging.config
import yaml

with open(’logging.config.yaml’, ’r’) as f:
config = yaml.safe_load(f.read())
logging.config.dictConfig(config)

logger = logging.getLogger(’myLogger’)
’application’ code
def do_something():

logger.debug(’debug message’)

418 37 Advanced Logging

logger.info(’info message’)
logger.warning(’warn message’)
logger.error(’error message’)
logger.critical(’critical message’)

logger.info(’Starting’)
do_something()
logger.info(’Done’)

The output from this using the earlier YAML file is:

2023-06-16 12:02:23,863 [INFO] myLogger.<module>: Starting
2023-06-16 12:02:23,863 [DEBUG] myLogger.do_something: debug
message
2023-06-16 12:02:23,863 [INFO] myLogger.do_something: info
message
2023-06-16 12:02:23,863 [WARNING] myLogger.do_something: warn
message
2023-06-16 12:02:23,863 [ERROR] myLogger.do_something: error
message
2023-06-16 12:02:23,863 [CRITICAL] myLogger.do_something: crit-
ical message
2023-06-16 12:02:23,863 [INFO] myLogger.<module>: Done

37.5 Performance Considerations

Performance when logging should always be a consideration. In general you should
aim to avoid performing any unnecessary work when logging is disabled (or disabled
for the level being used). This may seem obvious but it can occur in several unexpected
ways.

One example is string concatenation. If a message to be logged involves string
concatenation; then that string concatenation will always be performed when a log
method is being invoked. For example:

logger.debug(’Count: ’ + count + ’, total: ’ + total)

This will always result in the string being generated for count and total
before the call is made to the debug function; even if the debug level is not turned on.
However using a format string will avoid this. The formatting involved will only be
performed if the string is to be used in a log message. You should therefore always
use string formatting to populate log messages. For example:

logger.debug(’Count: %d, total: %d’, count, 42)

Another potential optimisation is to use the logger.isEnabledFor(level)
method as a guard against running the log statement. This can be useful in situations
where an associated operation must be performed to support the logging operation,
and this operation is expensive. For example:

37.6 Exercises 419

if logger.isEnabledFor(logging.DEBUG):
logger.debug(’Message with %s, %s’, expensive_func1(),
expensive_func2())

Now the two expensive functions will only be executed if the DEBUG log level
is set.

37.6 Exercises

Using the logging you added to the Account class in the last chapter, you should
load the log configuration information from a YAML file similar to that used in this
chapter.

This should be loaded into the application program used to drive the account
classes.

Part VIII
Concurrency and Parallelism

Chapter 38
Introduction to Concurrency
and Parallelism

38.1 Introduction

In this chapter we will introduce the concepts of concurrency and parallelism. We
will also briefly consider the related topic of distribution. After this we will consider
process synchronisation, why object-oriented approaches are well suited to concur-
rency and parallelism before finishing with a short discussion of threads versus
processes.

38.2 Concurrency

Concurrency is defined by the dictionary as.

two or more events or circumstances happening or existing at the same time.

In Computer Science concurrency refers to the ability of different parts or units
of a program, algorithm or problem to be executed at the same time, potentially on
multiple processors or multiple cores.

Here a processor refers to the central processing unit (or CPU) or a computer
while core refers to the idea that a CPU chip can have multiple cores or processors
on it.

Originally a CPU chip had a single core. That is the CPU chip had a single
processing unit on it. However, over time, to increase computer performance, hard-
ware manufacturers added additional cores or processing units to chips. Thus a
dual-core CPU chip has two processing units while a quad-core CPU chip has four
processing units. This means that as far as the operating system of the computer is
concerned, it has multiple CPUs on which it can run programs.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_38&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_38

424 38 Introduction to Concurrency and Parallelism

Running processing at the same time, on multiple CPUs, can substantially improve
the overall performance of an application.

For example, let us assume that we have a program that will call three independent
functions; these functions are:

• make a backup of the current data held by the program,
• print the data currently held by the program,
• run an animation using the current data.

Let us assume that these functions run sequentially, with the following timings:

• the backup function takes 13 s,
• the print function takes 15 s,
• the animation function takes 10 s.

This would result in a total of 38 s to perform all three operations. This is illustrated
graphically below:

However, the three functions are all completely independent of each other. That
is they do not rely on each other for any results or behaviour; they do not need one
of the other functions to complete before they can complete, etc. Thus we can run
each function concurrently.

If the underlying operating system and program language being used support
multiple processes, then we can potentially run each function in a separate process
at the same time and obtain a significant speed up in overall execution time.

38.3 Parallelism 425

If the application starts all three functions at the same time, then the maximum
time before the main process can continue will be 15 s, as that is the time taken by
the longest function to execute. However, the main program may be able to continue
as soon as all three functions are started as it also does not depend on the results from
any of the functions; thus the delay may be negligible (although there will typically
be some small delay as each process is set up). This is shown graphically below:

38.3 Parallelism

A distinction its often made in Computer Science between concurrency and
parallelism.

In concurrency, separate independent tasks are performed potentially at the same
time.

In parallelism, a large complex task is broken down into a set of subtasks. The
subtasks represent part of the overall problem. Each subtask can be executed at the
same time. Typically it is necessary to combine the results of the subtasks together
to generate an overall result. These subtasks are also very similar if not functionally
exactly the same (although in general each subtask invocation will have been supplied
with different data).

Thus parallelism is when multiple copies of the same functionality are run at the
same time, but on different data.

Some examples of where parallelism can be applied include:

• A web search engine. Such a system may look at many, many web pages. Each
time it does so it must send a request to the appropriate web site, receive the result
and process the data obtained. These steps are the same whether it is the BBC

426 38 Introduction to Concurrency and Parallelism

web site, Microsoft’s web site or the web site of Cambridge University. Thus the
requests can be run sequentially or in parallel.

• Image processing. A large image may be broken down into slices so that each
slice can be analysed in parallel.

The following diagram illustrates the basic idea behind parallelism; a main
program fires off three subtasks each of which runs in parallel. The main program
then waits for all the subtasks to complete before combining together the results from
the subtasks before it can continue.

38.4 Distribution

When implementing a concurrent or parallel solution, where the resulting processes
run is typically an implementation detail. Conceptually these processes could run on
the same processor, physical machine or on a remote or distributed machine. As such
distribution, in which problems are solved or processes executed by sharing the work
across multiple physical machines, is often related to concurrency and parallelism.

However, there is no requirement to distribute work across physical machines,
indeed in doing so extra work is usually involved.

To distribute work to a remote machine, data and in many cases code, must be
transferred and made available to the remote machine. This can result in significant
delays in running the code remotely and may offset any potential performance advan-
tages of using a physically separate computer. As a result many concurrent/parallel
technologies default to executing code in a separate process on the same machine.

38.5 Grid Computing 427

38.5 Grid Computing

Grid Computing is based on the use of a network of loosely coupled computers, in
which each computer can have a job submitted to it, which it will run to completion
before returning a result.

In many cases the grid is made up of heterogeneous set of computers (rather
than all computers being the same) and may be geographically dispersed. These
computers may be comprised of both physical computers and virtual machines.

A Virtual Machine is a piece of software that emulates a whole computer and runs
on some underlying hardware that is shared with other virtual machines. Each virtual
machine thinks it is the only computer on the hardware; however the virtual machines
all share the resources of the physical computer. Multiple virtual machines can thus
run simultaneously on the same physical computer. Each virtual machine provides
its own virtual hardware, including CPUs, memory, hard drives, network interfaces
and other devices. The virtual hardware is then mapped to the real hardware on
the physical machine which saves costs by reducing the need for physical hardware
systems along with the associated maintenance costs, as well as reducing the power
and cooling demands of multiple computers.

Within a grid, software is used to manage the grid nodes and to submit jobs to
those nodes. Such software will receive the jobs to perform (programs to run and
information about the environment such as libraries to use) from clients of the grid.
These jobs are typically added to a job queue before a job scheduler submits them to
a node within the grid. When any results are generated by the job they are collected
from the node and returned to the client. This is illustrated below:

428 38 Introduction to Concurrency and Parallelism

The use of grids can make distributing concurrent/parallel processes amongst a
set of physical and virtual machines much easier.

38.6 Concurrency and Synchronisation

Concurrency relates to executing multiple tasks at the same time. In many cases these
tasks are not related to each other such as printing a document and refreshing the
user interface. In these cases, the separate tasks are completely independent and can
execute at the same time without any interaction.

In other situations multiple concurrent tasks need to interact; for example, where
one or more tasks produce data and one or more other tasks consume that data.
This is often referred to as a producer–consumer relationship. In other situations, all
parallel processes must have reached the same point before some other behaviour is
executed.

Another situation that can occur is where we want to ensure that only one concur-
rent task executes a piece of sensitive code at a time; this code must therefore be
protected from concurrent access.

Concurrent and parallel libraries need to provide facilities that allow for such
synchronisation to occur.

38.7 Object Orientation and Concurrency

The concepts behind object-oriented programming lend themselves particularly well
to the concepts associated with concurrency. For example, a system can be described
as a set of discrete objects communicating with one another when necessary. In
Python, only one object may execute at any one moment in time within a single
interpreter. However, conceptually at least, there is no reason why this restriction
should be enforced. The basic concepts behind object orientation still hold, even if
each object executes within a separate independent process.

38.8 Threads V Processes 429

Traditionally a message send is treated like a procedural call, in which the calling
object’s execution is blocked until a response is returned. However, we can extend
this model quite simply to view each object as a concurrently executable program,
with activity starting when the object is created and continuing even when a message
is sent to another object (unless the response is required for further processing). In
this model, there may be very many (concurrent) objects executing at the same time.
Of course, this introduces issues associated with resource allocation, etc. but no more
so than in any concurrent system.

One implication of the concurrent object model is that objects are larger than in the
traditional single execution thread approach, because of the overhead of having each
object as a separate thread of execution. Overheads such as the need for a scheduler
to handling these execution threads and resource allocation mechanisms mean that
it is not feasible to have integers, characters, etc. as separate processes.

38.8 Threads V Processes

As part of this discussion it is useful to understand what is meant by a process. A
process is an instance of a computer program that is being executed by the operating
system. Any process has three key elements; the program being executed, the data
used by that program (such as the variables used by the program) and the state of the
process (also known as the execution context of the program).

A (Python) thread is a preemptive lightweight process.
A thread is considered to be pre-emptive because every thread has a chance to run

as the main thread at some point. When a thread gets to execute then it will execute
until.

• completion,
• until it is waiting for some form of I/O (Input/Output),
• sleeps for a period of time,
• it has run for 15 ms (the current threshold in Python 3).

If the thread has not completed when one of the above situations occurs, then it
will give up being the executing thread and another thread will be run instead. This
means that one thread can be interrupted in the middle of performing a series of
related steps.

A thread is a considered a lightweight process because it does not possess its own
address space and it is not treated as a separate entity by the host operating system.
Instead, it exists within a single machine process using the same address space.

It is useful to get a clear idea of the difference between a thread (running within
a single machine process) and a multiprocess system that uses separate processes on
the underlying hardware.

430 38 Introduction to Concurrency and Parallelism

38.9 Some Terminology

The world of concurrent programming is full of terminology that you may not be
familiar with. Some of those terms and concepts are outlined below:

• Asynchronous versus Synchronous invocations. Most of the method, func-
tion or procedure invocations you will have seen in programming represent
synchronous invocations. A synchronous method or function call is one which
blocks the calling code from executing until it returns. Such calls are typically
within a single thread of execution. Asynchronous calls are ones where the flow
of control immediately returns to the callee, and the caller is able to execute in
its own thread of execution. Allowing both the caller and the call to continue
processing.

• Non-blocking versus Blocking code. Blocking code is a term used to describe
the code running in one thread of execution, waiting for some activity to complete
which causes one of more separate threads of execution to also be delayed. For
example, if one thread is the producer of some data and other threads are the
consumers of that data, then the consumer threads cannot continue until the
producer generates the data for them to consume. In contrast, non-blocking means
that no thread is able to indefinitely delay others.

• Concurrent versus Parallel code. Concurrent code and parallel code are similar,
but different in one significant aspect. Concurrency indicates that two or more
activities are both making progress even though they might not be executing
at the same point in time. This is typically achieved by continuously swap-
ping competing processes between execution and non-execution. This process
is repeated until at least one of the threads of execution (Threads) has completed
their task. This may occur because two threads are sharing the same physical
processor with each is being given a short time period in which to progress before
the other gets a short time period to progress. The two threads are said to be
sharing the processing time using a technique known as time slicing. Parallelism
on the other hand implies that there are multiple processors available allowing
each thread to execute on their own processor simultaneously.

38.10 Online Resources

• See the following online resources for information on the topics in this chapter:
• https://en.wikipedia.org/wiki/Concurrency_(computer_science). Wikipedia page

on concurrency.
• https://en.wikipedia.org/wiki/Virtual_machine. Wikipedia page on Virtual

Machines.
• https://en.wikipedia.org/wiki/Parallel_computing. Wikipedia page on paral-

lelism.

https://en.wikipedia.org/wiki/Concurrency_(computer_science
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Parallel_computing

38.10 Online Resources 431

• http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.
html.Concurrency versus Parallelism tutorial.

• https://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf. IBM Red Book on
an Introduction to Grid Computing.

http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html
http://tutorials.jenkov.com/java-concurrency/concurrency-vs-parallelism.html
https://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf

Chapter 39
Threading

39.1 Introduction

Threading is one of the ways in which Python allows you to write programs that
multitask; that is appearing to do more than one thing at a time.

This chapter presents the threading module and uses a short example to illustrate
how these features can be used.

39.2 Threads

In Python the Thread class from the threading module represents an activity that
is run in a separate thread of execution within a single process. These threads of
execution are lightweight, pre-emptive execution threads. A thread is a lightweight
process because it does not possess its own address space, and it is not treated as
a separate entity by the host operating system; it is not a process. Instead, it exists
within a single machine process using the same address space as other threads.

39.2.1 Thread States

When a thread object is first created it exists, but it is not yet schedulable; it must be
started. Once it has been started it is then runnable; that is, it is eligible to be scheduled
for execution. It may switch back and forth between running and being runnable under
the control of the scheduler. The scheduler is responsible for managing multiple
threads that all wish to grab some execution time.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_39&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_39

434 39 Threading

A thread object remains runnable or running until its run() method terminates;
at which point it has finished its execution and it is now dead. All states between
unstarted and dead are considered to indicate that the thread is alive (and therefore
may run at some point). This is shown below:

A thread may also be in the waiting state; for example, when it is waiting for
another thread to finish its work before continuing (possibly because it needs the
results produced by that thread to continue). This can be achieved using the join()
method and is also illustrated above. Once the second thread completes the waiting
thread will again become runnable.

The thread which is currently executing is termed the active thread.
There are a few points to note about thread states:

• A thread is considered to be alive unless its run() method terminates after which
it can be considered dead.

• A live thread can be running, runnable, waiting, etc.
• The runnable state indicates that the thread can be executed by the processor,

but it is not currently executing. This is because an equal or higher priority process
is already executing, and the thread must wait until the processor becomes free.
Thus the diagram shows that the scheduler can move a thread between the running
and runnable state. In fact, this could happen many times as the thread executes
for a while, is then removed from the processor by the scheduler and added to the
waiting queue, before being returned to the processor again at a later date.

39.2.2 Creating a Thread

There are two ways in which to initiate a new thread of execution:

• Pass a reference to a callable object (such as a function or method) into the Thread
class constructor. This reference acts as the target for the Thread to execute.

39.2 Threads 435

• Create a subclass of the Thread class and redefine the run() method to perform
the set of actions that the thread is intended to do.

We will look at both approaches.
As a thread is an object, it can be treated just like any other object: it can be

sent messages, it can have instance variables and it can provide methods. Thus,
the multithreaded aspects of Python all conform to the object-oriented model. This
greatly simplifies the creation of multithreaded systems as well as the maintainability
and clarity of the resulting software.

Once a new instance of a thread is created, it must be started. Before it is started,
it cannot run, although it exists.

39.2.3 Instantiating the Thread Class

The Thread class can be found in the threading module and therefore must be
imported prior to use. The class Thread defines a single constructor that takes up
to six optional arguments:

class threading.Thread(group=None,
target=None,
name=None,
args=(),
kwargs={},
daemon=None)

The Thread constructor should always be called using keyword arguments; the
meaning of these arguments is:

• group should be None; reserved for future extension when a ThreadGroup class
is implemented.

• target is the callable object to be invoked by the run() method. Defaults to
None, meaning nothing is called.

• name is the thread name. By default, a unique name is constructed of the form
“Thread-N” where N is an integer.

• args is the argument tuple for the target invocation. Defaults to (). If a single
argument is provided the tuple is not required. If multiple arguments are provided
then each argument is an element within the tuple.

• kwargs is a dictionary of keyword arguments for the target invocation. Defaults
to {}.

• daemon indicates whether this thread runs as a daemon thread or not. If not None,
daemon explicitly sets whether the thread is daemonic. If None (the default), the
daemonic property is inherited from the current thread.

Once a Thread is created it must be started to become eligible for execution
using the Thread.start() method.

436 39 Threading

The following illustrates a very simple program that creates a Thread that will
run the simple_worker() function:

from threading import Thread

def simple_worker():
print('hello')

Create a new thread and start it
The thread will run the function simple_worker
t1 = Thread(target=simple_worker)
t1.start()

In this example, the thread t1 will execute the function simple_worker.
The main code will be executed by the main thread that is present when the program
starts; there are thus two threads used in the above program; main and t1.

39.3 The Thread Class

The Thread class defines all the facilities required to create an object that can
execute within its own lightweight process. The key methods are:

• start() Start the thread’s activity. It must be called at most once per thread
object. It arranges for the object’s run() method to be invoked in a separate
thread of control. This method will raise a RuntimeError if called more than
once on the same thread object.

• run()Method representing the thread’s activity. You may override this method
in a subclass. The standard run() method invokes the callable object passed
to the object’s constructor as the target argument, if any, with positional and
keyword arguments taken from the args and kwargs arguments, respectively.
You should not call this method directly.

• join(timeout = None) Wait until the thread sent this message terminates.
This blocks the calling thread until the thread whose join()method is called
terminates. When the timeout argument is present and not None, it should be
a floating-point number specifying a timeout for the operation in seconds (or
fractions thereof). A thread can be join()ed many times.

• name A string used for identification purposes only. It has no semantics. Multiple
threads may be given the same name. The initial name is set by the constructor.
Giving a thread a name can be useful for debugging purposes.

• ident The ‘thread identifier’ of this thread or None if the thread has not been
started. This is a nonzero integer.

• is_alive() Return whether the thread is alive. This method returns True just
before the run() method starts until just after the run() method terminates.
The module function threading.enumerate() returns a list of all alive
threads.

39.3 The Thread Class 437

• daemon A Boolean value indicating whether this thread is a daemon thread
(True) or not (False). This must be set before start() is called, otherwise
a RuntimeError is raised. Its default value is inherited from the creating thread.
The entire Python program exits when no alive non-daemon threads are left.

An example illustrating using some of these methods is given below:

from threading import Thread

def simple_worker():
print('hello')

t1 = Thread(target=simple_worker)
t1.start()

print(t1.name)
print(t1.ident)
print(t1.is_alive())

This produces:

Hello
Thread-1 (simple_worker)
123145398558720
True

The join() method can cause one thread to wait for another to complete. For
example, if we want the main thread to wait until a thread completes before it prints
the done message; then we can make it join that thread:

from threading import Thread
from time import sleep

def worker():
for i in range(0, 10):

print('.', end='', flush=True)
sleep(1)

print('Starting')
Create read object with reference to worker function
t = Thread(target=worker)
Start the thread object

t.start()
Wait for the thread to complete

t.join()

print('\nDone')

Now the ‘Done’ message should not be printed out until after the worker thread
has finished as shown below:

Starting
..........
Done

438 39 Threading

39.4 The Threading Module Functions

There are a set of threading module functions which support working with
threads; these functions include:

• threading.active_count() Return the number of Thread objects
currently alive. The returned count is equal to the length of the list returned by
enumerate().

• threading.current_thread() Return the current Thread object, corre-
sponding to the caller’s thread of control. If the caller’s thread of control was not
created through the threading module, a dummy thread object with limited
functionality is returned.

• threading.get_ident() Return the ‘thread identifier’ of the current thread.
This is a nonzero integer. Thread identifiers may be recycled when a thread exits
and another thread is created.

• threading.enumerate()Return a list of all Thread objects currently alive.
The list includes daemon threads, dummy thread objects created by current_
thread() and the main thread. It excludes terminated threads and threads that
have not yet been started.

• threading.main_thread()Return the main Thread object.

39.5 Passing Arguments to a Thread

Many functions expect to be given a set of parameter values when they are run; these
arguments still need to be passed to the function when they are run via a separate
thread. These parameters can be passed to the function to be executed via the args
parameter, for example:

from threading import Thread
from time import sleep

def worker(msg):
for i in range(0, 10):

print(msg, end='', flush=True)
sleep(1)

print('Starting')
t1 = Thread(target=worker, args='A')
t2 = Thread(target=worker, args='B')
t3 = Thread(target=worker, args='C')
t1.start()
t2.start()
t3.start()

print('Done')

In this example, the worker function takes a message to be printed 10 times within
a loop. Inside the loop the thread will print the message and then sleep for a second.

39.5 Passing Arguments to a Thread 439

This allows other threads to be executed as the thread must wait for the sleep timeout
to finish before again becoming runnable.

Three threads t1, t2 and t3 are then created each with a different message. Note
that the worker() function can be reused with each thread as each invocation of
the function will have its own parameter values passed to it.

The three threads are then started. This means that at this point there is the main
thread, and three worker threads that are runnable (although only one thread will run
at a time). The three worker threads each run the worker() function printing out
either the letter A, B or C ten times. This means that once started each thread will
print out a string, sleep for 1 s and then wait until it is selected to run again, this is
illustrated in the following diagram:

The output generated by this program is illustrated below:

Starting
ABCDone
BACBACBCABCABACCBACABCABCAB

Notice that the main thread is finished after the worker threads have only printed
out a single letter each; however as long as there is at least one non-daemon thread
running the program will not terminate; as none of these threads are marked as a
daemon thread the program continues until the last thread has finished printing out
the tenth of its letters.

440 39 Threading

Also notice how each of the threads gets a chance to run on the processor before
it sleeps again; thus we can see the letters A, B and C all mixed in together.

39.6 Extending the Thread Class

The second approach to creating a Thread mentioned earlier was to subclass the
Thread class. To do this you must.

1. Define a new subclass of Thread.
2. Override the run() method.
3. Define a new __init__() method that calls the parent class __init__()

method to pass the required parameters up to the Thread class constructor.

This is illustrated below where the WorkerThread class passes the name,
target and daemon parameters up to the Thread super class constructor.

from threading import Thread
from time import sleep

class WorkerThread(Thread):
def __init__(self, daemon=None, target=None, name=None):

super().__init__(daemon=daemon, target=target,
name=name)

def run(self):
for i in range(0, 10):

print('.', end='', flush=True)
sleep(1)

Once you have done this you can create an instance of the new WorkerThread
class and then start that instance.

print('Starting')
t = WorkerThread()
t.start()
print('\nDone')

39.7 Daemon Threads 441

The output from this is:

Starting
.
Done
.........

Note that it is common to call any subclasses of the Thread class,
SomethingThread, to make it clear that it is a subclass of the Thread class
and should be treated as if it was a Thread (which of course it is).

39.7 Daemon Threads

A thread can be marked as a daemon thread by setting the daemon property to true
either in the constructor or latter via the accessor property.

For example:

from threading import Thread
from time import sleep

def worker(msg):
for i in range(0, 10):

print(msg, end='', flush=True)
sleep(1)

print('Starting')

Create a daemon thread
d = Thread(daemon=True, target=worker, args='C')
d.start()

sleep(5)
print('Done')

This creates a background daemon thread that will run the function worker().
Such threads are often used for housekeeping tasks (such as background data backups,
etc.).

As mentioned above a daemon thread is not enough on its own to keep the current
program from terminating. This means that the daemon thread will keep looping until
the main thread finishes. As the main thread sleeps for 5 s that allows the daemon
thread to print out about 5 strings before the main thread terminates. This is illustrated
by the output below:

Starting
CCCCCDone

442 39 Threading

39.8 Naming Threads

Threads can be named, which can be very useful when debugging an application
with multiple threads.

In the following example, three threads have been created; two have been
explicitly given a name related to what they are doing while the middle one
has been left with the default name. We then start all three threads and use the
threading.enumerate() function to loop through all the currently live threads
printing out their names:

import threading
from threading import Thread
from time import sleep

def worker(msg):
for i in range(0, 10):

print(msg, end='', flush=True)
sleep(1)

t1 = Thread(name='worker', target=worker, args='A')
t2 = Thread(target=worker, args='B') # use default name e.g.
Thread-1
d = Thread(daemon = True, name='daemon', target=worker, args='C')

t1.start()
t2.start()
d.start()

print()
for t in threading.enumerate():
print(t.name)

The output from this program is given below:

ABC
MainThread
worker
Thread-1 (worker)
daemon
ACBACBACBACBACBABCACBCABABC

As you can see in addition to the worker thread and the daemon thread there is
a MainThread (that initiates the whole program) and Thread-1 which is the
thread referenced by the variable t2 and uses the default thread name.

39.9 Thread Local Data

In some situations each Thread requires its own copy of the data it is working with;
this means that the shared (heap) memory is difficult to use as it is inherently shared
between all threads.

39.9 Thread Local Data 443

To overcome this Python provides a concept known as Thread Local data.
Thread local data is data whose values are associated with a thread rather than

with the shared memory. This idea is illustrated below:

To create thread local data it is only necessary to create an instance of
threading.local (or a subclass of this) and store attributes into it. The instances
will be thread specific, meaning that one thread will not see the values stored by
another thread.

For example:

from threading import Thread, local, current_thread
from random import randint

def show_value(data):
try:

val = data.value
except AttributeError:

print(current_thread().name, '- No value yet')
else:

print(current_thread().name, '- value =', val)

def worker(data):
show_value(data)
data.value = randint(1, 100)
show_value(data)

print(current_thread().name, '- Starting')

Create thread local data object
local_data = local()
show_value(local_data)

for i in range(2):
t = Thread(name='W'+ str(i),

target=worker, args=[local_data])

444 39 Threading

t.start()

show_value(local_data)
print(current_thread().name, '- Done')

The output from this is.

MainThread - Starting
MainThread - No value yet
W0 - No value yet
W0 - value = 43
W1 - No value yet
W1 - value = 75
MainThread - No value yet
MainThread - Done

The example presented above defines two functions.

• The first function attempts to access a value in the thread local data object. If the
value is not present an exception is raised (AttributeError). The show_
value() function catches the exception or successfully processes the data.

• The worker function calls show_value() twice, once before it sets a value in
the local data object and once after. As this function will be run by separate threads,
the current_thread name is printed by the show_value() function.

The main function creates a local data object using the local() function from
the threading library. It then calls show_value() itself. Next it creates two threads
to execute the worker function in passing the local_data object into them; each
thread is then started. Finally, it calls show_value() again.

As can be seen from the output one thread cannot see the data set by another
thread in the local_data object (even when the attribute name is the same).

39.10 Timers

The Timer class represents an action (or task) to run after a certain amount of time
has elapsed. The Timer class is a subclass of Thread and as such also functions
as an example of creating custom threads.

39.11 The Global Interpreter Lock 445

Timers are started, as with threads, by calling their start()method. The timer
can be stopped (before its action has begun) by calling the cancel() method. The
interval the timer will wait before executing its action may not be exactly the same
as the interval specified by the user as another thread may be running when the timer
wishes to start.

The signature of the Timer class constructor is:

Timer(interval, function, args=None, kwargs=None)

An example of using the Timer class is given below:

from threading import Timer

def hello():
print('hello')

print('Starting')
t = Timer(5, hello)
t.start()

print('Done')

In this case the Timer will run the hello function after an initial delay of 5 s. The
output is:

Starting
Done
hello

However, when you run this you will notice that the hello is printed some 5 s after
the ‘Done’ string is printed.

39.11 The Global Interpreter Lock

The Global Interpreter Lock (or the GIL) is a global lock within the underlying
CPython interpreter that was designed to avoid potential deadlocks between multiple
tasks. It is designed to protect access to Python objects by preventing multiple threads
from executing at the same time.

For the most part you do not need to worry about the GIL as it is at a lower level
than the programs you will be writing.

However, it is worth noting that the GIL is controversial because it prevents
multithreaded Python programs from taking full advantage of multiprocessor systems
in certain situations.

446 39 Threading

This is because in order to execute a thread must obtain the GIL and only one
thread at a time can hold the GIL (that is the lock it represents). This means that
Python acts like a single CPU machine; only one thing can run at a time. A Thread
will only give up the GIL if it sleeps, has to wait for something (such as some I/O) or
it has held the GIL for a certain amount of time. If the maximum time that a thread
can hold the GIL has been met the scheduler will release the GIL from that thread
(resulting it stopping execution and now having to wait until it has the GIL returned
to it) and will select another thread to gain the GIL and start to execute.

It is thus impossible for standard Python threads to take advantage of the multiple
CPUs typically available on modern computer hardware.

One solution to this is to use the Python multiprocessing library described
in the next chapter.

39.12 Online Resources

See the following online resources for information on the topics in this chapter:

• https://docs.python.org/3/library/threading.html. The Python standard Library
documentation on Threading.

• https://pymotw.com/3/threading/. The Python Module of the Week page on
Threading.

• https://pythonprogramming.net/threading-tutorial-python/. Tutorial on Python’s
Threading module.

39.13 Exercise

Create a function called printer() that takes a message and a maximum value to
use for a period to sleep.

Within the function create a loop that iterates 10 times. Within the loop.

• generate a random number from 0 to the max period specified and then sleep for
that period of time. You can use the random.randint() function for this.

• Once the sleep period has finished print out the message passed into the function.
• Then loop again until this has been repeated 10 times.

Now create five threads to run five invocations of the function you produced above
and start all five threads. Each thread should have a different max_sleep time.

An example program to run the printer function five times via a set of Threads is
given below:

t1 = Thread(target=printer, args=('A', 10))
t2 = Thread(target=printer, args=('B', 5))
t3 = Thread(target=printer, args=('C', 15))
t4 = Thread(target=printer, args=('D', 7))

https://docs.python.org/3/library/threading.html
https://pymotw.com/3/threading/
https://pythonprogramming.net/threading-tutorial-python/

39.13 Exercise 447

t5 = Thread(target=printer, args=('E', 2))

t1.start()
t2.start()
t3.start()
t4.start()
t5.start()

An example of the sort of output this could generate is given below:

BAEAEABEDAEAEBEDCECBEEEADCDBBDABCADBBDABADCDCDCCCC

Chapter 40
MultiProcessing

40.1 Introduction

The multiprocessing library supports the generation of separate (operating
system level) processes to execute behaviour (such as functions or methods) using
an API that is similar to the Threading API presented in the last chapter.

It can be used to avoid the limitation introduced by the Global Interpreter Lock (the
GIL) by using separate operating system processes rather than lightweight threads
(which run within a single process).

This means that the multiprocessing library allows developers to fully
exploit the multiple processor environment of modern computer hardware which
typically has multiple processor cores allowing multiple operations/behaviours to
run in parallel; this can be very significant for data analytics, image processing,
animation and games applications.

The multiprocessing library also introduces some new features, most notably
the Pool object for parallelising execution of a callable object (e.g., functions and
methods) that has no equivalent within the Threading API.

40.2 The Process Class

The Process class is the multiprocessing library’s equivalent to the Thread
class in the threading library. It can be used to run a callable object such as a
function in a separate process. To do this it is necessary to create a new instance of the
Process class and then call the start() method on it. Methods such as join()
are also available so that one process can wait for another process to complete before
continuing, etc.

The main difference is that when a new Process is created it runs within a
separate process on the underlying operating systems (such as Window, Linux or Mac

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_40&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_40

450 40 MultiProcessing

OS). In contrast a Thread runs within the same process as the original program.
This means that the process is managed and executed directly by the operating system
on one of the processors that are part of the underlying computer hardware.

The up side of this is that you are able to exploit the underlying parallelism inherent
in the physical computer hardware. The downside is that a Process takes more
work to set up than the lighter weight Threads.

The constructor for the Process class provides the same set of arguments as the
Thread class, namely:

class multiprocessing.Process(group=None,
target=None,
name=None,
args=(),
kwargs={},
daemon=None)

• group should always be None; it exists solely for compatibility with the
Threading API.

• target is the callable object to be invoked by the run() method. It defaults
to None, meaning nothing is called.

• name is the process name.
• args is the argument tuple for the target invocation.
• kwargs is a dictionary of keyword arguments for the target invocation.
• daemon argument sets the process daemon flag to True or False. If None (the

default), this flag will be inherited from the creating process.

As with the Thread class, the Process constructor should always be called
using keyword arguments.

The Process class also provides a similar set of methods to the Thread class:

• start() Start the process’s activity. This must be called at most once per
process object. It arranges for the object’s run() method to be invoked in a
separate process.

• join([timeout]) If the optional argument timeout is None (the default),
the method blocks until the joined process terminates. If timeout is a positive
number, it blocks at most timeout seconds. Note that the method returns None if
its process terminates or if the method times out.

• is_alive() Return whether the process is alive. Roughly, a process object
is alive from the moment the start() method returns until the child process
terminates.

40.3 Working with the Process Class 451

The process class also has several attributes:

• name The process’s name. The name is a string used for identification purposes
only. It has no semantics. Multiple processes may be given the same name. It can
be useful for debugging purposes.

• daemon The process’s daemon flag, a Boolean value. This must be set
beforestart() is called. The default value is inherited from the creating process.
When a process exits, it attempts to terminate all of its daemonic child processes.
Note that a daemonic process is not allowed to create child processes.

• pid Return the process ID. Before the process is spawned, this will be None.
• exitcode The process exit code. This will be None if the process has not

yet terminated. A negative value -N indicates that the child was terminated by
signal N.

In addition to these methods and attributes, the Process class also defines
additional process related methods including:

• terminate() Terminate the process.
• kill() Same as terminate() except that on Unix the SIGKILL signal is

used instead of the SIGTERM signal.
• close() Close the Process object, releasing all resources associated

with it. ValueError is raised if the underlying process is still running.
Once close() returns successfully, most of the other methods and attributes
of the Process object will raise a ValueError.

40.3 Working with the Process Class

The following simple program creates threeProcess objects; each runs the function
worker(), with the string arguments A, B and C respectively. These three process
objects are then started using the start() method.

from multiprocessing import Process, set_start_method
from time import sleep

def worker(msg):
for _ in range(0, 10):

print(msg, end=”, flush=True)
sleep(1)

if __name__ == ’__main__’:
print(’Starting’)
set_start_method(’spawn’)

t2 = Process(target=worker, args=’A’)
t3 = Process(target=worker, args=’B’)
t4 = Process(target=worker, args=’C’)

t2.start()
t3.start()

452 40 MultiProcessing

t4.start()

print(’Done’)

It is essentially the same as the equivalent program for threads but with the
Process class being used instead of the Thread class.

The output from this application is given below:

Starting
Done
ABCABCABCABCABCABCABCACBACBACB

The main difference between the Thread and Process versions is that the
Process version runs the worker function in separate processes, whereas in the Thread
version all the Threads share the same process.

However, there are two additional points to note, the first is that we have had to
set the start method. In this case the value is set to ‘spawn’. This is because when the
start(0 method is called on a process, there are three different approaches/methods
that can be used to start the underlying process, these are:

• ‘spawn’ The parent process starts a fresh Python interpreter process (that is it
spawns a new process in OS terminology).

• ‘fork’ The parent process uses os.fork() to fork the Python interpreter.
• ‘forkserver’ In this case a server process is started. From then on, whenever a new

process is needed, the parent process connects to the server and requests that it
fork a new process.

The set_start_method() should be used to set approach.
The second thing to note is that we are using the if __name__==‘__main__

’: pattern or idiom in this program. If you don’t do this you will get a RuntimeError
indicating that the context has already been set. This is related to the file be parsed each
time by each process, and attempting to run the processes multiple times, whereas
we only want the main body of the program to be run once with each subprocess
only needing to load the definition of the worker function. This is ensured using the
if __name__==‘__main__’ pattern. If you fail to do this then you will get an
output similar to:

Starting
Done
Starting
Starting
Starting
Traceback (most recent call last):

File "<string>", line 1, in <module>
…
raise RuntimeError(’context has already been set’)
raise RuntimeError(’context has already been set’)
raise RuntimeError(’context has already

been set’)RuntimeError
: context has already been set
RuntimeError: context has already been set
RuntimeError: context has already been set

40.4 Alternative Ways to Start a Process 453

40.4 Alternative Ways to Start a Process

Returning to the different ways to spawn a process, we should consider the underlying
operating system and what these mean to it:

• ‘spawn’ The parent process starts a fresh Python interpreter process. The child
process will only inherit those resources necessary to run the process objects run()
method. In particular, unnecessary file descriptors and handles from the parent
process will not be inherited. Starting a process using this method is rather slow
compared to using fork or forkserver. Available on Unix and Windows.

• ‘fork’ The parent process uses os.fork() to fork the Python interpreter. The
child process, when it begins, is effectively identical to the parent process. All
resources of the parent are inherited by the child process. Available only on Unix
type operating systems.

• ‘forkserver’ In this case a server process is started. From then on, whenever
a new process is needed, the parent process connects to the server and requests
that it fork a new process. The fork server process is single threaded so it is safe
for it to use os.fork(). No unnecessary resources are inherited. Available on
Unix style platforms which support passing file descriptors over Unix pipes.

The set_start_method() should be used to set the start method (and this
should only be set once within a program).

This is illustrated below, where the spawn start method is specified:

from multiprocessing import Process
from multiprocessing import set_start_method
from time import sleep
import os

def worker(msg):
print(’module name:’, __name__)
print(’parent process:’, os.getppid())
print(’process id:’, os.getpid())
for i in range(0, 10):

print(msg, end=”, flush=True)
sleep(1)

def main():
print(’Starting’)
print(’Root application process id:’, os.getpid())
set_start_method(’spawn’)
t = Process(target=worker, args=’A’)
t.start()

print(’Done’)

if __name__ == ’__main__’:
main()

The output from this is shown below:

Starting

454 40 MultiProcessing

Root application process id: 23417
Done
module name: __mp_main__
parent process: 23417
process id: 23419
AAAAAAAAAA

Note that the parent process and current process ids are printed out for the
worker() function, while the main() method prints out only its own id. This
shows that the main application process id is the same as the worker process parents’
id.

Alternatively, it is possible to use the get_context() method to obtain a
context object. Context objects have the same API as the multiprocessing
module and allow you to use multiple start methods in the same program, for example:

ctx = multiprocessing.get_context(’spawn’)
q = ctx.Queue()
p = ctx.Process(target=foo, args=(q,))

40.5 Using a Pool

Creating Processes is expensive in terms of computer resources. It would therefore
be useful to be able to reuse processes within an application. The Pool class provides
such reusable processes.

The Pool class represents a pool of worker processes that can be used to perform
a set of concurrent, parallel operations. The Pool provides methods which allow
tasks to be offloaded to these worker processes.

The Pool class provides a constructor which takes a number of arguments:

class multiprocessing.pool.Pool(processes,
initializer, initargs,
maxtasksperchild,
context)

40.5 Using a Pool 455

These represent:

• processes is the number of worker processes to use. If processes is None then
the number returned by os.cpu_count() is used.

• initializer If initializer is not None then each worker process will
call initializer(*initargs) when it starts.

• maxtasksperchild is the number of tasks a worker process can complete
before it will exit and be replaced with a fresh worker process, to enable unused
resources to be freed. The default maxtasksperchild is None, which means
worker processes will live as long as the pool.

• context can be used to specify the context used for starting
the worker processes. Usually a pool is created using the func-
tion multiprocessing.Pool(). Alternatively the pool can be created
using the Pool() method of a context object.

The Pool class provides a range of methods that can be used to submit work
to the worker processes managed by the pool. Note that the methods of the Pool
object should only be called by the process which created the pool.

The following diagram illustrates the effect of submitting some work or task to
the pool. From the list of available processes, one process is selected and the task
is passed to the process. The process will then execute the task. On completion any
results are returned and the process is returned to the available list. If when a task is
submitted to the pool there are no available processes then the task will be added to
a wait queue until such time as a process is available to handle the task.

The simplest of the methods provided by the Pool for work submission is the
map method:

pool.map(func, iterable, chunksize=None)

456 40 MultiProcessing

This method returns a list of the results obtained by executing the function in
parallel against each of the items in the iterable parameter.

• The func parameter is the callable object to be executed (such as a function or
a method).

• The iteratable is used to pass in any parameters to the function.
• This method chops the iterable into a number of chunks which it submits to the

process pool as separate tasks. The (approximate) size of these chunks can be
specified by setting chunksize to a positive integer. The method blocks until
the result is ready.

The following sample program illustrates the basic use of the Pool and the
map() method.

from multiprocessing import Pool

def worker(x):
print(’In worker with: ’, x)
return x * x

def main():
with Pool(processes=4) as pool:

print(pool.map(worker, [0, 1, 2, 3, 4, 5]))

if __name__ == ’__main__’:
main()

Note that the Pool object must be closed once you have finished with it; we are
therefore using the ‘with as’ statement described earlier in this book to handle
the Pool resource cleanly (it will ensure the Pool is closed when the block of code
within the with as statement is completed).

The output from this program is.

In worker with: 0
In worker with: 1
In worker with: 2
In worker with: 3
In worker with: 4
In worker with: 5
[0, 1, 4, 9, 16, 25]

As can be seen from this output the map() function is used to run six different
instances of the worker() function with the values provided by the list of integers.
Each instance is executed by a worker process managed by the Pool.

However, note that the Pool only has 4 worker processes, this means that the last
two instances of the worker function must wait until two of the worker Processes
have finished the work they are doing and can be reused. This can act as a way of
throttling, or controlling, how much work is done in parallel.

A variant on the map() method is the imap_unordered() method. This
method also applies a given function to an iterable but does not attempt to main-
tain the order of the results. The results are accessible via the iterable returned by
the function. This may improve the performance of the resulting program.

40.5 Using a Pool 457

The following program modified the worker() function to return its result
rather than print it. These results are then accessible by iterating over them as they
are produced via a for loop:

from multiprocessing import Pool

def worker(x):
print(’In worker with: ’, x)
return x * x

def main():
with Pool(processes=4) as pool:

for result in pool.imap_unordered(worker,
[0, 1, 2, 3, 4, 5]):

print(result)

if __name__ == ’__main__’:
main()

As the new method obtains results as soon as they are available, the order in which
the results are returned may be different, as shown below:

In worker with: 0
In worker with: 1
In worker with: 3
In worker with: 2
In worker with: 4
In worker with: 5
0
1
9
16
4
25

A further method available on the Pool class is the Pool.apply_async()
method. This method allows operations/functions to be executed asynchronously
allowing the method calls to return immediately. That is as soon as the method call is
made, control is returned to the calling code which can continue immediately. Any
results to be collected from the asynchronous operations can be obtained either by
providing a callback function or by using the blocking get() method to obtain a
result.

Two examples are shown below, the first uses the blocking get() method. This
method will wait until a result is available before continuing. The second approach
uses a callback function. The callback function is called when a result is available;
the result is passed into the function. Note that if we do not wait for the pool to finish
what it is doing then the callback function might never be called as the program (as
it is so short) may well have terminated. We there join() the pool which will block
the main program until the pool closes after it finishes all the current tasks.

from multiprocessing import Pool

458 40 MultiProcessing

def collect_results(result):
print(’In collect_results: ’, result)

def worker(x):
print(’In worker with: ’, x)
return x * x

def main():
with Pool(processes=2) as pool:

get based example
res = pool.apply_async(worker, [6])
print(’Result from async: ’, res.get(timeout=1))

callback based example
pool = Pool(processes=2)
pool.apply_async(worker, args=[4], callback=collect_results)
pool.close()
Need to wait for asynchronous process to complete
pool.join()

if __name__ == ’__main__’:
main()

The output from this is:

In worker with: 6
Result from async: 36
In worker with: 4
In collect_results: 16

40.6 Exchanging Data Between Processes

In some situations it is necessary for two processes to exchange data. However, the
two process objects do not share memory as they are running in separate operating
system level processes. To get around this the multiprocessing library provides the
Pipe() function.

The Pipe() function returns a pair of connection.Connection objects
connected by a pipe which by default is duplex (two-way).

The two connection objects returned by Pipe() represent the two ends of the
pipe. Each connection object has send() and recv() methods (amongst others).
This allows one process to send data via the send() method of one end of the
connection object. In turn a second process can receive that data via the receive()
method of the other connection object. This is illustrated below:

40.6 Exchanging Data Between Processes 459

Once a program has finished with a connection is should be closed using
close().

The following program illustrates how pipe connections are used:

from multiprocessing import Process, Pipe
from time import sleep

def worker(conn):
print(’Worker - started now sleeping for 1 second’)
sleep(1)
print(’Worker - sending data via Pipe’)
conn.send(’hello’)
print(’Worker - closing worker end of connection’)
conn.close()

def main():
print(’Main - Starting, creating the Pipe’)
main_connection, worker_connection = Pipe()
print(’Main - Setting up the process’)
p = Process(target=worker, args=[worker_connection])
print(’Main - Starting the process’)
p.start()
print(’Main - Wait for a response from the child process’)
print(main_connection.recv())
print(’Main - closing parent process end of connection’)
parent_connection.close()
print(’Main - Done’)

if __name__ == ’__main__’:
main()

460 40 MultiProcessing

The output from this Pipe example is:

Main - Starting, creating the Pipe
Main - Setting up the process
Main - Starting the process
Main - Wait for a response from the child process
Worker - started now sleeping for 1 second
Worker - sending data via Pipe
Worker - closing worker end of connection
hello
Main - closing parent process end of connection
Main - Done

Note that data in a pipe may become corrupted if two processes try to read from
or write to the same end of the pipe at the same time. However, there is no risk of
corruption from processes using different ends of the pipe at the same time.

40.7 Sharing State Between Processes

In general, if it can be avoided, then you should not share state between sepa-
rate processes. However, if it is unavoidable then the mutiprocessing library
provides two ways in which state (data) can be shared, these are shared memory (as
supported by multiprocessing.Value and multiprocessing.Array)
and server process.

40.7.1 Process Shared Memory

Data can be stored in a shared memory map using a multiprocessing.Value
or multiprocessing.Array. This data can be accessed by multiple processes.

The constructor for the multiprocessing.Value type is:

multiprocessing.Value(typecode_or_type, *args, lock=True)

where

• typecode_or_type determines the type of the returned object: it is either
a ctypes type or a one character typecode. For example, ‘d’ indicates a double
precision float and ‘i’ indicates a signed integer.

• *args is passed on to the constructor for the type.
• lock If lock is True (the default) then a new recursive lock object is created

to synchronise access to the value. If lock is False then access to the returned
object will not be automatically protected by a lock, so it will not necessarily be
process-safe.

40.8 Online Resources 461

The constructor for multiprocessing.Array is.

multiprocessing.Array(typecode_or_type,
size_or_initializer,
lock=True)

where

• typecode_or_type determines the type of the elements of the returned array.
• size_or_initializer If size_or_initializer is an integer, then it determines

the length of the array, and the array will be initially zeroed. Otherwise, size_or_
initializer is a sequence which is used to initialise the array and whose length
determines the length of the array.

• If lock is True (the default) then a new lock object is created to synchronise
access to the value. If lock is False then access to the returned object will not be
automatically protected by a lock, so it will not necessarily be “process-safe”.

An example using both the Value and Array type is given below:

from multiprocessing import Process, Value, Array

def worker(n, a):
n.value = 3.1415927
for i in range(len(a)):

a[i] = -a[i]

def main():
print(’Starting’)
num = Value(’d’, 0.0)
arr = Array(’i’, range(10))
p = Process(target=worker, args=(num, arr))
p.start()
p.join()
print(num.value)
print(*arr)
print(’Done’)

if __name__ == ’__main__’:
main()

40.8 Online Resources

See the following online resources for information on multiprocessing:

• https://docs.python.org/3/library/multiprocessing.html. The Python standard
Library documentation on MultiProcessing.

• https://pymotw.com/3/multiprocessing. The Python Module of the Week page on
MultiProcessing

• https://pythonprogramming.net/multiprocessing-python-intermediate-python-tut
orial. Tutorial on Python’s MultiProcessing module.

https://docs.python.org/3/library/multiprocessing.html
https://pymotw.com/3/multiprocessing
https://pythonprogramming.net/multiprocessing-python-intermediate-python-tutorial
https://pythonprogramming.net/multiprocessing-python-intermediate-python-tutorial

462 40 MultiProcessing

40.9 Exercises

Using the factorial() function that you wrote earlier in the book, run multiple
factorial calculations in parallel.

Collect all the results together in a list and print that list out.
You can use whichever approach you like to running multiple processes although

a Pool could be a good approach to use.
Your program should compute the factorials of 5, 8, 10, 15, 3, 6, and 4 in parallel.

Chapter 41
Inter Thread/Process Synchronisation

41.1 Introduction

In this chapter we will look at several facilities supported by both the threading
and multiprocessing libraries that allow for synchronisation and cooperation
between threads or processes.

In the remainder of this chapter we will look at some of the ways in which Python
supports synchronisation between multiple threads and processes. Note that most of
the libraries are mirrored between threading and multiprocessing so that the same
basic ideas hold for both approaches with in the main very similar APIs. However,
you should not mix and match threads and processes. If you are using Threads then
you should only use facilities from the threading library. In turn if you are using
Processes than you should only use facilities in the multiprocessing library. The
examples given in this chapter will use one or other of the technologies but are
relevant for both approaches.

41.2 Using a Barrier

Using a threading.Barrier (or multiprocessing.Barrier) is one of
the simplest ways in which the execution of a set of Threads (or Processes) can be
synchronised.

The threads or processes involved in the barrier are known as the parties that are
taking part in the barrier.

Each of the parties in the barrier can work independently until it reaches the
barrier point in the code.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

463

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_41&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_41

464 41 Inter Thread/Process Synchronisation

The barrier represents an end point that all parties must reach before any further
behaviour can be triggered. At the point that all the parties reach the barrier it is
possible to optionally trigger a post-phase action (also known as the barrier callback).
This post-phase action represents some behaviour that should be run when all parties
reach the barrier but before allowing those parties to continue. The post-phase action
(the callback) executes in a single thread (or process). Once it is completed then all
the parties are unblocked and may continue.

This is illustrated in the following diagram. Threads t1, t2 and t3 are all involved
in the barrier. When thread t1 reaches the barrier it must wait until it is released by the
barrier. Similarly when t2 reaches the barrier it must wait. When t3 finally reaches the
barrier the callback is invoked. Once the callback has completed the barrier releases
all three threads which are then able to continue.

An example of using a Barrier object is given below. Note that the function being
invoked in each Thread must also cooperate in using the barrier as the code will run
up to the barrier.wait() method and then wait until all other threads have also
reached this point before being allowed to continue.

The Barrier is a class that can be used to create a barrier object. When the
Barrier class is instantiated, it can be provided with three parameters:

Barrier(parties, action=None, timeout=None)

where

• parties the number of individual parties that will participate in the Barrier.
• action is a callable object (such as a function) which, when supplied, will be

called after all the parties have entered the barrier and just prior to
• releasing them all.
• timeout If a ‘timeout’ is provided, it is used as the default for all subsequent
wait() calls on the barrier.

41.2 Using a Barrier 465

Thus, in the following code.

b = Barrier(3, action=callback)

Indicates that there will be three parties involved in the Barrier and that the
callback function will be invoked when all three reach the barrier (however the
timeout is left as the default value None).

The Barrier object is created outside of the Threads (or Processes) but must be
made available to the function being executed by the Thread (or Process). The easiest
way to handle this is to pass the barrier into the function as one of the parameters; this
means that the function can be used with different barrier objects depending upon
the context.

An example using the Barrier class with a set of Threads is given below:

from threading import Barrier, Thread
from time import sleep
from random import randint

def print_it(msg, barrier):
print(’print_it for:’, msg)
for i in range(0, 10):

print(msg, end=”, flush=True)
sleep(1)

sleep(randint(1, 6))
print(’Wait for barrier with:’, msg)
barrier.wait()
print(’Returning from print_it:’, msg)

def callback():
print(’Callback Executing’)

print(’Main - Starting’)

b = Barrier(3, callback)
t1 = Thread(target=print_it, args=(’A’, b))
t2 = Thread(target=print_it, args=(’B’, b))
t3 = Thread(target=print_it, args=(’C’, b))
t1.start()
t2.start()
t3.start()

print(’Main - Done’)

The output from this is:

Main - Starting
print_it for: A
print_it for: B
print_it for: C
ABC
Main - Done
ABCACBACBABCACBCABACBACBBAC
Wait for barrier with: B
Wait for barrier with: A

466 41 Inter Thread/Process Synchronisation

Wait for barrier with: C
Callback Executing
Returning from print_it: A
Returning from print_it: B
Returning from print_it: C

From this you can see that the print_it() function is run three times concur-
rently; all three invocations reach thebarrier.wait() statement but in a different
order to that in which they were started. Once the three have reached this point the
callback function is executed before the print_it() function invocations can
proceed.

The Barrier class itself provides several methods used to manage or find out
information about the barrier:

Method Description

wait(timeout =
None)

Wait until all threads have notified the barrier (unless timeout is reached)
– returns the number of threads that passed the barrier

reset() Return barrier to default state

abort() Put the barrier into a broken state

parties Return the number of threads required to pass the barrier

n_waiting Number of threads currently waiting

A Barrier object can be reused any number of times for the same number of
Threads.

The above example could easily be changed to run using Process by altering
the import statement and creating a set of Processes instead of Threads. We will
also sent the start method this time to ‘fork’ as ‘spawn’ can cause problems on some
versions of Python on macOS. We will also use the if __name__==‘main’ pattern:

from multiprocessing import Barrier, Process, set_start_method
from time import sleep
from random import randint

def print_it(msg, barrier):
print(’print_it for:’, msg)
for i in range(0, 10):

print(msg, end=”, flush=True)
sleep(1)

sleep(randint(1, 6))
print(’Wait for barrier with:’, msg)
barrier.wait()
print(’Returning from print_it:’, msg)

def callback():
print(’\nCallback Executing’)

41.3 Event Signalling 467

if __name__ == ’__main__’:
print(’Main - Starting’)

set_start_method(’fork’)
barrier = Barrier(3, callback)
p1 = Process(target=print_it, args=(’A’, barrier))
p2 = Process(target=print_it, args=(’B’, barrier))
p3 = Process(target=print_it, args=(’C’, barrier))
p1.start()
p2.start()
p3.start()

print(’Main - Done’)

Note that you should only use threads with a threading.Barrier. In turn you should
only use Processes with a multiprocessing.Barrier.

41.3 Event Signalling

Although the point of using multiple Threads or Processes is to execute separate
operations concurrently, there are times when it is important to be able to allow
two or more Threads or Processes to cooperate on the timing of their behaviour.
The Barrier object presented above is a relatively high-level way to do this;
however, in some cases finer grained control is required. The threading.Event
or multiprocessing.Event classes can be used for this purpose.

An Eventmanages an internal flag that callers can either set() or clear().
Other threads can wait() for the flag to be set(), effectively blocking their own
progress until allowed to continue by the Event. The internal flag is initially set to
False which ensures that if a task gets to the Event before it is set then it must
wait.

You can infact invoke wait with an optional timeout. If you do not include the
optional timeout then wait() will wait forever while wait(timeout) will wait
up to the timeout given in seconds. If the time out is reached, then the wait method
returns False; otherwise wait returns True.

As an example, the following diagram illustrates two processes sharing an event
object. The first process runs a function that waits for the event to be set. In turn the
second process runs a function that will set the event and thus release the waiting
process.

468 41 Inter Thread/Process Synchronisation

The following program implements the above scenario:

from multiprocessing import Process, Event, set_start_method
from time import sleep

def wait_for_event(event):
print(’wait_for_event - Entered and waiting’)
event_is_set = event.wait()
print(’wait_for_event - Event is set: ’, event_is_set)

def set_event(event):
print(’set_event - Entered but about to sleep’)
sleep(5)
print(’set_event - Waking up and setting event’)
event.set()
print(’set_event - Event set’)

if __name__ == ’__main__’:
print(’Main - Starting’)

set_start_method(’fork’)

Create the event object
event = Event()
Start a Process to wait for the event notification
p1 = Process(target=wait_for_event, args=[event])
p1.start()

Set up a process to set the event
p2 = Process(target=set_event, args=[event])
p2.start()

Wait for the first process to complete
p1.join()

print(’Done’)

41.4 Synchronising Concurrent Code 469

The output from this program is:

Main - Starting
wait_for_event - Entered and waiting
set_event - Entered but about to sleep
set_event - Waking up and setting event
set_event - Event set
wait_for_event - Event is set: True
Done

To change this to use Threads we would merely need to change the import and to
create two Threads:

from threading import Thread, Event
...
print(’Starting’)
event = Event()
t1 = Thread(target=wait_for_event, args=[event])
t1.start()
t2 = Thread(target=set_event, args=[event])
t2.start()
t1.join()
print(’Done’)

41.4 Synchronising Concurrent Code

It is not uncommon to need to ensure that critical regions of code are protected from
concurrent execution by multiple Threads or Processes. These blocks of code typi-
cally involve the modification of, or access to, shared data. It is therefore necessary
to ensure that only one Thread or Process is updating a shared object at a time and
that consumer threads or processes are blocked while this update is occurring.

This situation is most common where one or more Threads or Processes are the
producers of data and one or more other Threads or Processes are the consumers of
that data.

This is illustrated in the following diagram.

470 41 Inter Thread/Process Synchronisation

In this diagram the Producer is running in its own Thread (although it could also
run in a separate Process) and places data onto some common shared data container.
Subsequently a number of independent Consumers can consume that data when it is
available and when they are free to process the data. However, there is no point in
the consumers repeatedly checking the container for data as that would be a waste
of resources (for example in terms of executing code on a processor and of context
switching between multiple Threads or Processes).

We therefore need some form of notification or synchronisation between the
Producer and the Consumer to manage this situation.

Python provides several classes in the threading (and also in the
multiprocessing) library that can be used to manage critical code blocks. These
classes include Lock, Condition and Semaphore.

41.5 Python Locks

The Lock class defined (both in the threading and the multiprocessing
libraries) provides a mechanism for synchronising access to a block of code. The
Lock object can be in one of two states locked and unlocked (with the initial state
being unlocked). The Lock grants access to a single thread at a time; other threads
must wait for the Lock to become free before progressing.

The Lock class provides two basic methods for acquiring the lock (acquire())
and releasing (release()) the lock.

• When the state of the Lock object is unlocked, then acquire() changes the
state to locked and returns immediately.

• When the state is locked, acquire() blocks until a call to release() in
another thread changes it to unlocked, then the acquire() call resets it to
locked and returns.

• The release() method should only be called in the locked state; it changes
the state to unlocked and returns immediately. If an attempt is made to release an
unlocked lock, a RuntimeError will be raised.

• An example of using a Lock object is shown below:

from threading import Thread, Lock

class SharedData(object):
def __init__(self):

self.value = 0
self.lock = Lock()

def read_value(self):
try:

print(’read_value Acquiring Lock’)
self.lock.acquire()
return self.value

finally:

41.5 Python Locks 471

print(’read_value releasing Lock’)
self.lock.release()

def change_value(self):
print(’change_value acquiring lock’)
with self.lock:

self.value = self.value + 1
print(’change_value lock released’)

The SharedData class presented above uses locks to control access to critical
blocks of code, specifically to the read_value() and the change_value()
methods. The Lock object is held internally to the ShareData object, and both
methods attempt to acquire the lock before performing their behaviour but must then
release the lock after use.

The read_value() method does this explicitly using try: finally:
blocks while the change_value() method uses a with statement (as the Lock
type supports the Context Manager Protocol). Both approaches achieve the same
result, but the with statement style is more concise.

The SharedData class is used below with two simple functions. In this case the
SharedData object has been defined as a global variable, but it could also have
been passed into the reader() and updater() functions as an argument. Both
the reader and updater functions loop, attempting to call the read_value() and
change_value() methods on the shared_data object.

As both methods use a lock to control access to the methods, only one thread can
gain access to the locked area at a time. This means that the reader() function
may start to read data before the updater() function has changed the data (or vice
versa).

This is indicated by the output where the reader thread accesses the value ‘0’
twice before the updater records the value ‘1’. However, the updater() function
runs a second time before the reader gains access to locked block of code which is
why the value 2 is missed. Depending upon the application this may or may not be
an issue.

shared_data = SharedData()
def reader():

while True:
print(shared_data.read_value())

def updater():
while True:

shared_data.change_value()

print(’Starting’)

t1 = Thread(target=reader)
t2 = Thread(target=updater)
t1.start()
t2.start()

472 41 Inter Thread/Process Synchronisation

print(’Done’)

The output from this is:

Starting
read_value Acquiring Lock
read_value releasing Lock
0
read_value Acquiring Lock
read_value releasing Lock
0
Done
change_value acquiring lock
change_value lock released
1
change_value acquiring lock
change_value lock released
change_value acquiring lock
change_value lock released
3
change_value acquiring lock
change_value lock released
4

Lock objects can only be acquired once; if a thread attempts to acquire a lock on
the same Lock object more than once then a RuntimeError is thrown.

If it is necessary to re-acquire a lock on a Lock object then the
threading.RLock class should be used. This is a re-entrant lock and allows the
same Thread (or Process) to acquire a lock multiple times. The code must however
release the lock as many times as it has acquired it.

41.6 Python Conditions

Conditions can be used to synchronise the interaction between two or more Threads
or Processes. Conditions objects support the concept of a notification model; ideal
for a shared data resource being accessed by multiple consumers and producers.

A Condition can be used to notify one or all of the waiting Threads or Processes
that they can proceed (for example to read data from a shared resource). The methods
available that support this are:

• notify() notifies one waiting thread which can then continue
• notify_all() notifies all waiting threads that they can continue
• wait() causes a thread to wait until it has been notified that it can continue.

A Condition is always associated with an internal lock which must be acquired
and released before the wait() and notify() methods can be called. The
Condition supports the Context Manager Protocol and can therefore be used
via a with statement (which is the most typical way to use a Condition) to

41.6 Python Conditions 473

obtain this lock. For example, to obtain the condition lock and call the wait method
we might write:

with condition:
condition.wait()
print(’Now we can proceed’)

The condition object is used in the following example to illustrate how a
producer thread and two consumer threads can cooperate. A DataResource class
has been defined which will hold an item of data that will be shared between
a consumer and a set of producers. It also (internally) defines a Condition
attribute. Note that this means that the Condition is completely internalised to the
DataResource class; external code does not need to know, or be concerned with,
theCondition and its use. Instead external code can merely call the consumer()
and producer() functions in separate Threads as required.

The consumer() method uses a with statement to obtain the (internal) lock
on the Condition object before waiting to be notified that the data is available.
In turn the producer() method also uses a with statement to obtain a lock on
the condition object before generating the data attribute value and then notifying
anything waiting on the condition that they can proceed. Note that although the
consumer method obtains a lock on the condition object; if it has to wait it will
release the lock and re obtain the lock once it is notified that it can continue. This is
a subtly that is often missed.

from threading import Thread, Condition, current_thread
from time import sleep
from random import randint

class DataResource:

def __init__(self):
print(’DataResource - Initialising the empty data’)
self.data = None
print(’DataResource - Setting up the Condition object’)
self.condition = Condition()

def consumer(self):
"""wait for the condition and use the resource"""

print(’DataResource - Starting consumer method in’, current_
thread().name)

with self.condition:
self.condition.wait()

print(’DataResource - Resource is available to’,
current_thread().name)

print(’DataResource - Data read in’, current_
thread().name, ’:’, self.data)

def producer(self):

474 41 Inter Thread/Process Synchronisation

"""set up the resource to be used by the consumer"""
print(’DataResource - Starting producer method’)
with self.condition:

print(’DataResource - Producer setting data’)
self.data = randint(1, 100)
print(’DataResource - Producer notifying all waiting

threads’)
self.condition.notify_all()

print(’Main - Starting’)
print(’Main - Creating the DataResource object’)
resource = DataResource()
print(’Main - Create the Consumer Threads’)
c1 = Thread(target=resource.consumer)
c1.name = ’Consumer1’
c2 = Thread(target=resource.consumer)
c2.name = ’Consumer2’
print(’Main - Create the Producer Thread’)
p = Thread(target=resource.producer)
print(’Main - Starting consumer threads’)
c1.start()
c2.start()
sleep(1)

print(’Main - Starting producer thread’)
p.start()

print(’Main - Done’)

The output from an example run of this program is:

Main - Starting
Main - Creating the DataResource object
DataResource - Initialising the empty data
DataResource - Setting up the Condition object
Main - Create the Consumer Threads
Main - Create the Producer Thread
Main - Starting consumer threads
DataResource - Starting consumer method in Consumer1
DataResource - Starting consumer method in Consumer2
Main - Starting producer thread
DataResource - Starting producer method
DataResource - Producer setting data
Main - Done
DataResource - Producer notifying all waiting threads
DataResource - Resource is available to Consumer1
DataResource - Data read in Consumer1 : 36
DataResource - Resource is available to Consumer2
DataResource - Data read in Consumer2 : 36

41.7 Python Semaphores 475

41.7 Python Semaphores

The Python Semaphore class implements Dijkstra counting semaphore model.
In general, a semaphore is like an integer variable; its value is intended to represent

a number of available resources of some kind. There are typically two operations
available on a semaphore; these operations are acquire() and release();
although in some libraries Dijkstra’s original names of p() and v() are used,
these operation names are based on the original Dutch phrases.

• The acquire() operation subtracts one from the value of the semaphore, unless
the value is 0, in which case it blocks the calling thread until the semaphore’s value
increases above 0 again.

• The signal() operation adds one to the value, indicating a new instance of the
resource has been added to the pool.

Both the threading.Semaphore and the multiprocessing.Semaphore
classes also support the Context Management Protocol.

An optional parameter used with the Semaphore constructor gives the initial value
for the internal counter; it defaults to 1. If the value given is less than 0, ValueError
is raised.

The following example illustrates 5 different Threads all running the same
worker() function. The worker() function attempts to acquire a semaphore;
if it does then it continues into the with statement block; if it doesn’t, it waits until
it can acquire it. As the semaphore is initialised to 2 there can only be two threads
that can acquire the Semaphore at a time.

The sample program, however, starts up five threads; this therefore means that the
first 2 running Threads will acquire the semaphore and the remaining thee will have
to wait to acquire the semaphore. Once the first two release the semaphore a further
two can acquire it and so on.

from threading import Thread, Semaphore, current_thread
from time import sleep

def worker(semaphore):
with semaphore:

print(current_thread().name + " - entered")
sleep(0.5)
print(current_thread().name + " - exiting")

print(’MainThread - Starting’)

semaphore = Semaphore(2)
for i in range(0, 5):

thread = Thread(name=’T’ + str(i), target=worker,
args=[semaphore])

thread.start()

print(’MainThread - Done’)

476 41 Inter Thread/Process Synchronisation

The output from a run of this program is given below:

MainThread - Starting
T0 - entered
T1 - entered
MainThread - Done
T0 - exiting
T2 - entered
T1 - exiting
T3 - entered
T2 - exiting
T4 - entered
T3 - exiting
T4 - exiting

41.8 The Concurrent Queue Class

As might be expected the model where a producer Thread or Process gener-
ates data to be processed by one or more Consumer Threads or Processes is so
common that a higher level abstraction is provided in Python than the use of Locks,
Conditions or Semaphores; this is the blocking queue model implemented by the
threading.Queue or multiprocessing.Queue classes.

Both these Queue classes are Thread and Process safe. That is they work appro-
priately (using internal locks) to manage data access from concurrent Threads or
Processes.

An example of using a Queue to exchange data between a worker process and
the main process is shown below.

The worker process executes the worker() function sleeping, for 2 s before
putting a string ‘Hello World’ on the queue. The main application function sets up
the queue and creates the process. The queue is passed into the process as one of
its arguments. The process is then started. The main process then waits until data is
available on the queue via the (blocking) get() methods. Once the data is available
it is retrieved and printed out before the main process terminates.

from multiprocessing import Process, Queue
from time import sleep
def worker(queue):

print(’Worker - going to sleep’)
sleep(2)
print(’Worker - woken up and putting data on queue’)
queue.put(’Hello World’)

def main():
print(’Main - Starting’)
queue = Queue()
p = Process(target=worker, args=[queue])
print(’Main - Starting the process’)

41.8 The Concurrent Queue Class 477

p.start()
print(’Main - waiting for data’)
print(queue.get())
print(’Main - Done’)

if __name__ == ’__main__’:
main()

The output from this is shown below:

Main - Starting
Main - Starting the process
Main - wait for data
Worker - going to sleep
Worker - woken up and putting data on queue
Hello World
Main – Done

However, this does not make it that clear how the execution of the two processes
interweaves. The following diagram illustrates this graphically:

In the above diagram the main process waits for a result to be returned from the
queue following the call to the get() method; as it is waiting it is not using any
system resources. In turn the worker process sleeps for two seconds before putting
some data onto the queue (via put(‘Hello World’)). After this value is sent
to the Queue the value is returned to the main process which is woken up (moved
out of the waiting state) and can continue to process the rest of the main function.

478 41 Inter Thread/Process Synchronisation

41.9 Online Resources

See the following online resources for information discussed in this chapter:

• https://docs.python.org/3/library/threading.html for information on Thread based
barriers, locks, conditions, semaphores and events.

• https://docs.python.org/3/library/multiprocessing.html for information on
Process based barriers, locks, conditions, semaphores and events.

• https://en.wikipedia.org/wiki/Semaphore_programming Semaphore program-
ming model.

41.10 Exercises

The aim of this exercise is to implement a concurrent version of your Stack-based
container/collection.

It should be possible to safely add data to your stack and pop data off the stack
using multiple Threads.

It should follow a similar pattern to the Queue class described above but support
the First In Last Out (FILO) behaviour of a stack and be usable with any number of
producer and consumer threads (you can ignore processes for this exercise).

The key to implementing the Stack is to remember that no data can be read from
the stack until there is some data to access; it is therefore necessary to wait for data
to become available and then to read it. However, it is a producer thread that will
provide that data and then inform any waiting threads that there is not data available.
You can implement this in any way you wish; however a common solution is to use
a Condition.

To illustrate this idea, the following test program can be used to verify the
behaviour of your Stack:

from stack.Stack import Stack
from time import sleep
from threading import Thread

def producer(stack):
for i in range(0,6):

data = ’Task’ + str(i)
print(’Producer pushing:’, data)
stack.push(data)
sleep(2)

def consumer(label, stack):
while True:

print(label, ’stack.pop():’, stack.pop())

print(’Create shared stack’)
stack = Stack()
print(’Stack:’, stack)

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/multiprocessing.html
https://en.wikipedia.org/wiki/Semaphore_programming

41.10 Exercises 479

print(’Creating and starting consumer threads’)
consumer1 = Thread(target=consumer, args=(’Consumer1’, stack))
consumer2 = Thread(target=consumer, args=(’Consumer2’, stack))
consumer3 = Thread(target=consumer, args=(’Consumer3’, stack))
consumer1.start()
consumer2.start()
consumer3.start()

print(’Creating and starting producer thread’)
producer = Thread(target=producer, args=[stack])
producer.start()

The output generated from this sample program (which includes print statements
from the Stack) is given below:

Create shared stack
Stack: Stack: []
Creating and starting consumer threads
Creating and starting producer thread
Producer pushing: Task0
Consumer1 stack.pop(): Task0
Producer pushing: Task1
Consumer2 stack.pop(): Task1
Producer pushing: Task2
Consumer3 stack.pop(): Task2
Producer pushing: Task3
Consumer1 stack.pop(): Task3
Producer pushing: Task4
Consumer2 stack.pop(): Task4
Producer pushing: Task5
Consumer3 stack.pop(): Task5

Chapter 42
Futures

42.1 Introduction

A future is a thread (or process) that promises to return a value in the future once
the associated behaviour has completed. It is thus a future value. It provides a very
simple way of firing off behaviour that will either be time consuming to execute or
which may be delayed due to expensive operations such as Input/Output and which
could slow down the execution of other elements of a program. This chapter discusses
futures in Python.

42.2 The Need for a Future

In a normal method or function invocation, the method or function is executed in line
with the invoking code (the caller) having to wait until the function or method (the
callee) returns. Only after this is the caller able to continue to the next line of code
and execute that. In many (most) situations this is exactly what you want as the next
line of code may depend on a result returned from the previous line of code etc.

However, in some situations the next line of code is independent of the previous
line of code. For example, let us assume that we are populating a user interface (UI).
The first line of code may read the name of the user from some external data source
(such as a database) and then display it within a field in the UI. The next line of
code may then add todays data to another field in the UI. These two lines of code are
independent of each other and could be run concurrently/in parallel with each other.

In this situation we could use either a Thread or a Process to run the two lines of
code independently of the caller, thus achieving a level of concurrency and allowing
the caller to carry onto the third line of code etc.

However, neither the Thread or the Process by default provide a simple mechanism
for obtaining a result from such an independent operation. This may not be a problem

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

481

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_42&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_42

482 42 Futures

as operations may be self-contained; for example they may obtain data from the
database or from today’s date and then updated a UI. However, in many situations
the calculation will return a result which needs to be handled by the original invoking
code (the caller). This could involve performing a long running calculation and then
using the result returned to generate another value or update another object etc.

A Future is an abstraction that simplifies the definition and execution of such
concurrent tasks. Futures are available in many different languages including Python
but also Java, Scala, C++, etc. When using a Future; a callable object (such as a
function) is passed to the Future which executes the behaviour either as a separate
Thread or as a separate Process and then can return a result once it is generated. The
result can either be handled by a call back function (that is invoked when the result
is available) or by using a operation that will wait for a result to be provided.

42.3 Futures in Python

The concurrent.futures library was introduced into Python in version 3.2
(and is also available in Python 2.5 onwards). The concurrent.futures library
provides the Future class and a high level API for working with Futures.

The concurrent.futures.Future class encapsulates the asynchronous
execution of a callable object (e.g. a function or method).

The Future class provides a range of methods that can be used to obtain
information about the state of the future, retrieve results or cancel the future:

• cancel() Attempt to cancel the Future. If the Future is currently being executed
and cannot be cancelled then the method will return False, otherwise the call
will be cancelled and the method will return True.

• cancelled() Returns True if the Future was successfully cancelled.
• running() Return sTrue if the Future is currently being executed and cannot

be cancelled.
• done() Returns True if the Future was successfully cancelled or finished

running.
• result(timeout=None) Return the value returned by the Future. If the

Future hasn’t yet completed then this method will wait up to timeout seconds.
If the call hasn’t completed in timeout seconds, then a TimeoutError will be
raised. timeout can be an int or float. If timeout is not specified or None,
there is no limit to the wait time. If the future is cancelled before completing then
the CancelledError will be raised. If the call raised, this method will raise
the same exception.

It should be noted, however, that Future instances should not be created directly,
rather they should be created via the submit method of an appropriate executor.

42.3 Futures in Python 483

42.3.1 Future Creation

Futures are created and executed by Executors. AnExecutor provides two methods
that can be used to execute a Future (or Futures) and one to shut down the executor.

At the root of the executor class hierarchy is the
concurrent.futures.Executor abstract class. It has two subclasses:

• the ThreadPoolExecutor and
• the ProcessPoolExecutor.

The ThreadPoolExecutor uses threads to execute the futures while the
ProcessPoolExecutor uses separate processes. You can therefore choose how
you want the Future to be executed by specifying one or other of these executors.

42.3.2 Simple Example Future

To illustrate these ideas, we will look at a very simple example of using a Future.
To do this we will use a simple worker function; similar to that used in the previous

chapters:

from time import sleep

define function to be used with future
def worker(msg):

for i in range(0, 10):
print(msg, end='', flush=True)
sleep(1)

return i

The only difference with this version of worker is that it also returns a result
which is the number of times that the worker printed out the message.

We can of course invoke this method inline as follows:

res = worker('A')
print(res)

We can make the invocation of this method into a Future. To do this we use a
ThreadPoolExecutor imported from the concurrent.futures module.
We will then submit the worker function to the pool for execution. This returns a
reference to a Future which we can use to obtain the result:

from time import sleep
from concurrent.futures import ThreadPoolExecutor

print('Setting up the ThreadPoolExecutor')
pool = ThreadPoolExecutor(1)
Submit the function ot the pool to run
concurrently - obtain a future from pool

484 42 Futures

print('Submitting the worker to the pool')
future = pool.submit(worker, 'A')

print('Obtained a reference to the future object', future)

Obtain the result from the future - wait if necessary
print('future.result():', future.result())

print('Done')

The output from this is:

Setting up the ThreadPoolExecutor
Submitting the worker to the pool
AAObtained a reference to the future object <Future at
0x1086ea8d0 state=running>
AAAAAAAAfuture.result(): 9
Done

Notice how the output from the main program and the worker is interwoven with
two ‘A’s being printed out before the message starting ‘Obtained a…’.

In this case a new ThreadPoolExecutor is being created with one thread in
the pool (typically there would be multiple threads in the pool, but one is being used
here for illustrative purposes).

The submit() method is then used to submit the function worker with the
parameter ‘A’ to the ThreadPoolExecutor for it to schedule execution of the
function. The submit() method returns a Future object.

The main program then waits for the future object to return a result (by calling
the result() method on the future). This method can also take a timeout.

To change this example to use Processes rather than Threads all that is needed is
to change the pool executor to a ProcessPoolExecutor:

from multiprocessing import set_start_method
from time import sleep
from concurrent.futures import ProcessPoolExecutor

def worker(msg):
for i in range(0, 10):

print(msg, end='', flush=True)
sleep(1)

return i

if __name__ == '__main__':
print('Starting')

set_start_method('spawn')

print('Setting up the ProcessPoolExecutor')
pool = ProcessPoolExecutor(1)
print('Submitting the worker to the pool')
future = pool.submit(worker, 'A')

print('Obtained a reference to the future object', future)

42.4 Running Multiple Futures 485

print('future.result():', future.result())

print('Done')

The output from this program is very similar to the last one:

Starting
Setting up the ThreadPoolExecutor
Submitting the worker to the pool
Obtained a reference to the future object <Future at 0x109178630
state=running>
AAAAAAAAAAfuture.result(): 9
Done

The only difference is that in this particular run the message starting ‘Obtained
a..’ is printed out before any of the ‘A’s are printed; this may be due to the fact that
a Process initially takes longer to set up than a Thread.

42.4 Running Multiple Futures

Both the ThreadPoolExecutor and the ProcessPoolExecutor can be
configured to support multiple Threads/Processes via the pool. Each task that is
submitted to the pool will then run within a separate Thread/Process. If more tasks
are submitted than there are Threads/Processes available, then the submitted task
will wait for the first available Thread/Process and then be executed. This can act as
a way of managing the amount of concurrent work being done.

For example, in the following example, the worker() function is submitted to
the pool four times, but the pool is configured to use threads. Thus the fourth worker
will need to wait until one of the first three completes before it is able to execute:

from concurrent.futures import ThreadPoolExecutor

print('Starting...')
pool = ThreadPoolExecutor(3)
future1 = pool.submit(worker, 'A')
future2 = pool.submit(worker, 'B')
future3 = pool.submit(worker, 'C')
future4 = pool.submit(worker, 'D')
print('\nfuture4.result():', future4.result())
print('All Done')

When this runs we can see that the Futures for A, B and C all run concurrently
but D must wait until one of the others finishes:

Starting...
ABCACBCABCBABCACBACABCBACABCBADDDDDDDDDD
future4.result(): 9
All Done

486 42 Futures

The main thread also waits for future4 to finish as it requests the result which
is a blocking call that will only return once the future has completed and generates
a result.

Again, to use Processes rather than Threads all we need to do is to replace
the ThreadPoolExecutor with the ProcessPoolExecutor and add the
required Process structure such as set_start_method and the if statement on
the module name:

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import set_start_method
from time import sleep

def worker(msg):
for i in range(0,10):

print(msg,end='', flush=True)
sleep(1)

return i

if __name__ == '__main__':
print('Starting')
set_start_method('spawn')

pool = ProcessPoolExecutor(3)
future1 = pool.submit(worker, 'A')
future2 = pool.submit(worker, 'B')
future3 = pool.submit(worker, 'C')
future4 = pool.submit(worker, 'D')
print('\nfuture4.result():', future4.result())
print('All Done')

42.4.1 Waiting for All Futures to Complete

It is possible to wait for all futures to complete before progressing. In the previous
section it was assumed that future4 would be the last future to complete; but in
many cases it may not be possible to know which future will be the last to complete.
In such situations it is very useful to be able to wait for all the futures to complete
before continuing. This can be done using the concurrent.futures.wait
function. This function takes a collection of futures and optionally a timeout and
a return_when indicator.

wait(fs, timeout=None, return_when=ALL_COMPLETED)

where:

• timeout can be used to control the maximum number of seconds to wait before
returning. timeout can be an int or float. If timeout is not specified or None,
there is no limit to the wait time.

42.4 Running Multiple Futures 487

• return_when indicates when this function should return. It must be one of the
following constants:

– FIRST_COMPLETED The function will return when any future finishes or is
cancelled.

– FIRST_EXCEPTION The function will return when any future finishes by
raising an exception. If no future raises an exception, then it is equivalent to
ALL_COMPLETED.

– ALL_COMPLETED The function will return when all futures finish or are
cancelled.

The wait() function returns two sets done and not_done. The first set
contains the futures that completed (finished or were cancelled) before the wait
completed. The second set, the not_dones, contains uncompleted futures.

We can use the wait() function to modify out previous example so that we no
longer rely on future4 finishing last:

from concurrent.futures import ProcessPoolExecutor
from concurrent.futures import wait
from multiprocessing import set_start_method
from time import sleep

def worker(msg):
for i in range(0,10):

print(msg,end='', flush=True)
sleep(1)

return i

if __name__ == '__main__':
set_start_method('spawn')
print('Starting...setting up pool')
pool = ProcessPoolExecutor(3)
futures = []
print('Submitting futures')
future1 = pool.submit(worker, 'A')
futures.append(future1)
future2 = pool.submit(worker, 'B')
futures.append(future2)
future3 = pool.submit(worker, 'C')
futures.append(future3)
future4 = pool.submit(worker, 'D')
futures.append(future4)

print('Waiting for futures to complete')
wait(futures)

print('\nAll Done')

The output from this is:

Starting...setting up pool
Submitting futures
Waiting for futures to complete

488 42 Futures

ABCABCABCABCABCABCBCACBACBABCADDDDDDDDDD
All Done

Note how each future is added to the list of futures which is then passed to the
wait() function.

42.4.2 Processing Results as Completed

What if we want to process each of the results returned by our collection of futures?
We could loop through the futures list in the previous section once all the results
have been generated. However, this means that we would have to wait for them all
to complete before processing the list.

In many situations we would like to process the results as soon as they are
generated without being concerned if that is the first, third, last or second etc.

The concurrent.futures.as_completed() function does preciously
this; it will serve up each future in turn as soon as they are completed; with all
futures eventually being returned but without guaranteeing the order (just that as
soon as a future is finished generating a result it will be immediately available).

For example, in the following example, the is_even() function sleeps for a
random number of seconds (ensuring that different invocations of this function will
take different durations) then calculates a result:

from concurrent.futures import ThreadPoolExecutor, as_completed
from time import sleep
from random import randint

def is_even(n):
print('Checking if', n , 'is even')
sleep(randint(1, 5))
return str(n) + ''+ str(n % 2 == 0)

print('Started')
data = [1, 2, 3, 4, 5, 6]
pool = ThreadPoolExecutor(5)
futures = []
for v in data:

futures.append(pool.submit(is_even, v))

for f in as_completed(futures):
print(f.result())

print('Done')

The second for loop will loop through each future as they complete printing out
the result from each, as shown below:

Started
Checking if 1 is even

42.5 Processing Future Results Using a Callback 489

Checking if 2 is even
Checking if 3 is even
Checking if 4 is even
Checking if 5 is even
Checking if 6 is even
1 False
4 True
5 False
3 False
2 True
6 True
Done

As you can see from this output although the six futures were started in sequence
the results returned are in a different order (with the returned order being 1, 4, 5, 3,
2 and finally 6).

42.5 Processing Future Results Using a Callback

An alternative to the as_complete() approach is to provide a function that will
be called once a result has been generated. This has the advantage that the main
program is never paused; it can continue doing whatever is required of it.

The function called once the result is generated is typically known as a callback
function; that is the future calls back to this function when the result is available.

Each future can have a separate call back as the function to invoke is set on the
future using the add_done_callback() method. This method takes the name
of the function to invoke.

For example, in this modified version of the previous example, we specify a call
back function that will be used to print the futures result. This call back function is
called print_future_result(). It takes the future that has completed as its
argument:

from concurrent.futures import ThreadPoolExecutor
from time import sleep
from random import randint

def is_even(n):
print('Checking if', n, 'is even')
sleep(randint(1, 5))
return str(n) + ''+ str(n % 2 == 0)

def print_future_result(future):
print('In callback Future result: ', future.result())

print('Started')
data = [1, 2, 3, 4, 5, 6]

pool = ThreadPoolExecutor(5)

490 42 Futures

for v in data:
future = pool.submit(is_even, v)
future.add_done_callback(print_future_result)

print('Done')

When we run this, we can see that the call back function is called after the main
thread has completed. Again, the order is unspecified as the is_even() function
still sleeps for a random amount of time.

Started
Checking if 1 is even
Checking if 2 is even
Checking if 3 is even
Checking if 4 is even
Checking if 5 is even
Done
In callback Future result: 1 False
Checking if 6 is even
In callback Future result: 5 False
In callback Future result: 4 True
In callback Future result: 3 False
In callback Future result: 2 True
In callback Future result: 6 True

42.6 Online Resources

See the following online resources for information on Futures:

• https://docs.python.org/3/library/concurrent.futures.html The Python standard
Library documentation on Futures.

• https://pymotw.com/3/concurrent.futures The Python Module of the Week page
on Futures.

• https://www.blog.pythonlibrary.org/2016/08/03/python-3-concurrency-the-con
current-futures-module an alternative tutorial on Python Futures.

42.7 Exercises

In mathematics, the factorial of a positive integer n, denoted by n!, is the product of
all positive integers less than or equal to n. For example,

5! = 5 x 4 x 3 x 2 x 1 = 120

Note that the value of 0! is 1,
Write a Future that will calculate the factorial of any number with the result

being printed out via a call back function.

https://docs.python.org/3/library/concurrent.futures.html
https://pymotw.com/3/concurrent.futures
https://www.blog.pythonlibrary.org/2016/08/03/python-3-concurrency-the-concurrent-futures-module
https://www.blog.pythonlibrary.org/2016/08/03/python-3-concurrency-the-concurrent-futures-module

42.7 Exercises 491

There are several ways in which the factorial value can be calculated either using
a for loop or a recursive function. In either case sleep for a millisecond between each
calculation.

Start multiple Futures for different factorial values and see which comes back
first.

Chapter 43
Concurrency with AsyncIO

43.1 Introduction

The Async IO facilities in Python are relatively recent additions originally introduced
in Python 3.4 and evolving up to and including Python 3.7. They are comprised of
two new keywords async and await (introduced in Python 3.7) and the Async IO
Python package.

In this chapter we first discuss Asynchronous IO before introducing the async
and await keywords. We then present Async IO Tasks, how they are created used
and managed.

43.2 Asynchronous IO

Asynchronous IO (or Async IO) is a language agnostic concurrent programming
model (or paradigm) that has been implemented in several different programming
language (such as C# and Scala) as well as in Python.

Asynchronous IO is another way in which you can build concurrent applica-
tions in Python. It is in many ways an alternative to the facilities provided by the
Threading library in Python. However, whereas the Threading library is more suscep-
tible to issues associated with the GIL (The Global Interpreter Lock) which can affect
performance, the Async IO facilities are better insulated from this issue.

The way in which Async IO operates is also lighter weight then the facilities
provide day the multiprocessing library since the asynchronous tasks in Async
IO run within a single process rather than requiring separate processes to be spawned
on the underlying hardware.

Async IO is therefore another alternative way of implementing concurrent solu-
tions to problems. It should be noted that it does not build on either Threading or

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

493

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_43&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_43

494 43 Concurrency with AsyncIO

Multi Processing; instead Async IO is based on the idea of cooperative multitasking.
These cooperating tasks operate asynchronously; by this we mean that the tasks:

• are able to operate separately from other tasks,
• are able to wait for another task to return a result when required,
• and are thus able to allow other tasks to run while they are waiting.

The IO (Input/Output) aspect of the name Async IO is because this form of
concurrent program is best suited to I/O bound tasks.

In an I/O bound task a program spends most of its time sending data to, or reading
data from, some form of external device (for example a database or set of files, etc.).
This communication is time consuming and means that the program spends most of
its time waiting for a response from the external device.

One way in which such I/O bound applications can (appear to) speed up is to
overlap the execution of different tasks; thus, while one task is waiting for a database
to respond with some data, another task can be writing data to a log file etc.

43.3 Async IO Event Loop

When you are developing code using the Async IO facilities you do not need to
worry about how the internals of the Async IO library work; however at least at the
conceptual level it is useful to understand one key concept; that of the Async IO
Event Loop; this loop controls how and when each task gets run. For the purposes of
this discussion a task represents some work that can be run independently of other
pieces of work.

The Event Loop knows about each task to be run and what the state of the task
currently is (for example whether it is waiting for something to happen/complete).
It selects a task that is ready to run from the list of available tasks and executes it.
This task has complete control of the CPU until it either completes its work or hands
back control to the Event Loop (for example, because it must now wait for some data
to be supplied from a database). The Event Loop now checks to see if any of the
waiting tasks are ready to continue executing and makes a note of their status. The
Event Loop then selects another task that is ready to run and starts that task off. This
loop continues until all the tasks have finished. This is illustrated below:

43.4 The Async and Await Keywords 495

An important point to note in the above description is that a task does not give up
the processor unless it decides to, for example by having to wait for something else.
They never get interrupted in the middle of an operation; this avoids the problem that
two threads might have when being time sliced by a separate scheduler as they may
both be sharing the same resource. This can greatly simplify your code.

43.4 The Async and Await Keywords

The async keyword, introduced in Python 3.7, is used to mark a function as being
something that uses the await keyword (we will come back to this below as there
is one other use of the async keyword). A function that uses the await keyword
can be run as a separate task and can give up control of the processor when it calls
await against another async function and must wait for that function to complete.
The invoked async function can then run as a separate task, etc.

To invoke an async function it is necessary to start the Async IO Event Loop
and for that function to be treated as a task by the Event Loop. This is done by calling
the asyncio.run() method and passing in the root async function.

The asyncio.run() function was introduced in Python 3.7 (older versions
of Python such as Python 3.6 required you to explicitly obtain a reference to the
Event Loop and to run the root async function via that). One point to note about this
function is that it has been marked as being provisional in Python 3.7. This means
that future versions of Python may or may not support the function or may modify
the function in some way. You should therefore check the documentation for the
version of Python you are using to see whether the run method has been altered or
not.

496 43 Concurrency with AsyncIO

43.4.1 Using Async and Await

We will examine a very simple Async IO program from the top down. The main()
function for the program is given below:

print(’Main - Starting’)
asyncio.run(do_something())
print(’Main - Done’)

The main() function is the entry point for the program and calls:

asyncio.run(do_something())

This starts the Async IO Event Loop running and results in the do_
something() function being wrapped up in a Task that is managed by the loop.
Note that you do not explicitly create a Task in Async IO; they are always created
by some function; however, it is useful to be aware of Tasks as you can interact with
them to check their status or to retrieve a result.

The do_something() function is marked with the keyword async:

async def do_something():
print(’do_something - will wait for worker’)
result = await worker()
print(’do_something - result:’, result)

As previously mentioned this indicates that it can be run as a separate Task and
that it can use the keyword await to wait for some other function or behaviour to
complete. In this case the do_something() asynchronous function must wait
for the worker() function to complete.

The await keyword does more than merely indicate that the do_
something() function must wait for the worker to complete. It triggers another
Task to be created that will execute the worker() function and releases the
processor allowing the Event Loop to select the next task to execute (which may
or may not be the task running the worker() function). The status of the do_
something task is now waiting while the status of the worker() task is ready
(to run).

The code for the worker task is given below:

async def worker():
print(’worker - will take some time’)
time.sleep(3)
print(’worker - Done it’)
return 42

The async keyword again indicates that this function can be run as a separate
task. However, this time the body of the function does not use the await keyword.
This is because this is a special case known as an Async IO coroutine function. This
is a function that returns a value from a Task (it is related to the idea of a standard
Python coroutine which is a data consumer).

43.4 The Async and Await Keywords 497

Sadly, Computer Science has many examples where the same term has been used
for different things as well as examples where different terms have been used for the
same thing. In this case to avoid confusion just stick with Async IO coroutines are
functions marked with async that can be run as a separate task and may call await.

The full listing for the program is given below:

import asyncio
import time

async def worker():
print(’worker - will take some time’)
time.sleep(3)
print(’worker - done it’)
return 42

async def do_something():
print(’do_something - will wait for worker’)
result = await worker()
print(’do_something - result:’, result)

print(’Main - Starting’)
asyncio.run(do_something())
print(’Main - Done’)

When this program is executed the output is:

Main - Starting
do_something - will wait for worker
worker - will take some time
worker - done it
do_something – result: 42
Main – Done

When this is run there is a pause between the two worker printouts as it sleeps,
the final output is thus:

Main - Starting
do_something - will wait for worker
worker - will take some time
worker - done it
do_something - result: 42
Main - Done

Although it is not completely obvious here, the do_something() function
was run as one task, this task then waited when it got to the worker() function
which was run as another Task. Once the worker task completed the do_something
task could continue and complete its operation. Once this happened the Async IO
Event Loop could then terminate as no further tasks were available.

498 43 Concurrency with AsyncIO

43.5 Async IO Tasks

Tasks are used to execute functions marked with the async keyword concur-
rently. Tasks are never created directly instead they are created implicitly via the
keyword await or through functions such as asyncio.run described above
or asyncio.create_task(), asyncio.gather() and asyncio.as_
completed(). These additional task creation functions are described below:

• asyncio.create_task() This function takes a function marked with
async and wraps it inside a Task and schedules it for execution by the Async IO
Event Loop. This function was added in Python 3.7.

• asyncio.gather(*aws) This function runs all the async functions passed
to it as separate Tasks. It gathers the results of each separate task together and
returns them as a list. The order of the results corresponds to the order of the async
functions in the aws list.

• asyncio.as_completed(aws) Runs each of the async functions passed to
it

A Task object supports several useful methods

• cancel() cancels a running task. Calling this method will cause the Task to
throw a CancelledError exception.

• cancelled() returns True if the Task has been cancelled.
• done() returns True if the task has completed, raised an exception or was

cancelled.
• result() returns the result of the Task if it is done. If the Tasks result is not

yet available, then the method raises the InvalidStateError exception.
• exception() return an exception if one was raised by the Task. If the task

was cancelled then raises the CancelledError exception. If the task is not
yet done, then raises an InvalidStateError exception.

It is also possible to add a callback function to invoke once the task has completed
(or to remove such a function if it has been added):

• add_done_callback(callback) Add a callback to be run when the Task
is done.

• remove_done_callback(callback) Remove callback from the call-
backs list.

Note that the method is called ‘add’ rather than ‘set’ implying that there can be
multiple functions called when the task has completed (if required).

The following example illustrates some of the above:

import asyncio

async def worker():
print(’worker - will take some time’)
await asyncio.sleep(1)
print(’worker - Done it’)

43.5 Async IO Tasks 499

return 42

def print_it(task):
print(’print_it result:’, task.result())

async def do_something():
print(’do_something - create task for worker’)
task = asyncio.create_task(worker())
print(’do_something - add a callback’)
task.add_done_callback(print_it)
await task
Information on task
print(’do_something - task.cancelled():’,

task.cancelled())
print(’do_something - task.done():’, task.done())
print(’do_something - task.result():’, task.result())
print(’do_something - task.exception():’,

task.exception())
print(’do_something - finished’)

print(’Main - Starting’)
asyncio.run(do_something())
print(’Main - Done’)

In this example, the worker() function is wrapped within a task object that is
returned from the asyncio.create_task(worker()) call.

A function (print_it()) is registered as a callback on the task using the
asyncio.create_task(worker()) function. Note that the worker is passed
the task that has completed as a parameter. This allows it to obtain information from
the task such as any result generated.

In this example the async function do_something() explicitly waits on the
task to complete. Once this happens several different methods are used to obtain
information about the task (such as whether it was cancelled or not).

One other point to note about this listing is that in theworker() functionwe have
added an await using the asyncio.sleep(1) function; this allows the worker
to sleep and wait for the triggered task to complete; it is an Async IO alternative to
time.sleep(1).

The output from this program is:

Main - Starting
do_something - create task for worker
do_something - add a callback
worker - will take some time
worker - Done it
print_it result: 42
do_something - task.cancelled(): False
do_something - task.done(): True
do_something - task.result(): 42
do_something - task.exception(): None
do_something - finished
Main - Done

500 43 Concurrency with AsyncIO

43.6 Running Multiple Tasks

In many cases it is useful to be able to run several tasks concurrently. There are
two options provided for this: the asyncio.gather() and the asyncio.as_
completed() function; we will look at both in this section.

43.6.1 Collating Results from Multiple Tasks

It is often useful to collect all the results from a set of tasks together and to continue
only once all the results have been obtained. When using Threads or Processes this
can be achieved by starting multiple Threads or Processes and then using some other
object such as a Barrier to wait for all the results to be available before continuing.
Within the Async IO library all that is required is to use the asyncio.gather()
function with a list of the async functions to run, for example:

import asyncio
import random

async def worker():
print(’Worker - will take some time’)
await asyncio.sleep(1)
result = random.randint(1,10)
print(’Worker - Done it’)
return result

async def do_something():
print(’do_something - will wait for worker’)
Run three calls to worker concurrently and collect results
results = await asyncio.gather(worker(), worker(), worker())
print(’results from calls:’, results)

print(’Main - Starting’)
asyncio.run(do_something())
print(’Main - Done’)

In this program the do_something() function uses .

results = await asyncio.gather(worker(), worker(), worker())

To run three invocations of the worker() function in three separate Tasks and
to wait for the results of all three to be made available before they are returned as a
list of values and stored in the results variable.

This makes is very easy to work with multiple concurrent tasks and to collate their
results.

Note that in this code example the worker async function returns a random
number between 1 and 10.

The output from this program is:

Main - Starting

43.6 Running Multiple Tasks 501

do_something - will wait for worker
Worker - will take some time
Worker - will take some time
Worker - will take some time
Worker - Done it
Worker - Done it
Worker - Done it
results from calls: [5, 3, 4]
Main – Done

As you can see from this all three of the worker invocations are started but then
release the processor while they sleep. After this the three tasks wake up and complete
before the results are collected together and printed out.

43.6.2 Handling Task Results as They Are Made Available

Another option when running multiple Tasks is to handle the results as they become
available, rather than wait for all the results to be provided before continuing. This
option is supported by the asyncio.as_completed() function. This function
returns an iterator of async functions which will be served up as soon as they have
completed their work.

The for-loop construct can be used with the iterator returned by the function;
however within the for loop the code must call await on the async functions returned
so that the result of the task can be obtained. For example:

async def do_something():
print(’do_something - will wait for worker’)
Run three calls to worker concurrently and collect results
for async_func in asyncio.as_completed((worker(’A’),

worker(’B’),
worker(’C’))):

result = await async_func
print(’do_something - result:’, result)

Note that the asyncio.as_completed() function takes a container such as
a tuple of async functions.

We have also modified the worker function slightly so that a label is added to the
random number generated so that it is clear which invocation of the worker function
return which result:

async def worker(label):
print(’Worker - will take some time’)
await asyncio.sleep(1)
result = random.randint(1,10)
print(’Worker - Done it’)
return label + str(result)

When we run this program

502 43 Concurrency with AsyncIO

print(’Main - Starting’)
asyncio.run(do_something())
print(’Main - Done’)

The output is

Main - Starting
do_something - will wait for worker
Worker - will take some time
Worker - will take some time
Worker - will take some time
Worker - Done it
Worker - Done it
Worker - Done it
do_something - result: C2
do_something - result: A1
do_something - result: B10
Main – Done

As you can see from this, the results are not returned in the order that the tasks
are created, task ‘C’ completes first followed by ‘A’ and ‘B’. This illustrates the
behaviour of the asyncio.as_completed() function.

43.7 Online Resources

See the following online resources for information on Futures:

• https://docs.python.org/3/library/asyncio-task.html The Python standard Library
documentation on AsyncIO.

• https://pymotw.com/3/asyncio The Python Module of the Week page on AsyncIO.
• https://pythonprogramming.net/asyncio-basics-intermediate-python-tutorial An

AsyncIO tutorial.

43.8 Exercises

• This exercise will use the facilities in the AsyncIO library to calculate a set of
factorial numbers.

The factorial of a positive integer is the product of all positive integers less than
or equal to n. For example,

5! = 5 x 4 x 3 x 2 x 1 = 120

Note that the value of 0! is 1,
Create an application that will use the async and await keywords to calculate

the factorials of a set of numbers. The factorial function should await for 0.1 of a

https://docs.python.org/3/library/asyncio-task.html
https://pymotw.com/3/asyncio
https://pythonprogramming.net/asyncio-basics-intermediate-python-tutorial

43.8 Exercises 503

second (using asyncio.sleep(0.1) each time round the loop used to calculate
the factorial of a number.

You can use with asyncio.as_completed() or asyncio.gather() to
collect the results up.

You might also use a list comprehension to create the list of calls to the factorial
function.

The main function might look like:

def main():
print(’Main - Starting’)
asyncio.run(calculate_factorials([5, 7, 3, 6]))
print(’Main - Done’)

if __name__ == ’__main__’:
main()

Chapter 44
Performance Monitoring and Profiling

44.1 Introduction

This chapter considers performance monitoring and profiling of Python programs.
It considers why you might want to monitoring performance and memory, and the
difference between monitoring and profiling. It then presents tools available for both
monitoring and behaviour and memory profiling.

44.2 Why Monitor Performance and Memory?

The aim of both performance monitoring and profiling is to collect data on the
behaviour of a body of code. This may involve:

• counting the number of times a function is called,
• collecting statistics on memory usage,
• recording the amount of time spent in one or more functions.

This is an important activity as it can help to avoid unnecessary optimisations and
instead help to identify actual bottlenecks, memory leaks or inefficient data structures
and their use.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

505

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_44&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_44

506 44 Performance Monitoring and Profiling

There are typically two aspects to performance monitoring and profiling, and
these are data collection and visualisation of the results:

Both aspects are supported in Python although open-source/free solutions tend to
be less graphical and more report file based.

44.3 Performance Monitoring and Profiling

Performance monitoring and profiling are related concepts but serve different
purposes in the context of software analysis.

• Performance Monitoring relates to monitoring various aspects of a running
application. This can include CPU usage, memory consumption, disk I/O, network
activity and other application or system-level metrics. It therefore aims to provide
higher-level indicators about the behaviour of a system from the perspective of
its use/utilisation of various system and application specific resources. The aim
is to help to identify application or system bottlenecks or resource constraint.
Performance monitoring is typically carried out using tools and utilities that collect
and analyse the application and system-level metrics over time. The focus is on
monitoring the health and resource utilisation of the system rather than analysing
specific code-level performance.

• Profiling is a set of techniques used to analyse in detail the runtime behaviour and
characteristics of a specific body of code or application or script. Profiling involves
gathering detailed metrics about the function or method calls, memory usage,
execution time, execution paths and other relevant data to help identify specific
bottlenecks, memory leaks or other performance issues within the codebase. Thus,
profiling has a focus that is on the behaviour of the code under consideration
rather than the overall system performance. For example, a memory profiling will
typically identify how much memory is being used by a particular class and its
objects but not necessarily where those objects were created.

In summary, performance monitoring looks at the application and system-level
metrics to assess the overall health and resource utilisation of a system, while profiling
analyses the behaviour and performance of specific code sections or functions to
optimise their execution. Both performance monitoring and profiling are valuable

44.4 Performance Monitoring 507

techniques in understanding and improving the performance of a software system,
but they operate at different levels of granularity and provide distinct insights.

An important point to note is that profiling may itself introduce overheads or other-
wise impact system resources, and thus, it is recommended to profile representative
scenarios and avoid profiling in production environments unless necessary.

44.4 Performance Monitoring

There are several built-in modules that support aspects of performance monitoring.
In additional there are third-party tools (both those that are open source and free as
well as paid for commercial tools) that provide more sophisticated facilities.

The built-in tools include:

• The time module. This built-in module can be used to obtain useful time stamps
that can be used to determine the time taken for your code to perform different
actions.

• The timeit module. The timeit module provides features that can be used to
measure the execution time of code snippets. The timeit module is especially
useful when comparing the performance of different approaches or algorithms.

There are several third-party tools available for Python performance monitoring.
Some popular options include psutils, Py-Spy, New Relic, Datadog, and Prometheus.
These tools offer more advanced monitoring and profiling features, including real-
time monitoring, visualisation, and integration with monitoring platforms.

There are further tools to consider such as PyCharm Profiler and snakeviz. These
tools provide more advanced profiling features, such as visualisations, flame graphs
and real-time monitoring.

44.4.1 The Time Module

You can use the time module to add behaviour to your code that can be used
to generate performance information. This represents instrumentation added to the
code, that is the actual code base is modified in order to add to the code instruments
that can be used to generate monitoring information.

For example, you can use the time module to create a decorator that can be used
to time functions. To do this we can use the time.time() function to generate a
time stamp that can be used to produce the time taken to run a function:

from time import time
decorator to time functions
def timer(func):

def func_timer(*args, **kwargs):

508 44 Performance Monitoring and Profiling

start = time()
result = func(*args, **kwargs)
end = time()
print(func.__name__, ’executed in’, end - start)
return result

return func_timer

@timer
def sample_function():

result = 0
for i in range(100000):

result = result + (i * i * i)
return result

sample_function()

The output from this code is:

sample_function executed in 0.008463859558105469

In the above code the timer() decorator uses the time.time() function to
take a timestamp before a function is executed and then after the function finishes.
The difference is then reported as the amount of time taken to run the function.

44.4.2 The Timeit Module

It is also possible to use the built-in timeit module. This can be used to measure
the execution time of snippets of code. The timeit module provides the timeit
and repeat functions and the Timer class. The timeit function takes a function
to execute and the number of times to run that function in order to get an indication
of its execution time. The syntax for the timeit function is:

timeit(stmt, setup, timer, number)

The other parameters to the timeit function are the setup parameter which
provides any setup code required for the snippet and the timer parameter which
specifies the timer function to use. By default, the timeit.default_timer()
function is used, which provides the most accurate timing across different platforms.

The timeit() function returns the execution time of the stmt in seconds as a
floating-point number. This can then be used to generate information, on for example,
the average time taken to run the function.

The repeat() function is very similar to the timeit() function. The differ-
ence is that it returns a list of the execution times as indicated by the repeat parameter.
The syntax for the repeat() functions is:

repeat(stmt, setup, timer, repeat, number):

Here the repeat parameter indicates how many times to repeat the test.
For example, to test the performance of some function sample_function using

timeit and repeat we can write:

44.4 Performance Monitoring 509

from timeit import timeit, Timer, repeat

TIMES_TO_RUN_FUNCTION = 1000
def sample_function():

result = 0
for i in range(100000):

result = result + (i * i * i)
return result

Using the timer function
time_taken = timeit(sample_function, number=TIMES_TO_RUN_
FUNCTION)
print(f’total time: {time_taken}, average time: {time_taken /
TIMES_TO_RUN_FUNCTION}’)

print(’-’ * 25)
Using the repeat function
print(repeat(sample_function, repeat=5,
number=TIMES_TO_RUN_FUNCTION))

The output from this code is:

total time: 8.464858236999135, average time: 0.008464858236999134
- - - - - - - - - - - - -
[8.49980784500076, 8.38068166100129, 8.414855341005023,
8.5682273949933, 8.524605954007711]

As you can see from this the repeat() function performs the same basic
function as the timeit() function but repeated in this case 5 times.

The final element of the timeit module is the Timer class. This class is the
class that sits behind the timeit function. The timeit function is intended to
provide a simplified interface to the functionality offered by the Timer class. Thus
the Timer class provides a more flexible and object-oriented approach. Instead of
passing the code snippet directly to the timeit function, you create an instance of
the Timer class and specify the code to be timed.

As an example, we can create an instance of the Timer class to time the sample_
function defined above. We can then call the timeit() method on the Timer
instance in a similar manner to the way in which we called the standalone timeit()
function. For example:

print(’-’ * 25)
timer = Timer(sample_function)
print(timer.timeit(number=1000))
The output from this code is:

The primary advantage of using the Timer class is that you can create and reuse
the Timer object, adjust the setup code and customise the measurement process

- - - - - - - - - - - - -
8.36629470900516

510 44 Performance Monitoring and Profiling

The timeit module has both a command line and a programmatic interface.
The above examples utilise the programmatic interface. However we can use the
command line interface to interactively time the execution of code. This command
line interface can be used as follows:

python -m timeit ‘statement to time’

The command line options available include:

• -n N, -number = N how many times to execute ‘statement’
• -s S, -setup = S statement to be executed once initially (default pass)
• -p, -process measure process time, not wallclock time
• -u, -unit = U specify a time unit for timer output; can select nsec, usec, msec or

sec
• -v, -verbose print raw timing results; repeat for more digits precision
• -h, -help print a short usage message and exit.

44.4.3 The Psutil Module

The psutil module is a Python cross-platform library used to access system details
and process utilities. This module provides facilities that allow you to obtain system-
level performance metrics including CPU usage memory usage, Disk I/O and network
statistics.

The psutil library can be installed using pip, for example:

pip install psutil

An example of using the psutil library is given below. This code uses
the psutil.cpu_percent() and psutil.virtual_memory() functions.
The first function returns information on the CPU utilisation as a percentage. If the
percpu parameter is True, it records the data per CPU on the underlying machine.
If the interval parameter is > 0 then compares system CPU times elapsed
before and after the interval (blocking). The second function, psutil.virtual_
memory(), returns a set of statistics about system memory usage as a namedtuple
such as the total physical memory available as well as current available memory all
in bytes.

The code sample is:

import psutil as psutil

CPU_usage = psutil.cpu_percent(interval=1, percpu=True)
ram = psutil.virtual_memory()
print(f’CPU: {CPU_usage} ’)
print(f’RAM: {ram}’)

The output from this is:

44.5 Python Profiling 511

CPU: [26.7, 2.0, 25.3, 1.0, 15.2, 0.0, 11.0, 1.0]
RAM: svmem(total=17179869184, available=7709667328,
percent=55.1, used=9346764800, free=141074432,
active=7553294336, inactive=7421161472, wired=1793470464)

44.5 Python Profiling

Profiling a Python program involves measuring its execution time, memory usage,
and identifying performance bottlenecks. There are several built-in tools available
with Python to help with profiling; we will discuss cProfile below. There are also
other third-party libraries available for profiling in Python including line_profiler
and memory_profiler as well as py-spy.

44.5.1 The cProfile Module

The built-in cProfile module provides profiling facilities for Python. It is
implemented in C and has a minimal impact on your own code.

An alternative is the profile module which is implemented in pure python and
is therefore cross-platform (in situations where cProfile is not available for a specific
platform).

There are two ways in which cProfile can be used, it can be used either to instru-
ment your code (that is add profiling statements to your codebase) or via the command
line in which case the -m option is used with the python command to run the
cProfile module against a whole Python program. For example:

python -m cProfile my_program.py

This will display the profiling results, including the number of function calls, total
time spent in each function, and more.

44.5.2 The Line_Profiler Module

This module allows a developer to profile individual lines of code. It is not a built-in
module and as such it is necessary to install it into your runtime environment, for
example using pip:

pip install line_profiler

Once you have done this you can use the @profile decorator to monitor
functions. Running the program with the kernprof script generates the profiling
results:

512 44 Performance Monitoring and Profiling

kernprof -l my_program.py

This will create a my_program.py.lprof file containing the line-by-line
profiling information.

44.5.3 The Memory_Profiler Module

The memory_profiler module is the memory version of the line_profiler. It allows
you to analyse the memory used by a body of code. As with the line_profiler it is
necessary to install it into your runtime environment, for example:

pip install memory_profiler‘

as with the line_profiler you can then decorate a target function with @profile.
Running the program with the following command generates a set of profiling results:

python -m memory_profiler

for example:

python -m memory_profiler my_program.py

The output generates will include the memory usage at different points in the
program’s execution. The memory_profiler is an open-source project.

44.5.4 Additional Third-Party Libraries

There are several commonly used third-party libraries used for memory profiling
including:

• py-spy. As well as being used for performance monitoring py-spy can also be
used to provide memory profiling information.

• objgraph: It is a Python library that specialises in visualising and debugging
object references and memory usage.

• pympler: It is a library that provides tools for memory profiling and monitoring
in Python.

44.6 Profiling with cProfile

The profiling librariescProfile and Profile provide for deterministic profiling.
It is recommended to use cProfile as it is newer than the profile library and is
implemented in C and is less invasive with lower overheads.

44.6 Profiling with cProfile 513

To illustrate the use of cProfile we will use the programmatic interface
offered by the cProfile module. To do this we will define a function fibonacci()
and another function calculate(). The calculate() function runs the
fibonacci() function n times sleeping for 0.5 ms between each invocation.
In the main body of the code we then use cProfile to run the calculate func-
tion. The results from the analysis are stored into an output file called profile_
results.profile. Finally the program uses the stats. The Stats class is used for
creating reports from data generated by the profiling library classes. It is a “friend”
of those classes, and imports data either by direct access to members of the cProfile
class, or by reading in a dictionary that was emitted from the Profile class. In this
case we are loading data from the file created when we ran the cProfile.run()
function into the Stats instance.

Following this we use some of the functionality on this class to remove directory
names from the raw data, sort the statistics by time and then print them out.

import cProfile
import pstats

from random import randint
from time import sleep

def fibonacci(n):
if n < 0:

print("Incorrect input")
First Fibonacci number is 0
elif n == 1:

return 0
Second Fibonacci number is 1
elif n == 2:

return 1
else:

return fibonacci(n - 1) + fibonacci(n - 2)

def calculate(n):
print(’In calculate’)
for _ in range(0, n):

fibonacci(randint(10,30))
sleep(0.5)

print(’Done calculate’)

print(’Running cProfile’)
cProfile.run(’calculate(5)’, ’profile_results.profile’)
print(’Done profiling’)

p = pstats.Stats(’profile_results.profile’)
p.strip_dirs().sort_stats(’time’).print_stats()

The output from this code is given below (although an additional file the ‘profile_
results.profile’ us created as a side effect of running the program):

Running cProfile
In calculate
Done calculate

514 44 Performance Monitoring and Profiling

Done profiling
Fri May 19 15:17:16 2023 profile_results.profile

271225 function calls (59 primitive calls) in 2.618 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
5 2.511 0.502 2.511 0.502 {built-in method time.sleep}

271171/5 0.107 0.000 0.107 0.021 main3.py:7(fibonacci)
1 0.000 0.000 2.618 2.618 main3.py:19(calculate)
2 0.000 0.000 0.000 0.000 {built-in method builtins.print}
5 0.000 0.000 0.000 0.000

random.py:235(_randbelow_with_getrandbits)
1 0.000 0.000 2.618 2.618 {built-in method builtins.exec}
5 0.000 0.000 0.000 0.000 random.py:284(randrange)
5 0.000 0.000 0.000 0.000 random.py:358(randint)
15 0.000 0.000 0.000 0.000 {built-in method _operator.index}
8 0.000 0.000 0.000 0.000 {method 'getrandbits' of '_random.Random'

objects}
1 0.000 0.000 2.618 2.618 <string>:1(<module>)
5 0.000 0.000 0.000 0.000 {method 'bit_length' of 'int' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'

objects}

This report illustrates the amount of time that was spent within each function, the
number of times a function was called and the cumulative time spent in a function,
etc. The headings in the report mean:

• ncalls: for the number of calls.
• tottime: for the total time spent in the given function (and excluding time made

in calls to subfunctions).
• percall: is the quotient of tottime divided by ncalls.
• cumtime: is the cumulative time spent in this and all subfunctions (from invocation

till exit). This figure is accurate even for recursive functions.
• percall: is the quotient of cumtime divided by primitive calls.
• filename:lineno(function): provides the respective data of each function.

From this we can see that the built-in function time.sleep was called 5 times,
and we spent a total of 2.511 ms within that function, etc.

It is also possible use the cProfiler in command line mode on a whole Python
program or script. To do this we can use the following command style:

python -m cProfile [-o outputfile] [-s sortorder] some_program.py

where

• -o defines the profile results file instead of standard out
• -s specifies one of the sort_stats() sort values to sort the output by for example

‘name’
• -s only applies when –o is not supplied.

44.7 Memory Profiling 515

44.7 Memory Profiling

At the most basic level you can find out the size of an object using the
sys.getsizeof() function. This function will tell you in terms of byte how
much space something takes up. For example:

import sys

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

print(’int’, sys.getsizeof(1), ’bytes’)
print(’float:’, sys.getsizeof(1.0))
print(’tuple:’, sys.getsizeof((1, 2, 3)))
print(’list:’, sys.getsizeof([1, 2, 3]))
print(’set:’, sys.getsizeof({1, 2, 3}))
print(’string:’, sys.getsizeof(’Hello World’))
print(’Person:’, sys.getsizeof(Person(’Phoebe’, 22)))

In the above program we are using sys.getsizeof() to determine the size of an int,
float, tuple, list, set, string and a Person instance. The actual values returned from
this will depend on the version of Python you are using, the more recent versions
have reduced the memory overhead of things such as objects. For Python 3.11 the
results returned on macOS were:

int 28 bytes
float: 24
tuple: 64
list: 88
set: 216
string: 60
Person: 56

However, the above is quite primitive in terms of the functionality available and
being able to generate an appropriate report on memory usage. For this the module/
library such as the pimple is a better bet. To use the pympler library you need to first
install it into your own runtime using for example pip, for example using:

pip install pympler

Once you have done this you can now memory profile in your own application.
Some simple examples use the asizeof.asizeof() function, the tracker and

ClassTracker class (which tracks the lifetime of an object). For example:

from pympler import asizeof

class Person:
def __init__(self, name):

self.name = name
def __repr__(self):

516 44 Performance Monitoring and Profiling

return f’Person({self.name})’

data = [1, 2, (3, 4), ’Denise’, True, Person(’John’)]
print(f’asizeof.asizeof(data): {asizeof.asizeof(data)}’)

print(f’asizeof.asized(obj,
detail=1).format():\n{asizeof.asized(data, detail=1).format()}’)

The output from this is:

asizeof.asizeof(data): 840
asizeof.asized(obj, detail=1).format():
[1, 2, (3, 4), ’Denise’, True, Person(John)] size=840 flat=104

Person(John) size=464 flat=56
(3, 4) size=120 flat=56
’Denise’ size=56 flat=56
1 size=32 flat=32
2 size=32 flat=32
True size=32 flat=32

The code above illustrates how the asizeof module can be used to investigate
how much memory certain Python objects consume. In contrast to sys.getsizeof,
asizeof sizes objects recursively. You can use one of theasizeof functions to get the
size of these objects and all associated referents. For example asizeof.asizeof
or asizeof.asized.

Tracking the lifetime of objects of certain classes can be achieved with the
ClassTracker. This gives insight into instantiation patterns and helps to understand
how specific objects contribute to the memory footprint over time. In the following
code we

from pympler import classtracker
class Person:

def __init__(self, name):
self.name = name

def __repr__(self):
return f’Person({self.name})’

tracker = classtracker.ClassTracker()
Set up which class should be tracked
tracker.track_class(Person)

Capture statistics
tracker.create_snapshot()
p1 = Person(’John’)
p2 = Person(’Denise’)
p3 = Person(’Phoebe’)
tracker.create_snapshot()

Generate the report
tracker.stats.print_summary()

44.8 Online Resources 517

This code can generate a report on the number of instances of the class Person
created and the amount of memory they consumed. The output is:

---- SUMMARY --
active 0 B average pct

__main__.Person2 0 0 B 0 B 0%
active 0 B average pct

__main__.Person2 3 1.20 KB 410 B 0%

This shows that initially there were no instance also the class Person present.
When the second snapshot was taken there were now three instances of the class and
they took up 120 kB of memory.

44.8 Online Resources

• The memory_profiler is an open-source project; for more information see https://
pypi.org/project/memory-profiler.

• The documentation for pympler can be found at https://pympler.readthedocs.io/
en/latest/.

https://pypi.org/project/memory-profiler
https://pypi.org/project/memory-profiler
https://pympler.readthedocs.io/en/latest/
https://pympler.readthedocs.io/en/latest/

Part IX
Reactive Programming

Chapter 45
Reactive Programming Introduction

45.1 Introduction

In this chapter we will introduce the concept of Reactive Programming. Reactive
Programming is a way of writing programs that allow the system to reactive to data
being published to it. We will look at the RxPy library which provides a Python
implementation of the ReactiveX approach to Reactive programming.

45.2 What Is a Reactive Application?

A Reactive Application is one that must react to data; typically either to the presence
of new data, or to changes in existing data. The Reactive manifesto presents the key
characteristics of Reactive Systems as:

• Responsive. This means that such systems respond in a timely manner. Here
of course timely will differ depending upon the application and domain; in one
situation a second may be timely in another it may be far too slow.

• Resilient. Such systems stay responsive in the face of failure. The systems
must therefore be designed to handle failure gracefully and continue to work
appropriately following the failure.

• Elastic. As the workload grows the system should continue to be responsive.
• Message Driven. Information is exchanged between elements of a reactive system

using messages. This ensures loose coupling, isolation and location transparency
between these components.

As an example, consider an application that lists a set of Equity Stock Trade values
based on the latest market stick price data. This application might present the current
value of each trade within a table. When new market stock price data is published,

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

521

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_45&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_45

522 45 Reactive Programming Introduction

then the application must update the value of the trade within the table. Such an
application can be described as being reactive.

Reactive Programming is a programming style (typically supported by libraries)
that allows code to be written that follow the ideas of reactive systems. Of course
just because part of an application uses a Reactive Programming library does not
make the whole application reactive; indeed it may only be necessary for part of an
application to exhibit reactive behaviour.

45.3 The ReactiveX Project

ReactiveX is the best-known implementation of the Reactive Programming
paradigm.

ReactiveX is based on the Observer-Observable design pattern. However it is an
extension to this design pattern as it extends the pattern such that the approach
supports sequences of data and/or events and adds operators that allow devel-
opers to compose sequences together declaratively while abstracting away concerns
associated with low-level threads, synchronisation, concurrent data structures and
non-blocking I/O.

The ReactiveX project has implementations for many languages including RxJava,
RxScala and RxPy; this last is the version we are looking at as it is for the Python
language.

RxPy is described as:

A library for composing asynchronous and event-based programs using Observable
collections and query operator functions in Python

45.4 The Observer Pattern

The Observer Pattern is one of the Gang of Four set of patterns. The Gang of Four
Patterns (as originally described in the 1995 book entitled ‘Design patterns: elements
of reusable object-oriented software’ published by Addison-Wesley) are so-called
because this book on design patterns was written by four very famous authors, namely
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides.

The Observer pattern provides a way of ensuring that a set of objects are notified
whenever the state of another object changes. It has been widely used in a number
of languages (such as Smalltalk and Java) and can also be used with Python.

The intent of the Observer pattern is to manage a one to many relationship between
an object and those objects interested in the state, and in particular state changes, of
that object. Thus when the objects state changes, the interested (dependent) objects
are notified of that change and can take whatever action is appropriate.

There are two key roles within the Observer Pattern, these are the Observable and
the Observer roles.

45.5 Hot and Cold Observables 523

• Observable. This is the object that is responsible for notifying other objects that
a change in its state has occurred

• Observer. An Observer is an object that will be notified of the change in state
of the Observable and can take appropriate action (such as triggering a change in
their own state or performing some action).

In addition the state is typically represented explicitly:

• State. This role may be played by an object that is used to share information
about the change in state that has occurred within the Observable. This might be
as simple as a String indicating the new state of the Observable or it might be a
data-oriented object that provides more detailed information.

These are illustrated in the following figure.

In the above figure, the Observable object publishes data to a Data Stream. The
data in the Data Stream is then sent to each of the Observers registered with the
Observable. In this way data is broadcast to all Observers of an Observable.

It is common for an Observable to only publish data once there is an Observer avail-
able to process that data. The process of registering with an Observable is referred to
as subscribing. Thus an Observable will have zero or more subscribers (Observers).

If the Observable publishes data at a faster rate than can be processed by the
Observer then the data is queued via the Data Stream. This allows the Observer to
process the data received one at a time at its own pace; without any concern for data
loss (as long as sufficient memory is available for the data stream).

45.5 Hot and Cold Observables

Another concept that it is useful to understand is that of Hot and Cold Observables.

• Cold Observables are lazy Observables. That is, a Cold Observable will only
publish data if at least one Observer is subscribed to it.

• Hot Observables, by contrast, publish data whether there is an Observer subscribed
or not.

524 45 Reactive Programming Introduction

The most common situation in which a Hot Observable is created is when the
source producer represents data that may be irrelevant if not processed immediately
or may be superseded by subsequent data. For example, data published by a Stock
Market Price data feed would fall into this category. When an Observable wraps
around this data feed it can publish that data whether or not an Observer is subscribed.

It is important to know whether you have a Hot or Cold Observable because this
can impact on what you can assume about the data supplied to the Observers and thus
how you need to design your application. If it is important that no data is lost then
care is needed to ensure that the subscribers are in place before a Hot Observable
starts to publish data (whereas this is not a concern for a Cold Observable).

45.6 Differences Between Event Driven Programming
and Reactive Programming

In Event Driven programming, an event is generated in response to something
happening; the event then represents this with any associated data. For example, if
the user clicks the mouse then an associated MouseClickEvent might be gener-
ated. This object will usually hold information about the x and y coordinates of the
mouse along with which button was clicked, etc. It is then possible to associate some
behaviour (such as a function or a method) with this event so that if the event occurs,
then the associated operation is invoked and the event object is provided as a param-
eter. This is certainly the approach used in the wxPython library presented earlier
in this book:

From the above diagram, when a MoveEvent is generated the on_move()
method is called and the event is passed into the method.

In the Reactive Programming approach, an Observer is associated with an Observ-
able. Any data generated by the Observable will be received and handled by the
Observer. This is true whatever that data is, as the Observer is a handler of data
generated by the Observable rather than a handler of a specific type of data (as with
the Event driven approach).

Both approaches could be used in many situations. For example, we could have a
scenario in which some data is to be processed whenever a stock price changes.

This could be implemented using a StockPriceChangeEvent
associated with a StockPriceEventHandler. It could also
be implemented via StockPriceChangeObserverable and a
StockPriceChangeObserver. In either case one element handles the

45.8 Disadvantages of Reactive Programming 525

data generated by another element. However, the RxPy library simplifies this
process and allows the Observer to run in the same thread as, or a separate thread
from, the Observable with just a small change to the code.

45.7 Advantages of Reactive Programming

There are several advantages to the use of a Reactive Programming library these
include:

• It avoids multiple callback methods. The problems associated with the use of
callbacks are sometimes referred to as callback hell. This can occur when there
are multiple callbacks, all defined to run in response to some data being generated
or some operation completing. It can be hard to understand, maintain and debug
such systems.

• Simpler asynchronous, multithreaded execution. The approach adopted by
RxPy makes it very easy to execute operations/behaviour within a multithreaded
environment with independent asynchronous functions.

• Available Operators. The RxPy library comes prebuilt with numerous operators
that make processing the data produced by an Observable much easier.

• Data Composition. It is straight forward to compose new data streams (Observ-
ables) from data supplied by two or more other Observables for asynchronous
processing.

45.8 Disadvantages of Reactive Programming

It is easy to over complicate things when you start to chain operators together. If you
use too many operators, or too complex a set of functions with the operators, it can
become hard to understand what is going on.

Many developers think that Reactive programming is inherently multithreaded;
this is not necessarily the case; in fact RxPy (the library explored in the next two
chapters) is single threaded by default. If an application needs the behaviour to
execute asynchronously then it is necessary to explicitly indicate this.

Another issue for some Reactive programming frameworks is that it can become
memory intensive to store streams of data so that Observers can processes that data
when they are ready.

526 45 Reactive Programming Introduction

45.9 The RxPy Reactive Programming Framework

The RxPy library is a part of the larger ReactiveX project and provides an implemen-
tation of ReactiveX for Python. It is built on the concepts of Observables, Observers,
Subjects and operators. In this book we use RxPy version 3.

In the next chapter we will discuss Observables, Observers, Subjects and subscrip-
tions using the RxPy library. The following chapter will explore various RxPy
operators.

45.10 Online Resources

See the following online resources for information on reactive programming:

• https://www.reactivemanifesto.org/ The Reactive Manifesto.
• http://reactivex.io/ The ReactiveX home page.
• https://en.wikipedia.org/wiki/Design_Patterns Wikipedia page on Design

Patterns book.

https://www.reactivemanifesto.org/
http://reactivex.io/
https://en.wikipedia.org/wiki/Design_Patterns

Chapter 46
RxPy Observables, Observers
and Subjects

46.1 Introduction

In this chapter we will discuss Observables, Observers and Subjects. We also consider
how observers may or may not run concurrently. In the remainder of this chapter we
look at RxPy version 3 which is a major update from RxPy version 1 (you will
therefore need to be careful if you are looking on the web for examples as some
aspects have changed; most notably the way in which operators are chained).

46.2 RxPy Library

You will need to install the Rx library into your environment using for example pip:

pip install rx

At the time of writing the current version is 3.2.0, and this is the version that has
been used to test the examples in this chapter.

46.3 Observables in RxPy

An Observable is a Python class that publishes data so that it can be processed
by one or more Observers (potentially running in separate threads).

An Observable can be created to publish data from static data or from dynamic
sources. Observables can be chained together to control how and when data is
published, to transform data before it is published and to restrict what data is actually
published.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

527

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_46&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_46

528 46 RxPy Observables, Observers and Subjects

For example, to create an Observable from a list of values we can use the
rx.from_list() function. This function (also known as an RxPy operator) is
used to create the new Observable object:

import rx
Observable = rx.from_list([2, 3, 5, 7])

46.4 Observers in RxPy

We can add an Observer to an Observable using the subcribe() method. This
method can be supplied with a lambda function, a named function or an object
whose class implements the Observer protocol.

For example, the simplest way to create an Observer is to use a lambda function:

Subscribe a lambda function
observable.subscribe(lambda value: print(’Lambda Received’,
value))

When the Observable publishes data the lambda function will be invoked. Each
data item published will be supplied independently to the function. The output from
the above subscription for the previous Observable is:

Lambda Received 2
Lambda Received 3
Lambda Received 5
Lambda Received 7

We can also used a standard or named function as an Observer:

def prime_number_reporter(value):
print(’Function Received’, value)

Subscribe a named function
observable.subscribe(prime_number_reporter)

Note that it is only the name of the function that is used with the subscribe()
method (as this effectively passes a reference to the function into the method).

If we now run this code using the previous Observable we get:

Function Received 2
Function Received 3
Function Received 5
Function Received 7

In actual fact the subscribe() method takes four optional parameters. These
are:

• on_next [Optional] Action to invoke for each data item generated by the
Observable.

46.4 Observers in RxPy 529

• on_error [Optional] Action to invoke upon exceptional termination of the
Observable sequence.

• on_completed [Optional] Action to invoke upon graceful termination of the
Observable sequence.

• Observer [Optional] The object that is to receive notifications. You may
subscribe using an Observer or callbacks, not both.

Each of the above can be used as positional parameters or as keyword arguments,
for example:

Use lambdas to set up all three functions
observable.subscribe(

on_next = lambda value: print(’Received on_next’, value),
on_error = lambda exp: print(’Error Occurred’, exp),
on_completed = lambda: print(’Received completed

notification’)
)

The above code defines three lambda functions that will be called depending upon
whether data is supplied by the Observable, if an error occurs or when the data stream
is terminated. The output from this is:

Received on_next 2
Received on_next 3
Received on_next 5
Received on_next 7
Received completed notification

Note that the on_error function is not run as no error was generated in this example.
The final optional parameter to the subscribe() method is an Observer object.

An Observer object can implement the Observer protocol which has the following
methods on_next(), on_completed() and on_error(), for example:

class PrimeNumberObserver:
def on_next(self, value):

print(’Object Received’, value)

def on_completed(self):
print(’Data Stream Completed’)

def on_error(self, error):
print(’Error Occurred’, error)

Instances of this class can now be used as an Observer via the subscribe()
method:

Subscribe an Observer object
observable.subscribe(PrimeNumberObserver())

530 46 RxPy Observables, Observers and Subjects

The output from this example using the previous Observable is:

Object Received 2
Object Received 3
Object Received 5
Object Received 7
Data Stream Completed

Note that the on_completed() method is also called; however the on_
errror() method is not called as there were no exceptions generated.

The Observer class must ensure that the methods implemented adhere to the
Observer protocol (i.e. That the signatures of the on_next(), on_completed()
and on_error() methods are correct).

46.5 Multiple Subscribers/Observers

An Observer can have multiple Observers subscribed to it. In this case each of the
Observers is sent all of the data published by the Observable. Multiple Observers
can be registered with an Observable by calling the subscribe method multiple times.
For example, the following program has four subscribes as well as on_error and on_
completed function registered:

Create an observable using data in a list
observable = rx.from_list([2, 3, 5, 7])

class PrimeNumberObserver:
""" An Observer class """

def on_next(self, value):
print(’Object Received’, value)

def on_completed(self):
print(’Data Stream Completed’)

def on_error(self, error):
print(’Error Occurred’, error)

def prime_number_reporter(value):
print(’Function Received’, value)

print(’Set up Observers / Subscribers’)

Subscribe a lambda function
observable.subscribe(lambda value: print(’Lambda Received’,
value))
Subscribe a named function
observable.subscribe(prime_number_reporter)
Subscribe an Observer object
observable.subscribe(PrimeNumberObserver())

Use lambdas to set up all three functions

46.6 Subjects in RxPy 531

observable.subscribe(
on_next=lambda value: print(’Received on_next’, value),
on_error=lambda exp: print(’Error Occurred’, exp),
on_completed=lambda: print(’Received completed

notification’)
)

The output from this program is:

Create the Observable object
Set up Observers / Subscribers
Lambda Received 2
Lambda Received 3
Lambda Received 5
Lambda Received 7
Function Received 2
Function Received 3
Function Received 5
Function Received 7
Object Received 2
Object Received 3
Object Received 5
Object Received 7
Data Stream Completed
Received on_next 2
Received on_next 3
Received on_next 5
Received on_next 7
Received completed notification

Note how each of the subscribe is sent all of the data before the next subscriber
is sent their data (this is the default single-threaded RxPy behaviour).

46.6 Subjects in RxPy

A subject is both an Observer and an Observable. This allows a subject to receive an
item of data and then to republish that data or data derived from it.

For example, imagine a subject that receives stock market price data published
by an external (to the organisation receiving the data) source. This subject might add
a timestamp and source location to the data before republishing it to other internal
Observers.

532 46 RxPy Observables, Observers and Subjects

However, there is a subtle difference that should be noted between a Subject
and a plain Observable. A subscription to an Observable will cause an independent
execution of the Observable when data is published. Notice how in the previous
section all the messages were sent to a specific Observer before the next Observer
was sent any data at all.

However, a Subject shares the publication action with all of the subscribers, and
they will therefore all receive the same data item in a chain before the next data item.

In the class hierarchy the Subject class is a direct subclass of the Observer
class.

The following example creates a Subject that enriches the data it receives
by adding a timestamp to each data item. It then republishes the data item to any
Observers that have subscribed to it.

import rx
from rx.subject import Subject
from datetime import datetime

source = rx.from_list([2, 3, 5, 7])

class TimeStampSubject(Subject):

def on_next(self, value):
print(’Subject Received’, value)
super().on_next((value, datetime.now()))

def on_completed(self):
print(’Data Stream Completed’)
super().on_completed()

def on_error(self, error):
print(’In Subject - Error Occurred’, error)
super().on_error(error)

def prime_number_reporter(value):
print(’Function Received’, value)

print(’Set up’)

Create the Subject
subject = TimeStampSubject()
Set up multiple subscribers for the subject
subject.subscribe(prime_number_reporter)
subject.subscribe(lambda value: print(’Lambda Received’, value))
subject.subscribe(

on_next = lambda value: print(’Received on_next’, value),
on_error = lambda exp: print(’Error Occurred’, exp),
on_completed = lambda: print(’Received completed

notification’)
)

Subscribe the Subject to the Observable source
source.subscribe(subject)

46.6 Subjects in RxPy 533

print(’Done’)

Note that in the above program the Observers are added to the Subject before
the Subject is added to the source Observable. This ensures that the Observers are
subscribed before the Subject starts to receive data published by the Observable. If
the Subject was subscribed to the Observable before the Observers were subscribed
to the Subject, then all the data could have been published before the Observers were
registered with the Subject.

The output from this program is:

Set up
Subject Received 2
Function Received (2, datetime.datetime(2023, 6, 16, 14, 19, 57,
276451))
Lambda Received (2, datetime.datetime(2023, 6, 16, 14, 19, 57,
276451))
Received on_next (2, datetime.datetime(2023, 6, 16, 14, 19, 57,
276451))
Subject Received 3
Function Received (3, datetime.datetime(2023, 6, 16, 14, 19, 57,
276481))
Lambda Received (3, datetime.datetime(2023, 6, 16, 14, 19, 57,
276481))
Received on_next (3, datetime.datetime(2023, 6, 16, 14, 19, 57,
276481))
Subject Received 5
Function Received (5, datetime.datetime(2023, 6, 16, 14, 19, 57,
276504))
Lambda Received (5, datetime.datetime(2023, 6, 16, 14, 19, 57,
276504))
Received on_next (5, datetime.datetime(2023, 6, 16, 14, 19, 57,
276504))
Subject Received 7
Function Received (7, datetime.datetime(2023, 6, 16, 14, 19, 57,
276527))
Lambda Received (7, datetime.datetime(2023, 6, 16, 14, 19, 57,
276527))
Received on_next (7, datetime.datetime(2023, 6, 16, 14, 19, 57,
276527))
Data Stream Completed
Received completed notification
Done

As can be seen from this output the number 2 is received by all of the Observers
once the Subject has added the timestamp.

Finally, note that therx.subject was previously known as therx.subjects
module.

534 46 RxPy Observables, Observers and Subjects

46.7 Observer Concurrency

By default RxPy uses a single-threaded model; that is Observables and Observers
execute in the same thread of execution. However, this is only the default as it is the
simplest approach.

It is possible to indicate that when a Observer subscribes to an Observ-
able that it should run in a separate thread using the scheduler keyword
parameter on the subscribe() method. This keyword is given an appro-
priate scheduler such as the rx.scheduler.NewThreadScheduler (formerly known as
rx.concurrency.NewThreadScheduler). This scheduler will ensure that
the Observer runs in a separate thread.

To see the difference look at the following two programs. The main difference
between the programs is the use of specific schedulers:

import rx

Set up an observable
observable = rx.from_list([2, 3, 5])

Subscribe three observers
observable.subscribe(lambda v: print(’Lambda1 Received’, v))
observable.subscribe(lambda v: print(’Lambda2 Received’, v))
observable.subscribe(lambda v: print(’Lambda3 Received’, v))

The output from this first version is given below:

Lambda1 Received 2
Lambda1 Received 3
Lambda1 Received 5
Lambda2 Received 2
Lambda2 Received 3
Lambda2 Received 5
Lambda3 Received 2
Lambda3 Received 3
Lambda3 Received 5

The subscribe() method takes an optional keyword parameter called
scheduler that allows a scheduler object to be provided.

Now if we specify a few different schedulers we will see that the effect is to run
the Observers concurrently with the resulting output being interwoven:

import rx
from rx.scheduler import NewThreadScheduler,
ThreadPoolScheduler, ImmediateScheduler

observable = rx.from_list([2, 3, 5])

observable.subscribe(lambda v: print(’Lambda1 Received’, v),
scheduler=ThreadPoolScheduler(3))
observable.subscribe(lambda v: print(’Lambda2 Received’, v),
scheduler=ImmediateScheduler())

46.7 Observer Concurrency 535

observable.subscribe(lambda v: print(’Lambda3 Received’, v),
scheduler=NewThreadScheduler())

As the observable runs in a separate thread we need
to ensure that the main thread does not terminate
input(’Press enter to finish’)

Note that we have to ensure that the main thread running the program does not
terminate (as all the Observables are now running in their own threads) by waiting
for user input. The output from this version is:

Lambda2 Received 2
Lambda1 Received 2
Lambda2 Received 3
Lambda2 Received 5
Lambda1 Received 3
Lambda1 Received 5
Press enter to finish
Lambda3 Received 2
Lambda3 Received 3
Lambda3 Received 5

By default the scheduler keyword on the subscribe() method defaults to
None indicating that the current thread will be used for the subscription to the
Observable.

Also note that the rx.scheduler module was previously known as
rx.concurrency.

46.7.1 Available Schedulers

To support different scheduling strategies the RxPy library provides several different
schedulers.

The following schedulers are available in RxPy:

• rx.scheduler.ImmediateScheduler This schedules an action for
immediate execution.

• rx.scheduler.CurrentThreadScheduler This schedules activity for
the current thread.

• rx.scheduler.TimeoutScheduler This scheduler works via a timed
callback.

• rx.scheduler.NewThreadScheduler creates a scheduler for each unit
of work on a separate thread.

• x.scheduler.ThreadPoolScheduler. This is a scheduler that utilises a
thread pool to execute work. This scheduler can act as a way of throttling the
amount of work carried out concurrently.

The rx.scheduler.eventloop module also defines the following sched-
ulers:

536 46 RxPy Observables, Observers and Subjects

• IOLoopScheduler A scheduler that schedules work via the Tornado I/O main
event loop.

• AsyncIOScheduler A scheduler that schedules work with AsyncIO.

Note that the package formerly known as rx.concurrency.
mainloopscheduler has been split into two parts,
rx.scheduler.mainloop and rx.scheduler.eventloop.

46.8 Online Resources

See the following online resources for information on RxPy:

• https://github.com/ReactiveX/RxPY The RxPy Git hub repository.
• https://rxpy.readthedocs.io/en/latest/ Documentation for the RxPy library.
• https://rxpy.readthedocs.io/en/latest/operators.html Lists of the available RxPy

operators.

46.9 Exercises

Given the following set of tuples representing stock /. Equity prices:

stocks = ((’APPL’, 12.45), (’IBM’, 15.55), (’MSFT’, 5.66), (’APPL’,
13.33))

Write a program that will create an Observable based on the stocks data.
Next subscribe three different observers to the Observable. The first should print

out the stock price, the second should print out the name of the stock, and the third
should print out the entire tuple.

https://github.com/ReactiveX/RxPY
https://rxpy.readthedocs.io/en/latest/
https://rxpy.readthedocs.io/en/latest/operators.html

Chapter 47
RxPy Operators

47.1 Introduction

In this chapter we will look at the types of operators provided by RxPy that can be
applied to the data emitted by an Observable.

47.2 Reactive Programming Operators

Behind the interaction between an Observable and an Observer is a data stream. That
is the Observable supplies a data stream to an Observer that consumes/processes
that stream. It is possible to apply an operator to this data stream that can be used
to to filter, transform and generally refine how and when the data is supplied to the
Observer.

The operators are mostly defined in the rx.operators module, for example
rx.operators.average(). However it is common to use an alias for this such
that the operators module is called op, such as

from rx import operators as op

This allows for a short-hand form to be used when referencing an operator, such
as op.average().

Many of the RxPy operators execute a function which is applied to each of the data
items produced by an Observable. Others can be used to create an initial Observable
(indeed you have already seen these operators in the form of the from_list()
operator). Another set of operators can be used to generate a result based on data
produced by the Observable (such as the sum() operator).

In fact RxPy provides a wide variety of operators, and these operators can be
categorised as follows:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_47&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_47

538 47 RxPy Operators

• Creational,
• Transformational,
• Combinatorial,
• Filters,
• Error handlers,
• Conditional and Boolean operators,
• Mathematical,
• Connectable.

Examples of some of these categories are presented in the rest of this section.

47.3 Piping Operators

To apply an operator other than a creational operator to an Observable it is necessary
to create a pipe. A pipe is essentially a series of one or more operations that can
be applied to the data stream generated by the Observable. The result of applying
the pipe is that a new data stream is generated that represents the results produced
following the application of each operator in turn. This is illustrated below:

To create a pipe the Observable.pipe() method is used. This method takes
a comma delimited list of one or more operators and returns a data stream. Observers
can then subscribe to the pipe’s data stream. This can be seen in the examples given
in the rest of this chapter for transformations, filters, mathematical operators, etc.

47.5 Transformational Operators 539

47.4 Creational Operators

You have already seen an example of a creational operator in the examples presented
earlier in this chapter. This is because the rx.from_list() operator is an
example of a creational operator. It is used to create a new Observable based on
data held in a list like structure.

A more generic version of from_list() is the from_() operator. This oper-
ator takes an iterable and generates an Observable based on the data provided by the
iterable. Any object that implements the iterable protocol can be used including user
defined types. There is also an operator from_iterable(). All three operators
do the same thing and you can choose which to use based on which provides the
most semantic meaning in your context.

All three of the following statements have the same effect:

source = rx.from_([2, 3, 5, 7])
source = rx.from_iterable([2, 3, 5, 7])
source = rx.from_list([2, 3, 5, 7])

This is illustrated pictorially below:

Another creational operator is the rx.range() operator. This operator generates
an observable for a range of integer numbers. The range can be specified with our
without a starting value and with or within an increment. However the maximum
value in the range must always be provided, for example:

obs1 = rx.range(10)
obs2 = rx.range(0, 10)
obs3 = rx.range(0, 10, 1)

47.5 Transformational Operators

There are several transformational operators defined in the rx.operators module
including rx.operators.map() and rx.operators.flat_map().

540 47 RxPy Operators

The rx.operators.map() operator applies a function to each data item
generated by an Observable.

The rx.operators.flat_map() operator also applies a function to each
data item but then applies a flatten operation to the result. For example, if the result
is a list of lists then flat_map will flatten this into a single list. In this section we
will focus on the rx.operators.map() operator.

The rx.operators.map() operator allows a function to be applied to all data
items generated by an Observable. The result of this function is then returned as the
result of the map() operators Observable. The function is typically used to perform
some form of transformation to the data supplied to it. This could be adding one to
all integer values, converting the format of the data from XML to JSON, enriching
the data with additional information such as the time the data was acquired and who
the data was supplied by etc.

In the example given below we are transforming the set of integer values supplied
by the originalObservable into strings. In the diagram these strings include quotes
around them to highlight they are in fact a string:

This is quite typical of the use of a transformation operator; that is to change the
data from one format to another or to add information to the data.

The code used to implement this scenario is given below. Note the use of the
pipe() method to apply the operator to the data stream generated by the Observable:

Apply a transformation to a data source to convert
integers into strings
import rx
from rx import operators as op

Set up a source with a map function
source = rx.from_list([2, 3, 5, 7]).pipe(

op.map(lambda value: "’" + str(value) + "’")
)

Subscribe a lambda function
source.subscribe(lambda value: print(’Lambda Received’,

value,
’ is a string ’,
isinstance(value, str)))

47.6 Combinatorial Operators 541

The output from this program is:

Lambda Received ’2’ is a string True
Lambda Received ’3’ is a string True
Lambda Received ’5’ is a string True
Lambda Received ’7’ is a string True

47.6 Combinatorial Operators

Combinatorial operators combine together multiple data items in some way. One
example of a combinatorial operator is the rx.merge() operator. This operator
merges the data produced by two Observables into a single Observable data stream.
For example:

In the above diagram two Observables are represented by the sequence 2, 3, 5, 7
and the sequence 11, 13, 16, 19. These Observables are supplied to the merge operator
that generates a single Observable that will supply data generated from both of the
original Observables. This is an example of an operator that does not take a function
but instead takes two Observables.

The code representing the above scenario is given below:

An example illustrating how to merge two data sources
import rx

Set up two sources
source1 = rx.from_list([2, 3, 5, 7])
source2 = rx.from_list([10, 11, 12])

Merge two sources into one
rx.merge(source1, source2)\

.subscribe(lambda v: print(v, end=’,’))

Notice that in this case we have subscribed directly to the Observable returned by
the merge() operator and have not stored this in an intermediate variable (this was a
design decision and either approach is acceptable).

542 47 RxPy Operators

The output from this program is presented below:

2,3,5,7,10,11,12,

Notice from the output the way in which the data held in the original Observables
is intertwined in the output of the Observable generated by the merge() operator.

47.7 Filtering Operators

There are several operators in this category including
rx.operators.filter(), rx.operators.first(),
rx.operators.last() and rx.operators.distinct().

The filter() operator only allows those data items to pass through that pass
some test expression defined by the function passed into the filter. This function must
return True or False. Any data item that causes the function to return True is
allowed to pass through the filter.

For example, let us assume that the function passed into filter() is designed
to only allow even numbers through. If the data stream contains the numbers 2, 3,
5, 7, 4, 9 and 8 then the filter() will only emit the numbers 2, 4 and 8. This is
illustrated below:

The following code implements the above scenario:

Filter source for even numbers
import rx
from rx import operators as op

Set up a source with a filter
source = rx.from_list([2, 3, 5, 7, 4, 9, 8]).pipe(

op.filter(lambda value: value % 2 == 0)
)

Subscribe a lambda function
source.subscribe(lambda value: print(’Lambda Received’, value))

47.8 Mathematical Operators 543

In the above code the rx.operators.filter() operator takes a lambda
function that will verify if the current value is even or not (note this could have been
a named function or a method on an object, etc.). It is applied to the data stream
generated by the Observable using the pipe() method. The output generated by this
example is:

Lambda Received 2
Lambda Received 4
Lambda Received 8

The first() and last() operators emit only the first and last data item
published by the Observable.

The distinct() operator suppresses duplicate items being published by the
Observable. For example, in the following list used as the data for the Observable,
the numbers 2 and 3 are duplicated:

Use distinct to suppress duplicates
source = rx.from_list([2, 3, 5, 2, 4, 3, 2]).pipe(

op.distinct()
)

Subscribe a lambda function
source.subscribe(lambda value: print(’Received’, value))

However, when the output is generated by the program all duplicates have been
suppressed:

Received 2
Received 3
Received 5
Received 4

47.8 Mathematical Operators

Mathematical and aggregate operators perform calculations on the data stream
provided by an Observable. For example, the rx.operators.average() oper-
ator can be used to calculate the average of a set of numbers published by an
Observable. Similarly rx.operators.max() can select the maximum value,
rx.operators.min() the minimum value and rx.operators.sum() will
total all the numbers published, etc.

An example using the rx.operators.sum() operator is given blow:

Example of summing all the values in a data stream
import rx
from rx import operators as op

544 47 RxPy Operators

Set up a source
observable = rx.from_list([2, 3, 5, 7])
Apply sum function to initial source
observable2 = observable.pipe(

op.sum()
)

Subscribe to the result generated by sum
observable2.subscribe(lambda v: print(v))

The output from the rx.operators.sum() operator is the total of the data
items published by the Observable (in this case the total of 2, 3, 5 and 7). The Observer
function that is subscribed to the rx.operators.sum() operators Observable
will print out this value:

17

However, in some cases it may be useful to be notified of the intermediate running
total as well as the final value so that other operators down the chain can react to
these subtotals. This can be achieved using the rx.operators.scan() operator.
The rx.operators.scan() operator is actually a transformational operator but
can be used in this case to provide a mathematical operation. The scan() operator
applies a function to each data item published by an Observable and generates its own
data item for each value received. Each generated value is passed to the next invo-
cation of the scan() function as well as being published to the scan() operators
Observable data stream. The running total can thus be generated from the previous
subtotal and the new value obtained. This is shown below:

import rx
from rx import operators as op
Rolling or incremental sum
rx.from_([2, 3, 5, 7]).pipe(

op.scan(lambda subtotal, i: subtotal+i)
).subscribe(lambda v: print(v))

The output from this example is:

2
5
10
17

This means that each subtotal is published as well as the final total.

47.9 Chaining Operators

An interesting aspect of the RxPy approach to data stream processing is that it is
possible to apply multiple operators to the data stream produced by an Observable.

47.9 Chaining Operators 545

The operators discussed earlier actually return another Observable. This new
Observable can supply its own data stream based on the original data stream and
the result of applying the operator. This allows another operator to be applied in
sequence to the data produced by the new Observable. This allows the operators to
be chained together to provide sophisticated processing of the data published by the
original Observable.

For example, we might first start off by filtering the output from an Observable
such that only certain data items are published. We might then apply a transformation
in the form of a map() operator to that data, as shown below:

Note the order in which we have applied the operators; we first filter out data
that is not of interest and then apply the transformation. This is more efficient than
apply the operators the other way around as in the above example we do not need to
transform the odd values. It is therefore common to try and push the filter operators
as high up the chain as possible.

The code used to generate the chained set of operators is given below. In this case
we have used lambda functions to define the filter() function and the map()
function. The operators are applied to the Observable obtained from the list supplied.
The data stream generated by the Observable is processed by each of the operators
defined in the pipe. As there are now two operators the pipe contains both operators
and acts a pipe down which the data flows.

The list used as the initial source of the Observables data contains a sequence of
event and odd numbers. The filter() function selects only even numbers and
the map() function transforms the integer values into strings. We then subscribe
an Observer function to the Observable produced by the transformational map()
operator.

Example of chaining operators together
import rx
from rx import operators as op

546 47 RxPy Operators

Set up a source with a filter
source = rx.from_list([2, 3, 5, 7, 4, 9, 8])
pipe = source.pipe(

op.filter(lambda value: value % 2 == 0),
op.map(lambda value: "’" + str(value) + "’")

)

Subscribe a lambda function
pipe.subscribe(lambda value: print(’Received’, value))

The output from this application is given below:

Received ’2’
Received ’4’
Received ’8’

This makes it clear that only the three even numbers (2, 4 and 8) are allowed
through to the map() function.

47.10 Online Resources

See the following online resources for information on RxPy:

• https://rxpy.readthedocs.io/en/latest/ Documentation for the RxPy library.
• https://rxpy.readthedocs.io/en/latest/operators.html Lists of the available RxPy

operators.

47.11 Exercises

Given the following set of tuples representing stock /. Equity prices:

stocks = ((’APPL’, 12.45), (’IBM’, 15.55), (’MSFT’, 5.66), (’APPL’,
13.33))

Provide solutions to the following:

• Select all the ‘APPL’ stocks.
• Select all stocks with a price over 15.00
• Find the average price of all ‘APPL’ stocks.

Now use the second set of tuples and merge them with the first set of stock prices:

stocks2 = ((’GOOG’, 8.95), (’APPL’, 7.65), (’APPL’, 12.45),
(’MSFT’, 5.66), (’GOOG’, 7.56), (’IBM’, 12.76))

https://rxpy.readthedocs.io/en/latest/
https://rxpy.readthedocs.io/en/latest/operators.html

47.11 Exercises 547

Convert each tuple into a list and calculate how much 25 shares in that stock
would be, print this out as the result).

• Find the highest value stock.
• Find the lowest value stock.
• Only publish unique data times (i.e. suppress duplicates).

Part X
Network Programming

Chapter 48
Introduction to Sockets and Web Services

48.1 Introduction

In the following two chapters we will explore socket-based and web service
approaches to interprocess communications. These processes may be running on
the same computer or different computers on the same local area network or may be
geographically far apart. In all cases information is sent by one program running in
one process to another program running in a separate process via internet sockets.

48.2 Sockets

Socket-based communication, or rather Internet Protocol (IP) sockets provide a
programming interface to the network protocol stack that is managed by the under-
lying operating system. Using such an API means that the programmer is abstracted
away from the low-level details of how data is exchanged between processes on
(potentially) different computers and can instead focus on the higher level aspects
of their solution.

There are a number of different types of IP socket available; however the focus
in this book is on Stream Sockets. A stream socket uses the Transmission Control
Protocol (TCP) to send messages. Such a socket is often referred to as a TCP/IP
socket.

TCP provides for ordered and reliable transmission of data across the connection
between two devices (or hosts). This can be important as TCP guarantees that for
every message sent; that every message will not only arrive at the receiving host, but
that the messages will arrive in the correct order.

A common alternative to the TCP is the User Datagram Protocol (or UDP). UDP
does not provide any delivery guarantees (that is messages can be lost or may arrive
out of order). However, UDP is a simpler protocol and can be particularly useful for

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_48&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_48

552 48 Introduction to Sockets and Web Services

broadcast systems, where multiple clients may need to receive the data published by
a server host (particularly if data loss is not an issue).

48.3 Web Services

A Web Service is a service offered by a host computer that can be invoked by a
remote client using the Hypertext Transfer Protocol (HTTP). HTTP can be run over
any reliable stream transport protocol, although it is typically used over TCP/IP. It
was originally designed to allow data to be transferred between a HTTP server and a
web browser so that the data could be presented in a human readable form to a user.
However, when used with a web service it is used to support program to program
communication between a client and a server using machine-readable data formats.
Currently this format is most typically Java Script Object Notation (JSON) although
in the past eXtensible Markup Language (XML) was often used.

48.4 Addressing Services

Every device (host) connected to the internet has a unique identity (we are ignoring
private networks here). This unique identity is represented as an IP address. Using
an IP address we can connect a socket to a specific host anywhere on the internet.
It is therefore possible to connect to a whole range of device types in this way from
printers to cash tills to fridges as well as servers, mainframes and PCs, etc.

IP addresses have a common format such as 144.124.16.237. An IP version 4
address is always a set of four numbers separated by full stops. Each number can be in
the range 0–255, so the full range of IP addresses is from 0.0.0.0 to 255.255.255.255.

An IP address can be divided up into two parts; the part indicating the network
on which the host is connected and the host’s ID, for example:

Thus:

• The Network ID elements of the IP address identify the specific network on which
the host is currently located.

48.5 Localhost 553

• The Host ID is the part of the IP address that specifies a specificities device on
the network (such as your computer).

On any given network there may be multiple hosts, each with their own host ID
but with a shared network ID. For example, on a private home network there may
be:

• 192.168.1.1 Natalia’s laptop
• 192.168.1.2 Adam’s PC
• 192.168.1.3 Home Printer
• 192.168.1.4 Smart TV.

In many ways the network id and host id elements of an IP address are like the
postal address for a house on a street. The street may have a name, for example
Coleridge Avenue and there may be multiple houses on the street. Each house
has a unique number; thus 10 Coleridge Avenue is uniquely differentiated from
20 Coleridge Avenue by the house number.

At this point you may be wondering where the URLs you see in your web browser
come into play (such as www.bbc.co.uk). These are textual names that actually map
to an IP address. The mapping is performed by something called a Domain Name
System (or DNS) server. A DNS server acts as a lookup service to provide the actual
IP address for a particular textual URL name. The presence of an english textual
version of a host address is because humans are better at remembering (a hopefully)
meaningful name rather than what might appear to be a random sequence of numbers.

There are several web sites that can be used to see these mappings (and one is
given at the end of this chapter). Some examples of how the english textual name
maps to an IP address are given below:

• www.aber.ac.uk maps to 144.124.16.237
• www.uwe.ac.uk maps to 164.11.132.96
• www.bbc.net.uk maps to 212.58.249.213
• www.gov.uk maps to 151.101.188.144.

Note that these mappings were correct at the time of writing; they can change as
new entries can be provided to the DNS servers causing a particular textual name to
map to a different physical host.

48.5 Localhost

There is a special IP address which is usually available on a host computer and is
very useful for developers and testers. This is the IP address:

127.0.0.1

It is also known as localhost which is often easier to remember.

http://www.bbc.co.uk
http://www.aber.ac.uk
http://www.uwe.ac.uk
http://www.bbc.net.uk
http://www.gov.uk

554 48 Introduction to Sockets and Web Services

Localhost (and 127.0.0.1) is used to refer to the computer you are currently
on when a program is run; that is it is your local host computer (hence the name
localhost).

For example, if you start up a socket server on your local computer and want
a client socket program, running on the same computer, to connect to the server
program; you can tell it to do so by getting it to connect to localhost.

This is particularly useful when either you don’t know the IP address of your local
computer or because the code may be run on multiple different computers each of
which will have their own IP address. This is particularly common if you are writing
test code that will be used by developers when running their own tests on different
developer (host) machines.

We will be using localhost in the next two chapters as a way of specifying where
to look for a server program.

48.6 Port Numbers

Each internet device/host can typically support multiple processes. It is therefore
necessary to ensure that each process has its own channel of communications. To do
this each host has available to it multiple ports that a program can connect too. For
example port 80 is often reserved for HTTP web servers, while port 25 is reserved
for SMTP servers. This means that if a client wants to connect to a HTTP server on
a particular computer then it must specify port 80 not port 25 on that host.

A port number is written after the IP address of the host and separated from the
address by a colon, for example:

• www.aber.ac.uk:80 indicates port 80 on the host machine which will typically be
running a HTTP server, in this case for Aberystwyth University.

• localhost:143 this indicates that you wish to connect to port 143 which is typically
reserved for an IMAP (Internet Message Access Protocol) server on your local
machine.

• www.uwe.ac.uk:25 this indicates port 25 on a host running at the University of
the West of England, Bristol. Port 25 is usually reserved for Simple Mail Transfer
Protocol (SMTP) servers.

Port numbers in the IP system are 16 bit numbers in the range 0–65,536. Generally,
port numbers below 1024 are reserved for predefined services (which means that you
should avoid using them unless you wish to communicate with one of those services
such as telnet, SMTP mail, ftp, etc.). Therefore it is typically to choose a port number
above 1024 when setting up your won services.

http://www.aber.ac.uk:80
http://www.uwe.ac.uk:25

48.8 Sockets and Web Services in Python 555

48.7 IPv4 Versus IPv6

What we have described in this chapter in terms of IP addresses is in fact based on
the Internet Protocol version 4 (aka IPv4). This version of the Internet Protocol was
developed during the 1970s and published by the Internet Engineering Task Force
(IETF) in September 1981 (replacing an earlier definition published in January 1980).
This version of the standard uses 32 binary bits for each element of the host address
(hence the range of 0 to 255 for each of their parts of the address). This provides a
total of 4.29 billion possible unique addresses. This seemed a huge amount in 1981
and certainly enough for what was imagined at the time for the internet.

Since 1981 the internet has become the backbone to not only the World Wide Web
itself, but also to the concept of the Internet of Things (in which every possible device
might be connected to the internet from your fridge, to your central heating system
to your toaster). This potential explosion in internet addressable devices/hosts leads
in the mid-1990s to concerns about the potential lack of internet addresses using
IPv4. The IETF therefore designed a new version of the Internet Protocol; Internet
Protocol version 6 (or IPv6). This was ratified as an Internet Standard in July 2017.

IPv6 uses a 128 bit address for each element in a hosts address. It also uses eight
number groups (rather than 4) which are separated by a colon. Each number group
has four hexadecimal digits.

The following illustrates what an IPv6 address looks like:

2001:0DB8:AC10:FE01:EF69:B5ED:DD57:2CLE

Uptake of the IPv6 protocol has been slower than was originally expected; this is
in part because the IPv4 and IPv6 have not been designed to be interoperable but also
because the utilisation of the IPv4 addresses has not been as fast as many originally
feared (partly due to the use of private networks). However, over time this is likely
to change as more organisations move over to using the IPv6.

48.8 Sockets and Web Services in Python

The next two chapters discuss how sockets and web services can be implemented in
Python. The first chapter discusses both general sockets and HTTP server sockets.
The second chapter looks at how the Flask library can be used to create web services
that run over HTTP using TCP/IP sockets.

556 48 Introduction to Sockets and Web Services

48.9 Online Resources

See the following online resources for information

• https://en.wikipedia.org/wiki/Network_socket Wikipedia page on Sockets.
• https://en.wikipedia.org/wiki/Web_service Wikipedia page on Web Services.
• https://codebeautify.org/website-to-ip-address Provides mappings from URLs to

IP addresses.
• https://en.wikipedia.org/wiki/IPv4 Wikipedia page on IPv4.
• https://en.wikipedia.org/wiki/IPv6 Wikipedia page on IPv6.
• https://www.techopedia.com/definition/28503/dns-server For an introduction

to DNS.

https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/Web_service
https://codebeautify.org/website-to-ip-address
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv6
https://www.techopedia.com/definition/28503/dns-server

Chapter 49
Sockets in Python

49.1 Introduction

A socket is an end point in a communication link between separate processes. In
Python, sockets are objects which provide a way of exchanging information between
two processes in a straightforward and platform independent manner.

In this chapter we will introduce the basic idea of socket communications and
then present a simple socket server and client application.

49.2 Socket to Socket Communication

When two operating system level processes wish to communicate, they can do so
via sockets. Each process has a socket which is connected to the other sockets. One
process can then write information out to the socket, while the second process can
read information in from the socket.

Associated with each socket are two streams, one for input and one for output.
Thus, to pass information from one process to another, you write that information
out to the output stream of one socket object and read it from the input stream of
another socket object (assuming the two sockets are connected).

Several different types of sockets are available; however in this chapter we will
focus on TCP/IP sockets. Such a socket is a connection-oriented socket that will
provide a guarantee of delivery of data (or notification of the failure to deliver the
data). TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a suite of
communication protocols used to interconnect network devices on the Internet or in a
private Intranet. TCP/IP actually specifies how data is exchanged between programs
over the Internet by providing end-to-end communications that identify how the data
should be broken down into packets, addressed, transmitted, routed and received at
the destination.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

557

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_49&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_49

558 49 Sockets in Python

49.3 Setting up a Connection

To set up the connection, one process must be running a program that is waiting for
a connection, while the other must try to connect up to the first program. The first is
referred to as a server socket while the second just as a socket.

For the second process to connect to the first (the server socket) it must know
what machine the first is running on and which port it is connected to.

For example, in the above diagram the server socket connects to port 8084. In
turn the client socket connects to the machine on which the server is executing and to
port number 8084 on that machine. Nothing happens until the server socket accepts
the connection. At that point the sockets are connected, and the socket streams are
bound to each other. This means that the server’s output stream is connected to the
client socket input stream and vice versa.

49.4 An Example Client Server Application

49.4.1 The System Structure

The above diagram illustrates the basic structure of the system we are trying to build.
There will be a server object running on one machine and a client object running
on another. The client will connect up to the server using sockets in order to obtain
information.

The actual application being implemented in this example is an address book look
up application. The addresses of employees of a company are held in a dictionary.
This dictionary is set up in the server program but could equally be held in a database,
etc. When a client connects up to the server, it can obtain an employees’ office address.

49.4 An Example Client Server Application 559

49.4.2 Implementing the Server Application

We shall describe the server application first. This is the Python application program
that will service requests from client applications. To do this, it must provide a server
socket for clients to connect to. This is done by first binding a server socket to a port on
the server machine. The server program must then listen for incoming connections.

The listing presents the source code for the Server program.

import socket

def main():
Setup names and offices
addresses = {’JOHN’: ’C45’,

’DENISE’: ’C44’,
’PHOEBE’: ’D52’,
’ADAM’: ’B23’}

print(’Starting Server’)
print(’Create the socket’)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print(’Bind the socket to the port’)
server_address = (’localhost’, 8084)
print(’Starting up on’, server_address)
sock.bind(server_address)

specifies the number of connections
before refusing new connections.
print(’Listen for incoming connections’)
sock.listen(1)
while True:

print(’Waiting for a connection’)
connection, client_address = sock.accept()
try:

print(’Connection from’, client_address)
while True:

data = connection.recv(1024).decode()
print(’Received: ’, data)
if data:

key = str(data).upper()
response = addresses[key]
print(’sending data back to the client: ’,

response)
connection.sendall(response.encode())

else:
print(’No more data from’, client_address)
break

finally:
connection.close()

if __name__ == ’__main__’:
main()

560 49 Sockets in Python

The server in the above listing sets up the addresses to contain a dictionary of
the names and addresses.

It then waits for a client to connect to it. This is done by creating a socket and
binding it to a specific port (in this case port 8084) using:

print(’Create the socket’)
sock = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)
print(’Bind the socket to the port’)
server_address = (’localhost’,

8084)

The construction of the socket object is discussed in more detail in the next section.
Note that you could use socket.gethostname() instead of ‘localhost’ as this
only works if both the server and the line tare on the same machine—which is fine
for testing but unlikely to work in the real world. For example you could rewrite the
above as:

server_address = (socket.gethostname(),
8084)

Next the server listens for a connection from a client. Note that the
sock.listen() method takes the value 1 indicating that it will handle one
connection at a time.

An infinite loop is then set up to run the server. When a connection is made from
a client, both the connection and the client address are made available. While there
is data available from the client, it is read using the recv function. Note that the data
received from the client is assumed to be a string. This is then used as a key to look
the address up in the address dictionary.

Once the address is obtained it can be sent back to the client. In Python 3 it is
necessary to decode() and encoded() the string format the raw data transmitted
via the socket streams.

Note you should always close a socket when you have finished with it.

49.4.3 Socket Types and Domains

When we created the socket class above, we passed in two arguments to the socket
constructor:

socket(socket.AF_INET, socket.SOCK_STREAM)

To understand the two values passed into the socket() constructor, it is neces-
sary to understand that sockets are characterised according to two properties: their
domain and their type.

The domain of a socket essentially defines the communications protocols that are
used to transfer the data from one process to another. It also incorporates how sockets
are named (so that they can be referred to when establishing the communication).

49.4 An Example Client Server Application 561

Two standard domains are available on Unix systems; these are AF_UNIX
which represents intra-system communications, where data is moved from process to
process through kernel memory buffers. AF_INET represents communication using
the TCP/IP protocol suite; in which processes may be on the same machine or on
different machines.

• A socket’s type indicates how the data is transferred through the socket. There are
essentially two options here.

• Datagram which sockets support a message-based model where no connection is
involved, and communication is not guaranteed to be reliable.

• Stream sockets that support a virtual circuit model, where data is exchanged as a
byte stream and the connection is reliable.

Depending on the domain, further socket types may be available, such as those
that support message passing on a reliable connection.

49.4.4 Implementing the Client Application

The client application is essentially a very simple program that creates a link to the
server application. To do this, it creates a socket object that connects to the servers’
host machine, and in our case this socket is connected to port 8084.

Once a connection has been made the client can, then send the encoded message
string to the server. The server will then send back a response which the client must
decode. It then closes the connection.

The implementation of the client is given below:

import socket

def main():
print(’Starting Client’)
print(’Create a TCP/IP socket’)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print(’Connect the socket to the server port’)
server_address = (’localhost’, 8084)
print(’Connecting to: ’, server_address)
try:

sock.connect(server_address)
print(’Connected to server’)
print(’Send data’)
message = ’John’
print(’Sending: ’, message)
sock.send(message.encode())
data = sock.recv(1024).decode()
print(’Received from server: ’, data)

except ConnectionRefusedError as err:
print(f’Error connecting to server: {err}’)

except Exception as exp:
print(f’Something went wrong: {exp}’)

562 49 Sockets in Python

finally:
print(’Closing socket’)
sock.close()

if __name__ == ’__main__’:
main()

The output from the two programs needs to be considered together.

As you can see from this diagram, the server waits for a connection from the
client. When the client connects to the server, the server waits to receive data from
the client. At this point the client must wait for data to be sent to it from the server.
The server then sets up the response data and sends it back to the client. The client
receives this and prints it out and closes the connection. In the meantime, the server
has been waiting to see if there is any more data from the client; as the client closes
the connection the server knows that the client has finished and returns to waiting
for the next connection.

49.5 The Socketserver Module

In the above example, the server code is more complex than the client; and this is
for a single threaded server; life can become much more complicated if the server
is expected to be a multithreaded server (that is a server that can handle multiple
requests from different clients at the same time).

However, the serversocket module provides a more convenient, object-
oriented approach to creating a server. Much of the boiler plate code needed in

49.5 The Socketserver Module 563

such applications is defined in classes, with the developer only having to provide
their own classes or override methods to define the specific functionality required.

There are five different server classes defined in the socketserver module.

• BaseServer is the root of the server class hierarchy; it is not really intended
to be instantiated and used directly. Instead it is extended by TCPServer and
other classes.

• TCPServer uses TCP/IP sockets to communicate and is probably the most
commonly used type of socket server.

• UDPServer provides access to datagram sockets.
• UnixStreamServer and UnixDatagramServer use Unix-domain

sockets and are only available on Unix platforms.

Responsibility for processing a request is split between a server class and a request
handler class. The server deals with the communication issues (listening on a socket
and port, accepting connections, etc.), and the request handler deals with the request
issues (interpreting incoming data, processing it, sending data back to the client).

This division of responsibility means that in many cases you can simply use one
of the existing server classes without any modifications and provide a custom request
handler class for it to work with.

The following example defines a request handler that is plugged into the
TCPServer when it is constructed. The request handler defines a method
handle() that will be expected to handle the request processing.

import socketserver

class MyTCPHandler(socketserver.BaseRequestHandler):
"""
The RequestHandler class for the server.
"""

def __init__(self, request, client_address, server):
print(’Setup names and offices’)
self.addresses = {’JOHN’: ’C45’,

’DENISE’: ’C44’,
’PHOEBE’: ’D52’,
’ADAM’: ’B23’}

super().__init__(request, client_address, server)

def handle(self):
print(’In Handle’)
self.request is the TCP socket connected
to the client
data = self.request.recv(1024).decode()
print(’data received:’, data)
key = str(data).upper()
response = self.addresses[key]
print(’response:’, response)
Send the result back to the client
self.request.sendall(response.encode())

def main():

564 49 Sockets in Python

print(’Starting server’)
server_address = (’localhost’, 8084)
print(’Creating server’)
server =

socketserver.TCPServer(server_address,
MyTCPHandler)

print(’Activating server’)
server.serve_forever()

if __name__ == ’__main__’:
main()

Note that the previous client application does not need to change at all; the server
changes are hidden from the client.

However, this is still a single threaded server. We can very simply make it into
a multithreaded server (one that can deal with multiple requests concurrently) by
mixing the socketserver.ThreadingMixIn into the TCPServer. This can
be done by defining a new class that is nothing more than a class that extends both
ThreadingMixIn and TCPServer and creating an instance of this new class
instead of the TCPServer directly. For example:

class ThreadedEchoServer(
socketserver.ThreadingMixIn,
socketserver.TCPServer):

pass

def main():
print(’Starting’)
address = (’localhost’, 8084)
server = ThreadedEchoServer(address,

MyTCPHandler)
print(’Activating server’)
server.serve_forever()

In fact you do not even need to create your own class (such as the
ThreadedEchoServer) as the socketserver.ThreadingTCPServer
has been provided as a default mixing of the TCPServer and the
ThreadingMixIn classes. We could therefore just write:

def main():
print(’Starting’)
address = (’localhost’, 8084)
server = socketserver.ThreadedEchoServer(address,

MyTCPHandler)
print(’Activating server’)
server.serve_forever()

49.6 Http Server 565

49.6 Http Server

In addition to the TCPServer you also have available a
http.server.HTTPServer; this can be used in a similar manner to the
TCPServer, but is used to create servers that respond to the HTTP protocol used
by web browsers. In other words it can be used to create a very simple web server
(although it should be noted that it is really only suitable for creating test web
servers as it only implements very basic security checks).

It is probably worth a short aside to illustrate how a web server and a web browser
interact. The following diagram illustrates the basic interactions:

In the above diagram the user is using a browser (such as Chrome, IE or Safari)
to access a web server. The browser is running on their local machine (which could
be a PC, a Mac, a Linux box, an iPad, a Smart Phone, etc.).

To access the web server, they enter a Universal Resource Locator (URL) address
into their browser. In the example this is the URL www.foo.com. It also indicates
that they want to connect up to port 8080 (rather than the default port 80 used for
HTTP connections). The remote machine (which is the one indicated by the address
www.foo.com) receives this request and determines what to do with it. If there is no
program monitoring port 8080, it will reject the request. In our case we have a Python
program (which is actually the web server program) listening to that port and it is
passed the request. It will then handle this request and generate a response message
which will be sent back to the browser on the user’s local machine. The response
will indicate which version of the HTTP protocol it supports, whether everything
went ok or not (this is the 200 code in the above diagram—you may have seen the
code 404 indicating that a web page was not found, etc.). The browser on the local
machine then renders the data as a web page or handles the data as appropriate, etc.

To create a simple Python web server, the http.server.HTTPServer
can be used directly or can be subclassed along with the
socketserver.ThreadingMixIn to create a multithreaded web server,
for example:

class ThreadingHTTPServer(ThreadingMixIn, HTTPServer):
"""Simple multi-threaded HTTP server """
pass

http://www.foo.com
http://www.foo.com

566 49 Sockets in Python

Since Python 3.7 the http.server module now provides exactly this class as
a built in facility, and it is thus no longer necessary to define it yourself (see
http.server.ThreadingHTTPServer).

To handle HTTP requests you must implement one of the HTTP request methods
such as do_GET(), or do_POST(). Each of these maps to a type of HTTP request,
for example:

• do_GET() maps to a HTTP Get request that is generated if you type a web address
into the URL bar of a web browser or

• do_POST() maps to a HTTP Post request that is used for example, when a form
on a web page is used to submit data to a web server.

Thedo_GET(self) or do_POST(self) method must then handle any input
supplied with the request and generate any appropriate responses back to the browser.
This means that it must follow the HTTP protocol.

The following short program creates a simple web server that will generate a
welcome message and the current time as a response to a GET request. It does this
by using the datetimemodule to create a timestamp of the date and time using the
today() function. This is converted into a byte array using the UTF-8 character
encoding (UTF-8 is the most widely used way to represent text within web pages).
We need a byte array as that is what will be executed by the write() method later
on.

Having done this there are various items of metadata that need to be set up so
that the browser knows what data it is about to receive. This metadata is known as
header data and can include the type of content being sent and the amount of data
(content) being transmitted. In our very simple case we need to tell it that we are
sending it plain text (rather than the HTML used to describe a typical web page) via
the ‘Content-type’ header information. We also need to tell it how much data we are
sending using the content length. We can then indicate that we have finished defining
the header information and are now sending the actual data.

The data itself is sent via the wfile attribute inherited from the
BaseHTTPRequestHandler. There are in fact two related attributes rfile
and wfile:

• rfile this is an input stream that allows you to read input data (which is not
being used in this example).

• wfile holds the output stream that can be used to write (send) data to the browser.
This object provides a method write() that takes a byte-like object that is
written out to (eventually) the browser.

A main() method is used to set up the HTTP server which follows the pattern
used for the TCPServer; however the client of this server will be a web browser.

from http.server import BaseHTTPRequestHandler, Thread-
ingHTTPServer
from datetime import datetime

class MyHttpRequestHandler(BaseHTTPRequestHandler):

49.7 Online Resources 567

"""Very simple request handler. Only supports GET."""

def do_GET(self):
print("do_GET() starting to process request")
welcome_msg = ’Hello From Server at ’ +

str(datetime.today())
byte_msg = bytes(welcome_msg, ’utf-8’)
self.send_response(200)
self.send_header("Content-type", ’text/plain;

charset-utf-8’)
self.send_header(’Content-length’, str(len(byte_msg)))
self.end_headers()
print(’do_GET() replying with message’)
self.wfile.write(byte_msg)

def main():
print(’Setting up server’)
server_address = (’localhost’, 8080)
httpd = ThreadingHTTPServer(server_address,

MyHttpRequestHandler)
print(’Activating HTTP server’)
httpd.serve_forever()

if __name__ == ’__main__’:
main()

Once the server is up and running, it is possible to connect to the server
using a browser and by entering an appropriate web address into the browsers’
URL field. This means that in your browser (assuming it is running on the same
machine as the above program) you only need to type into the URL bar http://
localhost:8080 (this indicates you want to use the http protocol to connect up
to the local machine at port 8080).

When you do this, you should see the welcome message with the current date and
time:

49.7 Online Resources

See the following online resources for information on the topics in this chapter:

568 49 Sockets in Python

• https://docs.python.org/3/howto/sockets.html tutorial on programming sockets in
Python.

• https://pymotw.com/3/socket/tcp.html the Python Module of the Week TCP page.
• https://pymotw.com/3/socketserver/index.html The Python Module of the Week

page on SocketServer.
• https://docs.python.org/3/library/http.server.html HTTP Servers Python docu-

mentation.
• https://pymotw.com/3/http.server/index.html The Python Module of the Week

page on the http.server module.
• https://www.redbooks.ibm.com/pubs/pdfs/redbooks/gg243376.pdf a PDF tuto-

rial book from IBM on TCP/IP.
• http://flask.pocoo.org/ for more information the Flask micro-framework for web

development.
• https://www.djangoproject.com/ provides information on the Django framework

for creating web applications.

49.8 Exercises

The aim of this exercise is to explore working with TCP/IP sockets.
You should create a TCP server that will receive a string from a client.
A check should then be made to see what information the string indicates is

required, supported inputs are:

• ’Date’ which should result in the current date being returned.
• ’Time’ which should result in the current time being returned.
• ’Date and Time’ which should result in the current date and time being

returned.
• Anything else should result in the input string being returned to the client in

uppercase with the message ‘UNKNOWN OPTION’: preceding the string.

The result is then sent back to the client.
You should then create a client program to call the server. The client program can

request input from the user in the form of a string and submit that string to the server.
The result returned by the server should be displayed in the client before prompting
the user for the next input. If the user enters −1 as input, then the program should
terminate.

An example of the type of output the client might generate is given below to
illustrate the general aim of the exercise:

Starting Client
Please provide an input (Date, Time, DataAndTime or -1 to exit): Date
Connected to server
Sending data
Received from server: 2019-02-19
Closing socket
Please provide an input (Date, Time, DataAndTime or -1 to exit): Time

https://docs.python.org/3/howto/sockets.html
https://pymotw.com/3/socket/tcp.html
https://pymotw.com/3/socketserver/index.html
https://www.redbooks.ibm.com/pubs/pdfs/redbooks/gg243376.pdf
http://flask.pocoo.org/
https://www.djangoproject.com/

49.8 Exercises 569

Connected to server
Sending data
Received from server: 15:50:40
Closing socket
Please provide an input (Date, Time, DataAndTime or -1 to exit):
DateAndTime
Connected to server
Sending data
Received from server: 2019-02-19 15:50:44.720747
Closing socket
Please provide an input (Date, Time, DataAndTime or -1 to exit): -1

Chapter 50
Web Services in Python

50.1 Introduction

This chapter looks at RESTful web services.

50.2 RESTful Services

REST stands for Representational State Transfer and was a termed coined by Roy
Fielding in his Ph.D. to describe the lightweight, resource-oriented architectural
style that underpins the web. Fielding, one of the principle authors of HTTP, was
looking for a way of generalising the operation of HTTP and the web. He generalised
the supply of web pages as a form of data supplied on demand to a client where the
client holds the current state of an exchange. Based on this state information the client
requests the next item of relevant data sending all information necessary to identify
the information to be supplied with the request. Thus the requests are independent
and not part of an ongoing stateful conversation (hence state transfer).

It should be noted that although fielding was aiming to create a way of describing
the pattern of behaviour within the web, he also had an eye on producing lighter
weight web-based services (than those using either proprietary Enterprise Integra-
tion frameworks or SOAP-based services). These lighter weight HTTP-based web
services have become very popular and are now widely used in many areas. Systems
which follow these principles are termed RESTful services.

A key aspect of a RESTful service is that all interactions between a client (whether
some JavaScript running in a browser or a standalone application) are done using
simple HTTP-based operations. HTTP supports four operations; these are HTTP
Get, HTTP Post, HTTP Put and HTTP Delete. These can be used as verbs to indicate
the type of action being requested. Typically these are used as follows:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

571

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_50&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_50

572 50 Web Services in Python

• Retrieve information (HTTP Get).
• Create information (HTTP Post).
• Update information (HTTP Put).
• Delete information (HTTP Delete).

It should be noted that REST is not a standard in the way that HTML is a standard.
Rather it is a design pattern that can be used to create web applications that can be
invoked over HTTP and that give meaning to the use of Get, Post, Put and Delete
HTTP operations with respect to a specific resource (or type of data).

The advantage of using RESTful services as a technology, compared to some other
approaches (such as SOAP-based services which can also be invoked over HTTP),
is that

• The implementations tend to be simpler.
• The maintenance easier.
• They run over standard HTTP and HTTPS protocols.
• Do not require expensive infrastructures and licenses to use.

This means that there is lower server and server side costs. There is little vendor
or technology dependency, and clients do not need to know anything about the
implementation details or technologies being used to create the services.

50.3 A RESTful API

A RESTful API is one in which you must first determine the key concepts or resources
being represented or managed.

These might be books, products in a shop, room bookings in hotels, etc. For
example a bookstore related service might provide information on resources such as
books, CDs and DVDs, etc. Within this service books are just one type of resource.
We will ignore the other resources such as DVDs and CDs, etc.

Based on the idea of a book as a resource we will identify suitable URLs for these
RESTful services. Note that although URLs are frequently used to describe a web
page—that is just one type of resource. For example, we might develop a resource
such as

/bookservice/book

from this we could develop a URL based API, such as

/bookservice/book/<isbn>

where the variable isbn (which stands for international Standard Book Number)
indicates a unique number to be used to identify a specific book whose details will
be returned using this URL.

50.4 Python Web Frameworks 573

We also need to design the representation or formats that the service can supply.
These could include plain text, JSON, XML, etc., JSON standards for the JavaScript
Object Notation and is a concise way to describe data that is to be transferred from
a service running on a server to a client running in a browser. This is the format we
will use in the next section. As part of this we might identify a series of operations to
be provided by our services based on the type of HTTP method used to invoke our
service and the contents of the URL provided. For example, for a simple BookService
this might be:

• GET /book/<isbn>—used to retrieve a book for a given ISBN.
• GET /book/list—used to retrieve all current books in JSON format.
• POST /book (JSON in body of the message)—which supports creating a new

book.
• PUT /book (JSON in body of message)—used to update the data held on an

existing book.
• DELETE /book/<isbn>—used to indicate that we would like a specific book

deleted from the list of books held.

Note that the parameter isbn in the above URLs actually forms part of the URL
path.

50.4 Python Web Frameworks

There are very many frameworks and libraries available in Python that will allow
you to create JSON-based web services; and the shear number of options available
to you can be overwhelming. For example, you might consider

1. Flask,
2. Django,
3. Web2py and
4. CherryPy to name just a few.

These frameworks and libraries offer different sets of facilities and levels of
sophistication. For example Django is a full-stack web framework; that is it is aimed
at developing not just web services but full blown web sites.

However, for our purposes this is probably overkill and the Django Rest interface
is only part of a much larger infrastructure. That does not mean of course that we
could not use Django to create our bookshop services; however, there are simpler
options available. The web2py is another full-stack web framework which we will
also discount for the same reason.

574 50 Web Services in Python

In contrast Flask and CherryPy are considered non-full-stack frameworks
(although you can create a full-stack web application using them). This means that
they are lighter weight and quicker to get started with. CherryPy was original rather
more focussed on providing a remote function call facility that allowed functions to
be invoked over HTTP; however this has been extended to provide more REST like
facilities.

In this chapter we will focus on Flask as it is one of the most widely used
frameworks for lightweight RESTful services in Python.

50.5 Online Resources

See the following online resources for information on the topics in this chapter:

1. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm Roy Fieldings’
Ph.D. Thesis; if you are interesting in the background to REST read this.

2. https://wiki.python.org/moin/WebFrameworks for a very extensive list of web
frameworks for Python.

3. https://www.djangoproject.com/ for information on Django.
4. http://www.web2py.com/ Web2py web framework documentation.
5. https://cherrypy.org/ For documentation on the CherryPy web framework.
6. http://flask.pocoo.org/ For information and examples on the Flask web devel-

opment framework.
7. http://flask.pocoo.org/docs/1.0/foreword/#what-does-micro-mean Flasks

explanation of what micro means.
8. https://www.json.org/ Information on JSON.
9. https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface WSGI Web

Server Gateway Interface standard.
10. https://curl.haxx.se/ Information on the curl command line tool.
11. https://developer.mozilla.org/en-US/docs/Web/HTTP/Status HTTP Response

Status Codes.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://wiki.python.org/moin/WebFrameworks
https://www.djangoproject.com/
http://www.web2py.com/
https://cherrypy.org/
http://flask.pocoo.org/
http://flask.pocoo.org/docs/1.0/foreword/%23what-does-micro-mean
https://www.json.org/
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
https://curl.haxx.se/

Chapter 51
Flask Web Services

51.1 Introduction

This chapter introduces the Flask framework used to create RESTful services.

51.2 Flask

Flask is a web development framework for Python. It describes itself as a micro-
framework for Python which is somewhat confusing; to the point where there is a
page dedicated to this on their web site that explains what it means and what the
implications are of this for Flask. According to Flask, the micro in its description
relates to its primary aim of keeping the core of Flask simple but extensible. Unlike
Django it doesn’t include facilities aimed at helping you integrate your application
with a database for example. Instead Flask focusses on the core functionality required
of a web service framework and allows extension to be used, as and when required,
for additional functionality.

Flask is also a convention over configuration framework; that is if you follow the
standard conventions, then you will not need to deal with much additional configura-
tion information (although if you wish to follow a different set of conventions, then
you can provide configuration information to change the defaults). As most people
will (at least initially) follow these conventions it makes it very easy to get something
up and running very quickly.

As Flask is not a built-in library you will need to install it into your environment
for example using pip, for example:

pip install flask

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

575

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_51&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_51

576 51 Flask Web Services

At the time of writing the version Flask used was 2.3.2, this is the version against
which the examples in this chapter and the next have been run.

51.3 Hello World in Flask

As is traditional in all programming languages we will start with a simple ‘Hello
World’ style application. This application will allow us to create a very simple web
service that maps a particular URL to a function that will return JSON format data.
We will use the JSON data format as it is very widely used within web-based services.

51.3.1 Using JSON

JSON standards for JavaScript Object Notation; it is a lightweight data-interchange
format that is also easy for humans to read and write. Although it is derived from a
subset of the JavaScript programming language, it is in fact completely language inde-
pendent and many languages and frameworks now support automatically processing
of their own formats into and from JSON. This makes it ideal for RESTful web
services.

JSON is actually built on some basic structures:

• A collection of name/value pairs in which the name and value are separated by a
colon ‘:’ and each pair can be separated by a comma ‘,’.

• An ordered list of values that are encompassed in square brackets (‘[]’).

This makes it very easy to build up structures that represent any set of data, for
example a book with an ISBN, a title, author and price could be represented by:

{
"author": "Phoebe Cooke",
"isbn": 2,
"price": 12.99,
"title": "Java"

}

In turn a list of books can be represented by a comma separated set of books
within square brackets. For example:

[{"author": "Gryff Smith","isbn": 1, "price": 10.99, "title":
"XML"},
{"author": "Phoebe Cooke", "isbn": 2, "price": 12.99, "title":
"Java"}
{"author": "Jason Procter", "isbn": 3, "price": 11.55, "title":
"C#"}]

51.4 Implementing a Flask Web Service 577

51.4 Implementing a Flask Web Service

There are several steps involved in create a Flask web service; these are:

1. Import flask.
2. Initialise the Flask application.
3. Implement one or more functions (or methods) to support the services you wish

to publish.
4. Providing routing information o route from the URL to a function (or method).
5. Start the web service running.

We will look at these steps in the rest of this chapter.

51.4.1 A Simple Service

We will now create our hello world web service. To do this we must first import the
flask module. In this example we will use the Flask class and jsonify() function
elements of the module.

We then need to create the main application object which is an instance of the
Flask class:

from flask import Flask, jsonify

app = Flask(__name__)

The argument passed into the Flask() constructor is the name of the
application’s module or package. As this is a simple example we will use the
__name__ attribute of the module which in this case will be ‘__main__’. In
larger more complex applications, with multiple packages and modules, then you
may need to choose an appropriate package name.

The Flask application object implements the Web Server Gateway Interface
(WSGI) standard for Python. This was originally specified in PEP-333 in 2003 and
was updated for Python 3 in PEP-3333 published in 2010. It provides a simple
convention for how web servers should handle requests to applications. The Flask
application object is the element that can route a request for a URL to a Python
function.

51.4.2 Providing Routing Information

We can now define routing information for the Flask application object. This infor-
mation will map a URL to a function. When that URL is, for example, entered into a
web browsers URL field, then the Flask application object will receive that request
and invoke the appropriate function.

578 51 Flask Web Services

To provide route mapping information, we use the @app.route decorator on a
function or method.

For example, in the following code the @app.route decorator maps the
URL /hello to the function welcome() for HTTP Get requests:

@app.route('/hello', methods=['GET'])
def welcome():

return jsonify({'msg': 'Hello Flask World'})

There are two things to note about this function definition:

• The @app.route decorator is used to declaratively specify the routing infor-
mation for the function. This means that the URL ‘/hello’ will be mapped to
the function welcome(). The decorator also specifies the HTTP method that is
supported; in this case GET requests are supported (which is actually the default
so it does not need to be included here but is useful from a documentation point
of view).

• The second thing is that we are going to return our data using the JSON format; we
therefore use the jsonify() function and pass it a Python Dictionary structure
with a single key/value pair. In this case the key is ‘msg’ and the data associ-
ated with that key is ‘Hello Flask World’. The jsonify() function will
convert this Python data structure into an equivalent JSON structure.

51.5 Running the Service

We are now ready to run our application. To do this, we invoke the run() method
of the Flask application object:

app.run(debug=True)

Optionally this method has a keyword parameter debug that can be set to True;
if this is done, then when the application is run some debugging information is
generated that allows you to see what is happening. This can be useful in development
but would not typically be used in production.

The whole program is presented below:

from flask import Flask, jsonify

app = Flask(__name__)
@app.route('/hello', methods=['GET'])
def welcome():

return jsonify({'msg': 'Hello Flask World'})

app.run(debug=True)

When this program is run, the initial output generated is as shown below:

* Serving Flask app "hello_flask_world" (lazy loading)

51.6 Invoking the RESTFul Service 579

* Environment: production
WARNING: This is a development server. Do not use it in a production

deployment.
Use a production WSGI server instead.

* Debug mode: on
* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN: 274-630-732

Of course we don’t see any output from our own program yet. This is because we
have not invoked the welcome() function via the /hello URL.

51.6 Invoking the RESTFul Service

We will use a web browser to access the web service. To do this, we must enter the full
URL that will route the request to our running application and to the welcome()
function.

The URL is actually comprised of two elements: the first part is the machine on
which the application is running and the port that it is using to listen for requests.
This is actually listed in the above output—look at the line starting ‘Running on’.
This means that the URL must start with http://127.0.0.1:5000. This indicates that
the application is running on the computer with the IP address 127.0.0.1 and listening
on port 5000.

We could of course also use localhost instead of 127.0.0.1.
The remainder of the URL must then provide the information that will allow Flask

to route from the computer and port to the functions we want to run.
Thus the full URL is http://127.0.0.1:5000/hello and thus is used in the web

browser shown below:

As you can see the result returned is the text we supplied to the jsonify()
function but now in plain JSON format and displayed within the web browser.

You should also be able to see in the console output that a request was received
by the Flask framework for the GET request mapped to the /hello URL:

http://127.0.0.1:5000
http://127.0.0.1:5000/hello

580 51 Flask Web Services

127.0.0.1 - - [16/Jun/2023 15:10:11] "GET /hello HTTP/1.1" 200 -

One useful feature of this approach is that if you make a change to your program,
then the Flask framework will notice this change when running in development mode
and can restart the web service with the code changes deployed. If you do this, you
will see that the output notifies you of the change:

* Detected change in 'hello_flask_world.py', reloading
* Restarting with stat

This allows changes to be made on the fly, and their effect can be immediately
seen.

51.6.1 The Final Solution

We can tidy this example up a little by defining a function that can be used to create
the Flask application object and by ensuring that we only run the application if the
code is being run as the main module:

from flask import Flask, jsonify, url_for

def create_service():
app = Flask(__name__)
@app.route('/hello', methods=['GET'])
def welcome():

return jsonify({'msg': 'Hello Flask World'})

with app.test_request_context():
print(url_for('welcome'))

return app

if __name__ == '__main__':
app = create_service()
app.run(debug=True)

One feature we have added to this program is the use of the test_request_
context(). The test request context object returned implements the context
manager protocol and thus can be used via a with statement; this is useful for
debugging purposes. It can be used to verify the URL used for any functions with
routing information specified. In this case the output from the print statement is
‘/hello’ as this is the URL defined by the @app.route decorator.

51.7 Online Resources

See the following online resources for information on the topics in this chapter:

51.7 Online Resources 581

1. https://flask.palletsprojects.com/en/2.3.x/ For information and examples on the
Flask web development framework.

2. https://flask.palletsprojects.com/en/2.3.x/design/#what-does-micro-mean
Flasks explanation of what micro means.

3. https://curl.haxx.se/ Information on the curl command line tool.

https://flask.palletsprojects.com/en/2.3.x/
https://flask.palletsprojects.com/en/2.3.x/design/%23what-does-micro-mean
https://curl.haxx.se/

Chapter 52
Flask Bookshop Web Service

52.1 Introduction

This chapter explores a larger RESTFul application written using the Flask frame-
work. The chapter discusses the design of the RESTFul application, the implemen-
tation of the domain model, converting the domain model into JSON and defining
the various services supported by GET, POST, PUT and DELETE.

52.2 Building a Flask Bookshop Service

The previous chapter illustrated the basic structure of a very simple web service
application. We are now in a position to explore the creation of a set of web services
for something a little more realistic; the bookshop web service application.

In this chapter we will implement the set of web services described earlier in the
previous chapter for a very simple bookshop. This means that we will define services
to handle not just the GET requests but also PUT, POST and DELETE requests for
the RESTful bookshop API.

52.3 The Design

Before we look at the implementation of the Bookshop RESTful API, we will
consider what elements we for the services.

One question that often causes some confusion is how web services relate to tradi-
tional design approaches such as object-oriented design. The approach adopted here
is that the Web Service API provides a way to implement an interface to appropriate
functions, objects and methods used to implement the application/domain model.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

583

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_52&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_52

584 52 Flask Bookshop Web Service

This means that we will still have a set of classes that will represent the Bookshop
and the Books held within the bookshop. In turn the functions implementing the web
services will access the bookshop to retrieve, modify, update and delete the books
held by the bookshop.

The overall design is shown below:

This shows that a Book object will have an ISBN, a title, an author and a price
attribute.

In turn the Bookshop object will have a books attribute that will hold zero or
more books. The books attribute will actually hold a List as the list of books needs
to change dynamically as and when new books are added or old books deleted.

The Bookshop will also define three methods that will

• Allow a book to be obtained via its ISBN.
• Allow a book to be added to the list of books.
• Enable a book to be deleted (based on its ISBN).

Routing information will be provided for a set of functions that will invoke
appropriate methods on the bookshop object. The functions to be decorated with
@app.route, and the mappings to be used, are listed below:

• get_books() which maps to the /book/list URL using the HTTP Get
method request.

• get_book(isbn) which maps to the /book/<isbn> URL where ISBN is a
URL parameter that will be passed into the function. This will also use the HTTP
GET request.

• create_book() which maps to the /book URL using the HTTP Post request.
• update_book() which maps to the /book URL but using the HTTP Put

request.
• delete_book() which maps to the /book/<isbn> URL but using the

HTTP Delete request.

52.4 The Domain Model 585

52.4 The Domain Model

The domain model comprises the Book and Bookshop classes. These are presented
below.

The Book class is a simple Value type class (i.e. it is data oriented with no
behaviour of its own):

class Book:
def __init__(self, isbn, title, author, price):

self.isbn = isbn
self.title = title
self.author = author
self.price = price

def __str__(self):
return self.title + 'by ' + self.author + '@ ' + str(self.price)

The Bookshop class holds a list of books and provides a set of methods to access
books, update books and delete books:

class Bookshop:
def __init__(self, books):

self.books = books
def get(self, isbn):

if int(isbn) > len(self.books):
abort(404)

return list(filter(lambda b: b.isbn == isbn,
self.books))[0]

def add_book(self, book):
self.books.append(book)

def delete_book(self, isbn):
self.books = list(filter(lambda b: b.isbn != isbn,

self.books))

In the above code, the books attribute holds the list of books currently available.
The get() method returns a book given a specified ISBN.
The add_book() method adds a book object to the list of books.
The delete_book() method removes a book based on its ISBN.
The bookshop global variable holds the Bookshop object initialised with a

default set of books:

bookshop = Bookshop(
[Book(1, 'XML', 'Gryff Smith', 10.99),
Book(2, 'Java', 'Phoebe Cooke', 12.99),
Book(3, 'Scala', 'Adam Davies', 11.99),
Book(4, 'Python', 'Natalia Nadal', 15.99)])

586 52 Flask Bookshop Web Service

52.5 Encoding Books into JSON

One issue we have is that although the jsonify() function knows how to convert
built-in types such as strings, integers, lists and dictionaries into an appropriate JSON
format, it does not know how to do this for custom types such as a Book.

We therefore need to define some way of converting a Book into an appropriate
JSON format.

One way we could do this would be to define a method that can be called to convert
an instance of the Book class into a JSON format. We could call this method to_
json(). For example:

class Book:
""" Represents a book in the bookshop"""
def __init__(self, isbn, title, author, price):

self.isbn = isbn
self.title = title
self.author = author
self.price = price

def __str__(self):
return self.title + 'by ' + self.author + '@ ' + str(self.price)
def to_json(self):

return {
'isbn': self.isbn,
'title': self.title,
'author': self.author,
'price': self.price

}

We could now use this with the jsonify() function to convert a book into the
JSON format:

jsonify({'book': book.to_json()})

This approach certainly works and provides a very lightweight way to convert a
book into JSON.

However, the approach presented above does mean that every time we want to
jsonify a book we must remember to call the to_json() method. In some cases this
means that we will also have to write some slightly convoluted code. For example
if we wish to return a list of books from the Bookshop as a JSON list, we might
write:

jsonify({'books': [b.to_json() for b in bookshop.books]})

Here we have used a list comprehension to generate a list containing the JSON
versions of the books held in the bookshop.

This is starting to look overly complex, easy to forget about and probably error
prone.

52.5 Encoding Books into JSON 587

Flask itself uses JSON providers to encode types into JSON. Flask provides a
way of creating your own JSON Providers that can be used to convert a custom type,
such as the Book class, into JSON. Such an JSON Provider can automatically be
used by the jsonify() function.

To do this, we must implement an Provder class; the class will extend the
flask.json.provider.DefaultJSONProvider superclass.

The class must define a method dumps(self, obj: t.Any, **kwargs:
t.Any) to convert an object to JSON and loads(self, s: str | bytes,
**kwargs: t.Any) to do the reverse.

The dumps() method takes an object and returns the JSON representation of
that object. We can therefore write an encoder for our RESTFul service as follows:

class BookJSONProvider(DefaultJSONProvider):
def dumps(self, obj: t.Any, **kwargs: t.Any):

if isinstance(obj, Book):
return {'book': obj.to_json()}

elif isinstance(obj, list):
return {'books': list(map(lambda b: b.to_json(),

obj))}
return super().dumps(obj, **kwargs)

The dumps() method here checks to see if the value being passed to it is a book; if
it is, then it will use the to_jason(0 method to convert the book into JSON and return
the result. If the value passed in is a list, then it is assumed that it is a list of books
and the same process is performed across all the books in the list. If it is anything
else, then the responsibility of handling the conversion to JSON is delegated to the
parent class.

This new BookJSONProvider is registered with the Flask app when it is created,
for example:

app = Flask(__name__)
app.json=BookJSONProvider(app)

Now if we wish to encode a single book or a list of books, the above encoder will
be used automatically and thus we do not need to do anything else. Thus our earlier
examples can be written to simply by referencing the book or bookshop.books
attribute:

jsonify(book)
jsonify(bookshop.books)

Notice that this is simpler than the first example as we don’t include the dictionary
format of {‘book’: book.to_json()} etc.

One final point that should be noted about jsonify() is that it doesn’t just
convert an object into JSON format. It also returns a flask.Response object with the
mine type set to application/json. This means that the object returned is suitable to
be used as the response for a RESTFul service.

588 52 Flask Bookshop Web Service

52.6 Setting Up the GET Services

We can now set up the two services that will support GET requests, these are the

• /book/list and /book<isbn> services.

The functions that these URLs map to are given below:

@app.route('/book/list', methods=['GET'])
def get_books():

response= jsonify(bookshop.books)
return response

@app.route('/book/<int:isbn>', methods=['GET'])
def get_book(isbn):

book = bookshop.get(isbn)
return jsonify(book)

The first function merely returns the current list of books held by the bookshop
in a JSON structure using the key books.

The second function takes an ISBN number as parameter. This is a URL parameter;
in other words part of the URL used to invoke this function is actually dynamic and
will be passed into the function. This means that a user can request details of books
with different ISBNs just by changing the ISBN element of the URL, for example:

• /book/1 will indicate that we want information on the book with the ISBN 1.
• /book/2 will indicate we want information on the book with ISBN 2.

In Flask to indicate that something is a URL parameter rather than a hard coded
element of the URL, we use angle brackets (<>). These surround the URL parameter
name and allow the parameter to be passed into the function (using the same name).

In the above example we have also (optionally) indicated the type of the parameter.
By default the type will be a string; however we know that the ISBN is in fact an
integer and so we have indicated that by pre-fixing the parameter name with the type
int (and separated the type information from the parameter name by a colon ‘:’).
There are actually several options available including

• string (the default).
• int (as used above).
• float for positive floating point values.
• uuid for uuid strings.
• path which dislike string but accepts slashes.

We can again use a browser to view the results of calling these services; this time
the URLs will be

• http://127.0.0.1:5000/book/list
• http:/127.0.0.1:5000/book/1

for example:

52.7 Deleting a Book 589

As you can see from this the book information is returned as a set of key / value
pairs in JSON format.

52.7 Deleting a Book

The delete a book web service is very similar to the get a book service in that it
takes an ISBN as a URL path parameter. However, in this case it merely returns an
acknowledgement that the book was deleted successfully:

@app.route('/book/<int:isbn>', methods=['DELETE'])
def delete_book(isbn):

bookshop.delete_book(isbn)
return jsonify({'result': True})

However, we can no longer test this just by using a web browser. This is because
the web browser uses the HTTP Get request method for all URLs entered into the
URL field. However, the delete web service is associated with the HTTP Delete
request method.

To invoke the delete_book() function, we therefore need to ensure that the
request that is sent uses the DELETE request method. This can be done from a client
that can indicate the type of request method being used. Examples might include
another Python program, a JavaScript web site, etc.

For testing purposes, we will however use the curl program. This program is
available on most Linux and Mac systems and can be easily installed, if it is not
already available, on other operating systems.

590 52 Flask Bookshop Web Service

The curl is a command line tool and library that can be used to send and receive
data over the internet. It supports a wide range of protocols and standards and in
particular supports HTTP and HTTPS protocols and can be used to send and receive
data over HTTP/S using different request methods.

For example, to invoke the delete_book() function using the /book/2 URL
and the HTTP Delete method we can use curl as follows:

curl http://localhost:5000/book/2 -X DELETE

This indicates that we want to invoke the URL (http://localhost:5000/book/2) and
that we wish to use a custom request method (i.e. Not the default GET) which is in the
case DELETE (as indicated by the -X option). The result returned by the command
is given below indicating that the book was successfully deleted.

{
"result": true

}

We can verify this by checking the output from the /book/list URL in the
web browser:

This confirms that book 2 has been deleted.

52.8 Adding a New Book

We also want to support adding a new book to the bookshop. The details of a new
book could just be added to the URL as URL path parameters; however as the amount
of data to be added grows this would become increasingly difficult to maintain and

52.8 Adding a New Book 591

verify. Indeed although historically there was a limit of 2083 characters in Microsoft’s
Internet Explore (IE) which has theoretically be removed since IE8, in practice there
are typically still limits on the size of the URL. Most web servers have a limit of
8 KB (or 8192 bytes) although this is typically configurable. There may also be client
side limits (such as those imposed by IE or Apple’s Safari [which usually have a 2
KB limit)]. If the limit is exceeded in either a browser or on the server, then most
systems will just truncate the characters outside the limit (in some cases without any
warning).

Typically such data is therefore sent in the body of the HTTP request as part of a
HTTP Post request. This limit on the same of a Post requests message body is much
higher (usually up to 2 GB). This means that it is a much more reliable and safer way
to transfer data to a web service.

However, it should be noted that this does not mean that the data is any more
secure than if it is part of the URL; just that it is sent in a different way.

From the point of view of the Python functions that are invoked as the result of
a HTTP Post method request it means that the data is not available as a parameter
to the URL and thus to the function. Instead, within the function it is necessary to
obtain the request object and then to use that to obtain the information held within
the body of the request.

A key attribute on the request object, available when a HTTP request contains
JSON data, is the request.json attribute. This attribute contains a dictionary
like structure holding the values associated with the keys in the JSON data structure.

This is shown below for the create_book() function.

from flask import request, abort

@app.route('/book', methods=['POST'])
def create_book():

print('create book')
if not request.json or not 'isbn'in request.json:

abort(400)
book = Book(request.json['isbn'],

request.json['title'],
request.json.get('author', ""),
float(request.json['price']))

bookshop.add_book(book)
return jsonify(book), 201

The above function accesses the flask.request object that represents the
current HTTP request. The function first checks to see that it contains JSON data
and that the ISBN of the book to add, is part of that JSON structure. If the ISBN
is not, then the flask.abort() function is called passing in a suitable HTTP
response status code. In this case the error code indicates that this was a Bad Request
(HTTP Error Code 400).

If however the JSON data is present and does contain an ISBN number, then the
values for the keys isbn, title, author and price are obtained. Remember
that JSON is a dictionary like structure of keys and values; thus treating it in this way
makes it easy to extract the data that a JSON structure holds. It also means that we

592 52 Flask Bookshop Web Service

can use both method and key-oriented access styles. This is shown above where we
use the get() method along with a default value to use, if an author is not specified.

Finally, as we want to treat the price as a floating point number we must use the
float() function to convert the string format supplied by JSON into a float.

Using the data extracted we can instantiate a new Book instance that can be added
to the bookshop. As is common in web services we are returning the newly created
book object as the result of creating the book along with the HTTP response status
code 201, which indicates the successful creation of a resource.

We can now test this service using the curl command line program:

curl -H "Content-Type: application/json" -X POST -d '{"title":"Read
a book", "author":"Bob","isbn":"5", "price":"3.44"}'http://
localhost:5000/book

The options used with this command indicate the type of data being sent in the
body of the request (-H) along with the data to include in the body of the request
(-d). The result of running this command is:

{
"book": {
"author": "Bob",
"isbn": "5",
"price": 3.44,
"title": "Read a book"

}
}

Illustrating that the new book by Bob has been added.

52.9 Updating a Book

Updating a book that is already held by the bookshop object is very similar to adding
a book except that the HTTP Put request method is used.

Again the function implementing the required behaviour must use the
flask.request object to access the data submitted along with the PUT request.
However, in this case the ISBN number specified is used to find the book to be
updated, rather than the specifying a completely new book.

The update_book() function is given below:

@app.route('/book', methods=['PUT'])
def update_book():

if not request.json or not 'isbn'in request.json:
abort(400)

isbn = request.json['isbn']
book = bookshop.get(isbn)
book.title = request.json['title']
book.author = request.json['author']
book.price = request.json['price']

52.10 What Happens if We Get It Wrong? 593

return jsonify(book), 201

This function resets the title, author and price of the book retrieved from
the bookshop. It again returns the updated book as the result of running the function.

The curl program can again be used to invoke this function, although this time
the HTTP Put method must be specified:

curl -H "Content-Type: application/json" -X PUT -d '{"title":"Read
a book", "author":"Bob Jones","isbn":"5", "price":"3.44"}'http://
localhost:5000/book

The output from this command is:

{
"book": {
"author": "Bob Jones",
"isbn": "5",
"price": "3.44",
"title": "Read a book"

}
}

This shows that book 5 has been updated with the new information.

52.10 What Happens if We Get It Wrong?

The code presented for the bookshop web services is not particularly defensive, as it
is possible to try to add a new book with the same ISBN as an existing one. However,
it does check to see that an ISBN number has been supplied with both the create_
book() and update_book() functions.

However, what happens if an ISBN number is not supplied? In both functions we
call the flask.abort() function. By default if this happens an error message
will be sent back to the client.

For example, in the following command we have forgotten to include the ISBN
number:

curl -H "Content-Type: application/json" -X POST -d '{"title":"Read
a book", "author":"Tom Andrews", "price":"13.24"}'http://
localhost:5000/book

594 52 Flask Bookshop Web Service

This generates the following error output:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>400 Bad Request</title>
<h1>Bad Request</h1>
<p>The browser (or proxy) sent a request that this server could not
understand.</p>

The odd thing here is that the error output is in HTML format, which is not what
we might have expected since we are creating a web service and working with JSON.
The problem is that Flask has default to generating an error HTML web page that it
expects to be rendered in a web browser.

We can overcome this by defining our own custom error handler function. This
is a function that is decorated with an @app.errorhandler() decorator which
provides the response status code that it handles. For example:

@app.errorhandler(400)
def not_found(error):

return make_response(jsonify({'error': 'Book Not Found'}), 400)

Now when a 400 code is generated via the flask.abort() function, the not_
found() function will be invoked and a JSON response will be generated with the
information provided by the flask.make_response() function. For example:

curl -H "Content-Type: application/json" -X POST -d '{"title":"Read
a book", "author":"Tom Andrews", "price":"13.24"}'http://
localhost:5000/book

The output from this command is:

{
"Error": "Book Not Found"

}

52.11 Bookshop Services Listing

The complete listing for the bookshop web services application is given below:

import typing as t
from flask import Flask, jsonify, request, abort, make_response
from flask.json.provider import DefaultJSONProvider

class Book:
def __init__(self, isbn, title, author, price):

self.isbn = isbn
self.title = title
self.author = author
self.price = price

def __str__(self):

52.11 Bookshop Services Listing 595

return self.title + 'by '+ self.author + '@ '+
str(self.price)

def to_json(self):
return {

'isbn': self.isbn,
'title': self.title,
'author': self.author,
'price': self.price

}

class BookJSONProvider(DefaultJSONProvider):

def dumps(self, obj: t.Any, **kwargs: t.Any):
if isinstance(obj, Book):

return {'book': obj.to_json()}
elif isinstance(obj, list):

return {'books': list(map(lambda b: b.to_json(), obj))}
return super().dumps(obj, **kwargs)

class Bookshop:
def __init__(self, books):

self.books = books
def get(self, isbn):

if int(isbn) > len(self.books):
abort(404)

return list(filter(lambda b: b.isbn == isbn,
self.books))[0]

def add_book(self, book):
self.books.append(book)

def delete_book(self, isbn):
self.books = list(filter(lambda b: b.isbn != isbn,

self.books))

bookshop = Bookshop([Book(1, 'XML', 'Gryff Smith', 10.99),
Book(2, 'Java', 'Phoebe Cooke', 12.99),
Book(3, 'Scala', 'Adam Davies', 11.99),
Book(4, 'Python', 'Natalia Nadal', 15.99)])

def create_bookshop_service():
app = Flask(__name__)
app.json=BookJSONProvider(app)

@app.route('/book/list', methods=['GET'])
def get_books():

return jsonify(bookshop.books)

@app.route('/book/<int:isbn>', methods=['GET'])
def get_book(isbn):

book = bookshop.get(isbn)
return jsonify(book)

@app.route('/book', methods=['POST'])
def create_book():

596 52 Flask Bookshop Web Service

print('create book')
if not request.json or not 'isbn'in request.json:

abort(400)
book = Book(request.json['isbn'],

request.json['title'],
request.json.get('author', ""),
float(request.json['price']))

bookshop.add_book(book)
return jsonify(book), 201

@app.route('/book', methods=['PUT'])
def update_book():

if not request.json or not 'isbn'in request.json:
abort(400)

isbn = request.json['isbn']
book = bookshop.get(isbn)
book.title = request.json['title']
book.author = request.json['author']
book.price = request.json['price']
return jsonify(book), 201

@app.route('/book/<int:isbn>', methods=['DELETE'])
def delete_book(isbn):

bookshop.delete_book(isbn)
return jsonify({'result': True})

@app.errorhandler(400)
def not_found(error):

return make_response(jsonify({'Error': 'Book Not Found'}),
400)

return app

if __name__ == '__main__':
app = create_bookshop_service()
app.run(debug=True)

52.12 Exercises

The exercises for this chapter involve creating a web service that will provide
information on stock market prices.

The services to be implemented are
Get method:

• /stock/list this will return a list of the stocks that can be queried for their
price.

• /stock/ticker this will return the current price of the stock indicated by
ticker, for example /stock/APPL or /stock/MSFT.

Post method:

52.12 Exercises 597

• /stock with the request body containing JSON for a new stock ticker and price,
for example {‘IBM’: 12.55}.

Put method:

• /stock with the request body containing JSON for an existing stock ticker and
price.

DELETE method:

• /stock/<ticker> which will result in the stock indicated by the ticker being
deleted from the service.

You could initialise the service with a default set of stocks and prices such as
[(‘IBM’, 12.55), (‘APPL’, 15.66), (‘GOOG’, 5.22)].

You can test these services using the curl command line tool.

Part XI
Data Science: Data Analytics and Machine

Learning

Chapter 53
Introduction to Data Science

53.1 Introduction

In this chapter we will introduce Data Science and its related topic of data analytics,
what it is and how it is used. We will also explore how Python can be used to support
Data Science type applications.

53.2 Data Science

Data Science is an interdisciplinary field that uses techniques from a variety of
different disciplines and subjects to extract knowledge from data in various forms.
The intention is to gain new understanding from that data either to help decision-
making or otherwise provide benefit to an organisation such as to generate additional
value.

A simple example might be to note that when a supermarket store card member
suddenly starts buying nappies, they might well also start to buy ready meals, etc.
Therefore, it might be useful to put adverts for ready meals in the baby isle.

The following diagram aims to provide an overview of how Data Science can be
considered to add value.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

601

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_53&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_53

602 53 Introduction to Data Science

On the left-hand side of the diagram we can see that Data Science can be used to
provide insight into the data, for example to further the understanding of any latent
or hidden patterns within the data which might be of use to the organisation. This
might, for example, relate to customer or individual patterns of behaviour that might
not be obvious from the raw data. The information (or knowledge) obtained from
this might then be used to influence decisions made by the organisation such as what
promotions to push or what process or procedural changes to make.

On the right-hand side of the diagram, we have the ‘Development of Data Product’
which relates to the creation of products (typically software products such as data
classifiers or predictors). These tools might be developed using existing data and then
used to analyse future data. An example might be a machine learning classifier-based
system that is trained to identify fraudulent bank loan applications. Once it has been
trained it can be used to analyse new loan applications to help identify future fraud.

53.3 Data Science Tools and Techniques

Data Science covers a wide range of topics from the business domain, through IT to
statistics and mathematics. Some of the topics that relate to Data Science include:

• Data identification. Identifying the data to be used for a particular project is an
important aspect of any Data Science project.

• Data acquisition. Once the data has been identified it needs to be acquired, and
as discussed later in this chapter this can be a significant task in its own right.

• Data integrity. Data integrity relates to the accuracy, completeness, consistency
and validity of the data to be analysed. Typically this involves examining the data
to ensure that the data has integrity; for example, if you consider the population at
large and found that your data set suggested that everybody in your organisation
had blue eyes, there is probably an issue with that data, as statistically it is highly
unlikely that in an organisation of any significant size everyone would have blue
eyes. Further investigation might for example uncover a bug in the data collection
system in which all eye colours have been defaulted to blue, and thus in the data
set being used, eye colours cannot be relied upon.

• Data pre-processing. Data pre-processing/cleansing often referred to as data
munging within the data analytics world involves carrying out initial work to
convert the data into formats and layouts that can be processed. For example, this
might involve converting a PDF file into a plain text format or extracting data
from a custom data file format into a CSV or Excel format.

• Data exploration. This involves exploring, examining and generally coming to an
understanding of the data available. This process usually involves some combina-
tion of data visualisation tools, programming language libraries, database queries,
etc. The aim is not yet to identify patterns in the data or to use the data to create
some analysis tool instead it is just to get a feel for the data itself in its raw state,
for example, how much data is missing from that expected, what types of data are

53.3 Data Science Tools and Techniques 603

present, how much is in formal structures and how much unstructured. What types
of data are present, for example just because a value is a string does not mean
that it does not contain data which might be treated as a timestamp, an integer
or a floating point number, etc. Exploratory data analysis is a similar but wider
topic in that it usually involves some form of statistical analysis to determine very
general trends in the data. Data exploration in general is an important step in the
whole Data Science process as it allows an understanding of the data available.
This in turn helps the data scientist to make better decisions when deciding how
to process the data. It is important to understand that successful data exploration
starts with an open mind, any pre-conceptions about the data should be left behind
as it can bias any and all further analysis (i.e., if you are going looking for some
particular trend in the data, you will probably find some way of identifying it even
if it was not there to start with).

• Data visualisation. Data visualisation is simply the graphical representation of
information and data using graphs, charts, maps, gauges etc. Such tools provide
an accessible method for viewing and understanding data, outliers and general
trends. Specialist data visualisation tools may be used alongside programming
libraries that help to present the data within a program to an end-user.

• Databases. Most data is held within some form of database and Python provides
interfaces that allow a programmer to access that data. These interfaces make
it easy to query a database for information and pull that information back into
the Python program for further progressing. For example, a database of client
information may be queried to retrieve details held about clients.

• Distributed processing. The data sets being processed in a Data Science project
can be very large indeed, and it can take a significant amount of time to apply
some algorithm to the analysis of that data. Distributing that processing amongst
a number of processors or indeed across a server cluster can be very beneficial.
Having an understanding of distributed processing techniques and of the libraries
that support such processing within a Data Science context can be very useful.

• Statistical and mathematical modelling. Although this can be a surprise for the
aspiring data scientist, who thinks they will be using advanced analytical libraries
or machine learning algorithms on a regular basis, in many cases the application of
well-established statistical or mathematical modelling techniques is often enough.
Therefore, having a strong background in statistical and mathematical modelling
can be essential.

• Business intelligence and BI dashboards. Business Intelligence (or BI) and BI
Analytics refer to the collective tools, techniques, applications, and infrastruc-
ture that can be used by (typically) non-programmers to help businesses make
decisions and evaluate performance. These systems often benefit from, and inte-
grate with, the results obtained from and insights generated by, Data Science
projects. For example, it is not uncommon to integrate the results generated by
a Data Science project into a BI dashboard such that the end-user obtains all the
information they need in one place and in a format that they are used to.

604 53 Introduction to Data Science

• Machine learning. Machine learning is the application of algorithms and tech-
niques often derived from the AI community that can be used to generate further
understanding of the data or classifiers and predictors based purely on analysis
of that data. In many cases these algorithms make extensive use of statistical
techniques under the umbrella of AI.

53.4 Data Analytics Process

Within the area of Data Science, data analytics can be viewed as being the part that
seeks to convert operational observations into issues that we either know we know
or know we don’t know. Thus data analytics is the process of examining data sets in
order to draw conclusions about the information they contain, increasingly with the
aid of specialised systems and software.

The general lifecycle used with a data analytics project is shown below.

There are several steps that typically comprise the data analytics lifecycle. These
steps will be discussed below:

1. Discovery. In this phase of the data analytics lifecycle, the aim is to find/obtain
the data that will be used for the rest of the lifecycle. This may not always be as
easy as it sounds, as data may be stored in multiple different ways in different
parts of the organisation. The data may be in structured formats such as relational
databases or CSV files or it may be in semi-structured formats such as emails
or indeed in unstructured formats such as PDF files or images. Additionally, the

53.4 Data Analytics Process 605

data scientist may not by default have access to all this information and may need
to work with the organisation (and in some cases with external organisations)
to obtain access to the data or obtain appropriate redacted data sets, etc. One
intriguing aspect of this process may be actually finding out whether the data
exists or not, in some organisations you might be told explicitly that the data
does or does not exist, but further investigation may contradict what you have
been told. Very large organisations, who may benefit the most from Data Science
type activities, often have large and complex structures in which knowledge of
what data is held and where is often obfuscated (intentionally or unintentionally).
The data scientist must access this data in order to be able to carry out any further
work on it.

2. Data preparation. Having gained access to the data, the data scientist must
now prepare the data so that it can be processing using the tools, programming
languages and techniques available to them. This may not be as easy as it sounds;
for example, it may be necessary to convert PDF files to plain text documents, or
to analyse images for contained textual data. In many cases data may be missing,
either because of problems with the initial data capture process or due to different
parts of an organisation using different processes. In such cases a decision needs
to be made about how to handle missing data. This is often not trivial. For
example, as a simple case consider a set of temperatures for 12 pm each day
through August. What should you do if some of those temperature readings are
missing (maybe there was a technical fault with the monitoring hardware and
one in five readings was not taken). How should you represent those missing data
points—with a blank, with − 1, or with 0? If you use a blank, then when you try to
calculate an average temperature, you might find that you add together 25 values
but divide them by 31 to get a daily average. Which would give a misleading
result! If you use − 1, then you will have a full 31 readings, but all the − 1
readings might imply that it was freezing on those particular days. If you leave
the days without readings out completely and then graph them, the graph will
have a potentially odd look to it, etc. In general, an appropriate strategy needs to
be adopted for each data set given whatever models and tasks will be applied to
it later in the lifecycle.

3. Model planning. It is important to consider which data analytics and machine
learning models might be appropriate for the tasks to be performed. This may
involve some research and exploration into the data itself. From this, decisions
may be made about which analytical techniques to apply or which machine
learning algorithms to use. In many cases this involves experiments with some
(or all) of the data available to explore the options available. For example, there
are several classifier style machine learning algorithms available such as nearest
neighbour and Random Forest Decision Trees. However, which algorithm should
be used relates both to the data involved and to the actual purpose of the final
system.

4. Model building. Once the data scientist (or the team) has selected which models
to use they can start building the models and applying the data to them. Typically,
this is an iterative process. This may be because only a sample of the data was

606 53 Introduction to Data Science

used for the model planning phases and additional concerns or issues may be
raised when all the data is applied to a specific model.

5. Communication of results. The way in which the results are communicated
to the stakeholders varies widely depending upon the organisation, the intent
behind the project and the tools available. In some cases, the data scientist may
be expected to present the results to management with the implications or insights
gained from the data outlined. In other situations, a graphical BI dashboard system
may be created so that stakeholders (e.g. senior management) can see the results
for themselves and take appropriate actions. Other systems might generate some
form of automated analysis tool that might identify particular trends in the data
and subsequently mark these for further investigation by human actors, etc.

6. Operationalisation. The final step might be to operationalise the systems devel-
oped. This might be to embed the BI dashboard into the day-to-day tools used
by the final recipients of the data. Alternatively, it might be to embed a piece of
software into the current workflow of existing systems such as in the potential
identification of fraudulent loan applications.

Much debate is given to how automated such systems should be, for example
should a loan be rejected automatically by a fraud identification system generated
from a machine learning algorithm or should it be reviewed by a human before final
acceptance or rejection is made. That is beyond the topic of this book and may well
be a decision that is made on a project-by-project or organisation by organisation
basis.

53.5 Python and Data Science

There are many tools available to the Data Scientist to help them in their day-to-day
work. Some of the these tools are large complex pieces of pre-built software such
as the SAS suite of tools; others are libraries available for a particular language or
languages such as Apache Spark for Java, Kotlin and Scala. There are also specialist
programming languages, originally intended for a specific purpose (such as statistical
analysis) which are increasing used for Data Science type projects such as R.

In contrast, Python is a general-purpose programming language which is very well
suited to Data Science type projects and for which numerous third-party libraries have
been developed to make it easier to create a Data Science project.

There are a range of commonly used Data Science libraries, we will look at several
in the reminder of this book in particular we will consider:

• NumPy which provides sophisticated facilities for handling numbers.
• SciPy which stands for Scientific Python.
• Pandas is a data manipulation and analysis suite of modules. It provides facilities

for reading data from a wide range of different formats, for managing and handling
missing data, for reshaping data, etc.

53.6 Machine Learning for Data Science 607

• Matplotlib is a sophisticated graphing library already discussed earlier in this
book.

• Seaborn is a statistical data visualisation library that is based on builds on
Matplotlib. It provides a higher-level interface for creating and presenting
statistical graphics.

• SciKitLearn provides a set of machine learning implementations that can be used
with Data Science projects to create classifiers, regression predictors, clustering
algorithms, dimensionality reduction libraries, etc.

53.6 Machine Learning for Data Science

Following on from the previous section on data analysts it is not uncommon to apply
some machine learning techniques when analysing data, for example to perform some
classification of new data using previously seen data. That is, machine learning is a
method of data analysis that automates analytical model building. Using algorithms
that iteratively learn from data, machine learning allows computers to find hidden
insights without being explicitly programmed. The general model is shown below:

This illustrates that training data (which may be what is called supervised or
unsupervised) is fed into a machine learning algorithm and the output from this is a
system that might be used to classify new data, predict behaviour based on new data
or make some decision based on new data.

There are a range of machine learning algorithms (often referred to as models)
provided by SciKitLearn that can be used to predict future patterns based on past
data. These can be divided up into supervised and unsupervised learning systems.

608 53 Introduction to Data Science

A supervised learning system involves teaching a system, using data that is tagged
or marked with known results. For example, loan data with applications marked
as being either fraudulent or not, etc. In contrast an unsupervised learning system
involves the system itself identifying patterns or clusters within the data that it is
presented with. The term unsupervised is intended to indicate that there are no known
(or at least provided) correct answers. This allows users to understand or learn more
about the data. The term unsupervised is intended to indicate that there is no known
(or at least provided) correct answers (and hence there is no teacher). In some situ-
ations there is a large amount of data, and only some of that data can be labelled
with appropriate results or conclusions. Such problems are sometimes referred to as
semi-structured machine learning. In many cases a combination of supervised and
unsupervised techniques are required to analyse such data.

Each of the machine learning algorithms commonly used with Python has pros
and cons and situations in which they are best applied. It is therefore useful to have
a toolbox of such algorithms that can be applied as and when appropriate.

There are several commonly used libraries available in Python for this including
SciKitLearn (aka SKLearn), TensorFlow and PyTorch. In general SciKitLearn and
TensorFlow have about the same share of the Python market place with PyTorch
being just behind, although all three are close to 30% in terms of Python developers
usage.

In the remainder of this book we will be focussing on the use of supervised
learning with K-Nearest Neighbour, Decision Trees and Random Forest machine
learning algorithms.

53.7 Online Resources

For further information machine learning see:

• Harvard Business Review—“What every manager should know about
Machine learning” http://hbr.org/2015/07/what-every-manager-should-know-
about-machine-learning.

http://hbr.org/2015/07/what-every-manager-should-know-about-machine-learning
http://hbr.org/2015/07/what-every-manager-should-know-about-machine-learning

53.7 Online Resources 609

• Quick Reference cheat sheet on ML Algorithms/uses http://www.lauradhamilton.
com/machine-learning-algorithm-cheat-sheet.

• 10 Machine Learning Methods that Every Data Scientist Should Know https://
towardsdatascience.com/10-machine-learning-methods-that-every-datascientist-
should-know-3cc96e0eeee9.

• https://numpy.org/ Numpy.
• https://scipy.org/ SciPy.
• https://pandas.pydata.org/ Pandas.
• https://matplotlib.org/ MatplotLib.
• https://seaborn.pydata.org/ Seaborn.
• https://scikit-learn.org/ SciKitlearn.

http://www.lauradhamilton.com/machine-learning-algorithm-cheat-sheet
http://www.lauradhamilton.com/machine-learning-algorithm-cheat-sheet
https://towardsdatascience.com/10-machine-learning-methods-that-every-datascientist-should-know-3cc96e0eeee9
https://towardsdatascience.com/10-machine-learning-methods-that-every-datascientist-should-know-3cc96e0eeee9
https://towardsdatascience.com/10-machine-learning-methods-that-every-datascientist-should-know-3cc96e0eeee9
https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://scikit-learn.org/

Chapter 54
Pandas and Data Analytics

54.1 Introduction

The COVID-19 pandemic has been the defining feature of the first years of the
2020s, and the related data has been the focus of much research. Many organisations,
including Google and the UK Government, have made this data publicly available,
so that it can be analysed by academics, students and other interested parties. Such
analysis can be achieved using a variety of tools from MATLAB, through R to
Python and its data analytics stack that includes the Pandas data analytics library and
Matplotlib graphing library. In this chapter we will look at two data sets that can be
obtained free from public sources and how the Python Pandas library can be used to
perform some simple data analytics.

54.2 The Data

We shall be using two data sets to explore data around the COVID pandemic through
the Python Pandas library. These data sets are described below. Both data sets are
available within the GitHub repository for this chapter; see https://github.com/joh
nehunt/advancedpython3_2nd/tree/main/chapter54_pandas.

54.2.1 The UK Government COVID Data Set

The first data set is provided by the UK Government as part of its coronavirus
(COVID-19) data provision. The web site is illustrated below:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

611

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_54&domain=pdf
https://github.com/johnehunt/advancedpython3_2nd/tree/main/chapter54_pandas
https://github.com/johnehunt/advancedpython3_2nd/tree/main/chapter54_pandas
https://doi.org/10.1007/978-3-031-40336-1_54

612 54 Pandas and Data Analytics

On this site the user can select from various criteria to identify the region, the
metrics, the date range of interest and the data format they require. For this chapter
we selected the UK as the area, the latest data available for 2020, the CSV data format
(as that is easy to work with) and a set of metrics to download. The metrics selected
were daily hospital cases, daily new admissions, new COVID cases, as well as the
number of people who had their first and second vaccinations, as shown below:

To make it possible to repeat such experiments, the web site also provides a
permanent link for data request, which is given below:

https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalC
ases&metric=newAdmissions&metric=newCasesByPublishDate&metric=newPeo
pleVaccinatedFirstDoseByPublishDate&metric=newPeopleVaccinatedSecondDo
seByPublishDate&format=csv.

https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalCases&metric=newAdmissions&metric=newCasesByPublishDate&metric=newPeopleVaccinatedFirstDoseByPublishDate&metric=newPeopleVaccinatedSecondDoseByPublishDate&format=csv
https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalCases&metric=newAdmissions&metric=newCasesByPublishDate&metric=newPeopleVaccinatedFirstDoseByPublishDate&metric=newPeopleVaccinatedSecondDoseByPublishDate&format=csv
https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalCases&metric=newAdmissions&metric=newCasesByPublishDate&metric=newPeopleVaccinatedFirstDoseByPublishDate&metric=newPeopleVaccinatedSecondDoseByPublishDate&format=csv
https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalCases&metric=newAdmissions&metric=newCasesByPublishDate&metric=newPeopleVaccinatedFirstDoseByPublishDate&metric=newPeopleVaccinatedSecondDoseByPublishDate&format=csv

54.2 The Data 613

We are using this data set from the middle of 2021 as the data at the top of the
set is quite well populated and interesting. Although the latest data sets are available
for 2023 in the UK, little data is now being recording regarding things such as new
cases and numbers vaccinated.

54.2.2 The Google Mobility Data Set

The second data set to be used is provided by Google. It is accessible from the Google
COVID-19 Community Mobility Reports site illustrated below:

It makes available two files that can be downloaded; the first provides a global view
of mobility, while the second provides separate data files for all the regions covered
by Google. This second data set is the one which was downloaded for this chapter.
This download is provided as a ZIP file. When unzipped it contains many different
data files for different countries. For this chapter the GB data file was selected.

The data is quite wide ranging and includes information on the percentage change
of Google users for visits and length of stay at different places such as retail locations,
parks and transport hubs.

Both data sets will now be processed using the Python Pandas library.

614 54 Pandas and Data Analytics

54.3 Python Pandas

The Python Pandas library provides facilities that simplify accessing, processing and
visualising data sets. Pandas itself builds on other libraries such the NumPy library.
It is also commonly used with graphing libraries such as Matplotlib and Seaborn.
The relationship between all of these and Python is illustrated below.

The intention of the above diagram is to illustrate how one library often builds on
another but can be used independently or in combination.

Pandas is not provided as a default part of the Python environment and instead
must be installed along with any other third-party libraries being used. This can
be done using pip or conda (depending on how you are managing your Python
environments). Pip is a tool used to install Python packages and is provided as part
of Python. Conda, another package management tool, is part of Anaconda and is a
popular choice for data scientists using Python (this is discussed in a later chapter).
Both can be used to install Pandas as shown below:

pip install pandas

Or if you are using conda:

conda install pandas

Note that there are two major versions of Pandas available at the time of writing;
there is the original 1.x series and there is the 2.x series. From a developers point
of view both look very similar; however, Pandas 2.0 has had a significant re-write
under the hood which has significantly improved its performance on very large data
sets. We will be using Pandas 2.0.2 in these examples, and thus we will benefit from
the performance benefits available.

54.3 Python Pandas 615

To ensure that you are using the latest version of Pandas, you can explicitly specify
the version to use, for example by specifying the version number when you install
it, such as

pip install pandas=2.0.2

If however you wish to use an older version of Pandas, then you can also specify
that—for example:

pip install pandas==1.5.3

As we will also be using Matplotlib and Seaborn, we will need to install both
these third-party libraries as well:

54.3.1 Pandas Series and DataFrames

The key concepts within Pandas are the Series and the DataFrame. A series is a one-
dimensional array like object that holds data of a specific type (such as an integer, a
string or a float). Each value is accessible via an index value which can be a numeric
integer such as 0 or 1 or a label such as a string or a timestamp. The following
diagram illustrates two such series; one is indexed numerically from zero and holds
a sequence of floats, and the second is indexed by a set of timestamps and holds a
sequence of integers.

616 54 Pandas and Data Analytics

A DataFrame is a tabular structure, a bit like a spreadsheet. It has columns and
rows. Each column has a type and a label. The columns are represented by series.
Each row has an index. The index could be numeric or some other value such as a
sequence of dates. A DataFrame can be visualised as shown below:

We will use DataFrames to load, process and analyse the COVID-related data
sets.

54.4 Loading and Analysing UK COVID Data Set

The first thing we will do is load the CSV file, obtained from the UK Government
COVID data portal, into a Pandas DataFrame. This is very easy to do with Panadas
as it provides a function called read_csv() that can be used for this exact purpose
(there are also other forms of the read function such as read_excel and read_
sql).

All we need to do is import the Pandas library and then call the function. Note
that it is a common convention within the Python world to alias Pandas to pd as a
shorthand reference to the library.

The following code loads the data set into a DataFrame:

import pandas as pd
import seaborn as sns

sns.set()

df1 = pd.read_csv('overview_2021-07-15.csv')

The variable df1 now contains a reference to a Pandas DataFrame. There can
be a lot of data held in a DataFrame which can make it hard to visualise; however
the functions head() and tail() can be used to see the first few, and the last few,
rows in the DataFrame:

54.4 Loading and Analysing UK COVID Data Set 617

print(df1.head().to_string())
print(df1.tail().to_string())

The above code obtains the head and the tail of the DataFrame and then converts
them into a string format that is suitable for printing. The output from these is given
below:

This is still quite hard to read, not least as there are numerous columns in the
data but also because of the presence of a lot of NaN values which indicate missing
values.

Despite this we can already see a few things about this data; for example, there
are 531 rows and that there are several columns which don't provide much in the way
of meaningful information for us. For example, we know that this data is about the
UK; thus areaCode, areaName and areaType which all indicate that this is data about
the UK are not particularly useful and all have the same values. We can therefore
choose to drop these columns from the DataFrame:

618 54 Pandas and Data Analytics

df1.drop(['areaCode', 'areaName', 'areaType'],
axis='columns',
inplace=True)

print(df1.head().to_string())

The drop() method of the DataFrame is given a list of the columns to remove,
followed by the axis option which indicates its columns we are dropping not rows.
The final parameter inplace indicates that it should change the DataFrame itself
rather than generate a new DataFrame for the result.

Now when we look at the output from the DataFrame, we have less columns and
less meaningless data:

Of course, we can go further, we can now easily see that there is a date column
with individual dates starting from July 15, 2021. However, at the moment all that the
DataFrame knows about this column is that it contains objects (specifically strings).
However, if we tell the DataFrame that this column actually represents dates, or more
specifically datetime information, then we can perform date-related comparisons on
it, such as selecting all rows between a start and end date.

We can tell the DataFrame that the date column should be treated as a set of
datetime objects using the Pandas to_datetime() function:

df1['date'] = pd.to_datetime(df1['date'])

This code tells Pandas to convert the date column in the df1 DataFrame to a set of
datetime instances and then to overwrite the original column with the new version.
Note how columns can be accessed using the square bracket (index) notation.

We can now perform several operations on the DataFrame using the date column:

Sort the rows into ascending date order
df1.sort_values(by=["date"],

ignore_index=True,
inplace=True)

Want to select 2020-02-15 to 2020-12-31 dates
Set up a mask to indicate the date election
date_mask = (df1['date'] > '2020-02-14') & (df1['date'] <=
'2020-12-31')
Select all the rows that meet the mask search criteria
df1 = df1.loc[date_mask]

54.4 Loading and Analysing UK COVID Data Set 619

This code snippet does three things:

1. It resorts the rows in the DataFrame into ascending (rather than descending)
date order. This is done using the sort_values() method available from the
DataFrame object. This function takes three parameters:

a. by—which is used to indicate the column to use for sorting.
b. ignore_index which indicates that the current index should be ignored.
c. inplace option as used previously.

2. We then want to select just those rows associated with dates between February
14, 2020, and December 31, 2020. This is because we are interested only in the
2020 data, and the Google data only covers from February 14, 2020, onwards.
To do this, we set up a mask. This returns a series of True and False values
for each row in the DataFrame. If a row meets the condition specified in the test,
then the value True is generated; otherwise it is False.

3. The DataFrame loc() method is then used to select the rows which match the
condition in the mask. The loc() method will return each row where there is a
corresponding True in the date_mask.

If we now look at the head and tail of the DataFrame, we can see:

620 54 Pandas and Data Analytics

The above output shows that the head of the data starts on February 14 and the
tail ends on December 31, 2020, and that there are now 335 rows of data.

We can also see that there are still a large number of NaN values in the printout.
It can be useful to see how many such values there are for each column. We can
do this by testing each value in the DataFrame for NaN (or nothing or null) and
then counting the results for each column. As the DataFrame allows operations to
be performed in batch (as efficiently as possible) we can do this using two batch
functions isnull() and sum():

is_null_count = df1.isnull().sum()
print(is_null_count)

From this we get:

date 0
hospitalCases 41
newAdmissions 37
newCasesByPublishDate 0
newPeopleVaccinatedFirstDoseByPublishDate 321
newPeopleVaccinatedSecondDoseByPublishDate 321
dtype: int64

From this we can see that the last two rows in the above list indicate that the
associated columns provide virtually no significant information as they contain no
significant data (this is probably because the data is from 2020 and prior to the main
vaccine roll out in the UK). We can therefore also drop these columns from our
DataFrame:

df1.drop(['newPeopleVaccinatedFirstDoseByPublishDate',
'newPeopleVaccinatedSecondDoseByPublishDate'],

axis='columns',
inplace=True)

Now if we print a random sample of the DataFrame, we can see that we have a
simpler set of data with mostly meaningful information:

Select a random sample of 10 rows from the DataFrame
print(df1.sample(10).to_string())

Some of the data generated by the above statement is given below, note as we
used the sample() method the rows are selected randomly and are not in order:

54.5 Loading the Google Mobility Data Set 621

54.5 Loading the Google Mobility Data Set

If we now wished to see how movement changed during the 2020 year, we can take
the Google Mobility Data Set for the UK and perform similar analysis. The following
code does exactly this:

Load the google Mobility data for the UK
df2 = pd.read_csv('2020_GB_Region_Mobility_Report.csv',
low_memory=False)

Drop columns that do not provide any additional data
df2.drop(['country_region_code',

'country_region',
'sub_region_1',
'sub_region_2',
'metro_area',
'iso_3166_2_code',
'census_fips_code',
'place_id'],

axis='columns',
inplace=True)

df2['date'] = pd.to_datetime(df2['date'])
df2.rename(columns={'retail_and_recreation_percent_change_
from_baseline': 'retail_and_recreation_change'}, inplace=True)

Pick up the first 322 rows
df2 = df2.head(321)
print(df2.sample(8).to_string())

The only additional to the previous code is that we have renamed the
retail_and_recreation_percent_change_from_baseline column
to retail_and_recreation_change as it is shorter to reference. The output
from the above code is

622 54 Pandas and Data Analytics

54.6 Merging Two DataFrames

We now have two DataFrames both containing data where there are associated
dates and COVID-related information. As we would like to work with these two
DataFrames together, we will merge the two DataFrames we have previously
obtained, using the Pandas merge() function. This will join the two DataFrames
based on the date with each row holding data from both DataFrames:

df3 = pd.merge(df1, df2, on='date')
print(df3.sample(8).to_string())

The DataFrame held in the variable df3 now holds all the columns from the
previous two DataFrames:

54.7 Analysing the Combined Data 623

54.7 Analysing the Combined Data

We can now look at the relationships between data from the UK government and
from Google COVID mobility portals. For example, we can look to see if there are
any positive or negative correlations between this data:

print(df3.corr().to_string())

This produces the following grid:

624 54 Pandas and Data Analytics

There is a lot of data here, but one of the things we can see is that there
appears to be a negative correlation between HospitalCases and retail_
and_recreation_change.

54.7 Analysing the Combined Data 625

This might be useful to visualise on a graph. We can therefore generate a new
DataFrame containing just the date and the HospitalCases and retail_and_
recreation_change data:

df4 = pd.concat([df3['date'],
df3['hospitalCases'],
df3['retail_and_recreation_change']], axis=1)

We can now choose to plot this data in different ways. For example, we might
decide to generate a simple line graph that illustrates the relationship between these
two data columns. To do this, we are using Matplotlib and Seaborn; this means we
need to import those libraries so that they are accessible to our program and initialise
the graphing configuration values using sns.set():

import matplotlib.pyplot as plt
import seaborn as sns

sns.set()

Lets compare the hospital cases against retail and recreation
change
axis1 = df4.plot(x="date", y="hospitalCases", legend=False)
axis2 = axis1.twinx()
df4.plot(x="date",

y="retail_and_recreation_change",
ax=axis2,
legend=False,
color="r")

axis1.figure.legend()
plt.show()

Note that because the two columns have different value ranges, we need to plot
them on two separate axes to see their respective changes. To do this we create
two axis objects one for the hospitalCases and one for the retail_and_
recreation_change data. We then plot the graph. The resulting graph is shown
below:

626 54 Pandas and Data Analytics

This graph does highlight the trends in the data, but there is certainly quite a lot
of noise in the red line. We might therefore decide to smooth out the date as bit to
see the general trends. We can do this by smoothing out each data point by taking an
average across the seven preceding days. This can be done using the rolling()
function and then taking the mean of the rolling values.

df5 = pd.concat([df3['date'],
df3['hospitalCases'].rolling(7).mean(),

df3['retail_and_recreation_change'].rolling(7).mean()], axis=1)
ax1 = df5.plot(x="date", y="hospitalCases", legend=False,
color="b")
ax2 = ax1.twinx()
df5.plot(x="date",

y="retail_and_recreation_change",
ax=ax2,
legend=False,
color="r")

ax1.set_ylabel('cases', color='b')
ax2.set_ylabel('% change from baseline', color='r')

ax1.figure.legend()
plt.show()

These new values can then also be graphed and appropriate labels added:

54.8 Summary 627

54.8 Summary

We can quickly build, manipulate and visualise data thanks to Python and free open-
source tools such as Pandas, Matplotlib and Seaborn.

In this relatively simple instance we've brought together two sets of freely down-
loadable UK data to display how the number of COVID-related hospital cases corre-
lated to the movement of shoppers in 2020—the relationship between the two factors
is rather striking and a good demonstration of the power of data visualisation.

You can apply these data analysis techniques to a huge variety of data types, at
scale. It is possible to extract and refine valuable information from virtually any
source.

Chapter 55
Alternatives to Pandas

55.1 Introduction

This chapter considers alternatives to Pandas 2.x including Pandas 1.x, Polars and
R.

55.2 Comparing Pandas 2.0.0

If you search on the web, you will find many articles comparing Pandas with a range
of tools, from R and PySpark to tools such as Excel, SAS or SQL databases. Some
of these are relevant (such as PySpark); others are less appropriate such as SQL. In
this section we will quickly compare and contrast several additional tools.

55.3 Pandas 1.x v 2.x

It is perhaps worth starting off by considering how Pandas 2.0 differs from Pandas
1.x.

Various performance enhancements have been implemented in Pandas 2.0 such
as copy-on-write enhancements. As an example, a new lazy copy mechanism that
defers the copy until the object in question is modified.

One criticism that was levelled at Pandas 1.x related to memory usage on very
large data sets. Originally, Pandas was built on top of NumPy data structures.

To explain why this is important, it is useful to understand how Pandas is usually
used. In most cases, some data set is loaded from some source such as a file, a CSV
file, an Excel file and a database. This can be done using one of the read functions
such as read_csv, read_excel or read_sql. This data is loaded into the

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

629

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_55&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_55

630 55 Alternatives to Pandas

Python/Pandas program, and Pandas determines how to represent that data. This
representation is quiet straightforward for integers and floating point numbers but
for strings, dates, times, etc., dome processing/decision-making is required as to the
best way to hold that data. The fundamental types in Python such as list, tuple and
dictionary are not designed for holding large amounts of data and can become very
slow if they are used. Pandas therefore chooses to use another representation for
arrays and that representation was to use NumPy.

At the time, this was a very good idea at the time as NumPy is very well established
and provided significant out of the box support that could be built upon to provide
data processing and data analytics facilities.

However, since then various rival libraries or add-ons to Pandas have attempted
to improve on the performance of NumPy and NumPy arrays as they were perceived
to be too ‘slow’ for many modern applications and its lack of support for strings and
missing values. Indeed Wes McKinney has written an article outlining why NumPy
was no longer the best choice now for Pandas in “Apache Arrow” and the “10 Things
I Hate About pandas”.

In fact, Pandas has been working towards decoupling itself from NumPy for
several years (at least since 2018), and with Pandas 2.0.0 PyArrow is now used to
support all data types.

55.4 Pandas Versus Other Libraries and Tools

Pandas Versus NumPy
This is not an uncommon analysis to find if you go searching. However, as has been
indicated above it is not really an appropriate one as Pandas 1.x was directly built
on top of NumPy and Pandas 2.0 can still use NumPy or provide PyArrow as an
alternative representation. Perhaps what is worth say is that if all you need is the
facilities that NumPy provides, then Pandas is probably overkill for you!

Pandas Versus SciPy
Another comparison you will find is with SciPy (or Scientific Python). Interestingly
SciPy is not strictly required for Pandas but is listed as an optional dependency.
SciPy is another open-source Python library this time oriented around mathematics,
science and engineering tasks as it contains modules for linear algebra, integration,
interpolation, FFT, image processing, etc. As such SciPy is complementary to Pandas
rather than an alternative to it.

Pandas Versus PySpark
PySpark is a Python library for the Scala (and Java)-based Spark ecosystem of tools.
Spark is a framework for working with large data sets in a distributed computing
environment. In contrast Pandas fundamentally runs operations on a single computer.
Thus if you want to exploit the benefits of a set of networked computers for your data
analytics tasks, then PySpark may well be a preferable choice. However, PySpark

55.4 Pandas Versus Other Libraries and Tools 631

is more complex than Pandas and obviously involves a distributed computing envi-
ronment and thus requires more set-up than Pandas. In this comparison these are
markedly different tools aimed at significantly different sized tasks.

Pandas Versus Dask
The last section indicated that Pandas is primarily a single computer-based solution,
whereas PySpark was a multicomputer-based solution. However Dask changes things
a little. Dask is library that allows Pandas (and in fact other libraries such as NumPy
itself and SciKitLearn) to scale across a distributed computing environment. It is thus
possible to use Dask to make Pandas operate in a multiple computer environment
and take advantage of multiple computer systems for a data analytics task. This may
well be a preferable approach to PySpark if you are already familiar with Pandas.
Thus, Dask is not really a competitor of Pandas but an enabler!

Pandas Versus Polars
This is perhaps the most appropriate comparison in this list. Polars is a direct rival
to Pandas in terms of its aims and objectives with the added focus of aiming to be
faster and more efficient than Pandas. Its main claim to performance is that it uses an
arrow-based representation and natively parallelises processing of the data. In actual
fact Polars has two APIs an eager API and a lazy API. The eager API is similar in
its execution to Pandas. The lazy API only runs code when it needs to which can, in
some cases, further improve performance.

Compared to Pandas 1.x Polars has significant performance improvements.
However, compared to Pandas 2.0 the improvements are either less marked, not
really noticeable or indeed not present as in some cases Pandas 2.0 may be faster.
Polars is still an alternative to Pandas 2.0, but the results are less clear cut and
any developer who wishes to select one over the other should perform their own
performance benchmark tests to determine which suits them best.

One point to note is that there is far more documentation and examples available
for Pandas than there are for Polars.

Pandas Versus R
This is an interesting comparison as Pandas is a data analytics library built on top of
the general-purpose programming language Python. In contrast R is a programming
language and environment designed for statistical computing and graphics. As such
there is a fundamental difference in philosophy behind these two approaches. For
many developers coming from a traditional programming background Python is a
simple to learn programming language which benefits from the huge ecosystem of
open-source and commercial libraries available for it. This of course includes Pandas
but also all the GUI, graphing, database, restful, etc., libraries available in the market,
whereas R is a slightly esoteric programming language with its own set of libraries
and ecosystem of add-ons which are not as extensive as Pythons.

632 55 Alternatives to Pandas

55.5 Online Resources

See the following online resources for information on the topics in this chapter:

• NumPy https://numpy.org.
• SciPy https://scipy.org/.
• PySpark https://pypi.org/project/pyspark/.
• Dask https://docs.dask.org/en/stable/.
• Polars https://www.pola.rs/.
• R Programming Language https://www.r-project.org/.
• PyArrow https://arrow.apache.org/docs/python/index.html.
• Apache Arrow and the “10 Things I Hate About pandas” https://wesmckinney.

com/blog/apache-arrow-pandas-internals/.
• See ‘Enhancing Performance’ in Pandas 2.0 for more information. https://pandas.

pydata.org/docs/user_guide/enhancingperf.html.
• SAS https://www.sas.com/en_gb/home.html/.

https://numpy.org
https://scipy.org/
https://pypi.org/project/pyspark/
https://docs.dask.org/en/stable/
https://www.pola.rs/
https://www.r-project.org/
https://arrow.apache.org/docs/python/index.html
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://wesmckinney.com/blog/apache-arrow-pandas-internals/
https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://pandas.pydata.org/docs/user_guide/enhancingperf.html
https://www.sas.com/en_gb/home.html/

Chapter 56
Machine Learning in Python

56.1 Introduction

This chapter explores the use of machine learning algorithms to perform further Data
Science types takes. It does this by taking the data sets used in the Pandas and data
analytics chapter and applies several machine learning systems to create predictors
for people’s behaviour based on the 2020 COVID data.

56.2 The Data

As with the previous chapter, we shall be using two data sets that provide information
on the COVID pandemic. The data sets used for this chapter are available within the
GitHub repository for this chapter; see https://github.com/johnehunt/advancedpyth
on3_2nd/tree/main/chapter55_machine_learning.

The first data set is provided by the UK Government as part of its coronavirus
(COVID-19) data provision. On their web site it is possible to download data relating
to the COVID pandemic using a web from. The user can select the metrics of interest,
for example:

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

633

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_56&domain=pdf
https://github.com/johnehunt/advancedpython3_2nd/tree/main/chapter55_machine_learning://github.com/johnehunt/advancedpython3_2nd/tree/main/chapter55_machine_learning
https://github.com/johnehunt/advancedpython3_2nd/tree/main/chapter55_machine_learning://github.com/johnehunt/advancedpython3_2nd/tree/main/chapter55_machine_learning
https://doi.org/10.1007/978-3-031-40336-1_56

634 56 Machine Learning in Python

In this case the metrics represent the number of hospital cases, the number of new
admissions and the number of new cases by published date.

To make it easy to repeat such downloads, they provide a permanent link that
allows the same data to be downloaded. The link used to download the data for this
chapter is:

https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalC
ases&metric=newAdmissions&metric=newCasesByPublishDate&format=csv.

The second data set is provided by Google and is again the Google COVID-19
Community Mobility Reports site. This download is provided as a ZIP file. When
unzipped, it contains many different data files for different countries. For this blog
the GB data file was selected.

56.3 SciKitLearn

To handle creating various machine learning algorithms/models, we shall be using
the SciKitLearn library.

This is a Python library that is built on top of NumPy, SciPy and Matplotlib and
provides implementations for a wide range of machine learning approaches including
those used for classification, regression, clustering, etc. SciKitLearn is very widely
used, is open source and can be used for commercial applications. It is of course not
the only library available, and other widely used Python machine learning libraries
are TensorFlow and PyTorch.

https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalCases&metric=newAdmissions&metric=newCasesByPublishDate&format=csv
https://api.coronavirus.data.gov.uk/v2/data?areaType=overview&metric=hospitalCases&metric=newAdmissions&metric=newCasesByPublishDate&format=csv

56.4 The Problem 635

To install SciKitLearn, you need to add it to your Python interpreter. This can be
done using either pip or conda:

pip install scikit-learn
conda install -c condo-forge scikit-learn

The version of SciKitLearn used at the time of writing was version 1.2.
In this chapter we will be focussing on the use of supervised learning with K-

Nearest Neighbour, Decision Trees and Random Forest machine learning algorithms.

56.4 The Problem

The aim of this work is to generate a system that can predict the percentage change in
retail and recreational mobility based on the number of hospital cases, new hospital
admissions and COVID numbers.

To do this, we need to take the data provided by the UK governments COVID
site and the Google Mobility Data and merge it together into a single data set. This
process was described in the previous chapter and is therefore not repeated here.

Having obtained the relevant data we now need to split that data into a set of data
to be used for training the learning system and a set of data that we can use to test its
performance. To do this, we use the train_test_split() function provided by
the SciKitLearn library. This function randomly splits the data set into train and test
subsets. Using the test_size parameter it is possible to indicate the percentage
split between training and testing. For example, using test_size=0.2 indicates
that the train set will hold 80% of the data and the test set will hold 20% of the data.

This is illustrated below. Note that df holds a Pandas DataFrame and that
train_test_split() returns two DataFrames held in train and test:

import pandas as pd
from sklearn.model_selection import train_test_split

df = pd.read_csv(merged_covid_data.csv’)
train, test = train_test_split(df, test_size=0.2)

Based on this split we can now extract the columns in the DataFrame that will be
used as the input values (the feature set) and the output values (the target variable).
To do this we can indicate to the train and test DataFrame:

FEATURES_LIST = [’hospitalCases’,
’newAdmissions’,
’NewCasesByPublishDate’]

TARGET_VARIABLE = ’retail_and_recreation_change’
training_features = train[FEATURES_LIST].values
training_target = train[TARGET_VARIABLE].values
test_features = test[FEATURES_LIST].values
test_target = test[TARGET_VARIABLE].values

636 56 Machine Learning in Python

A DataFrame allows one or more columns to be specified using the square
brackets accessor operator (e.g. [TARGET_VARIABLE]). These can then be
converted into a simple NumPy ndarray using the values attribute. These ndarrays
can then be used with the various learning systems for training and testing purposes.

56.5 Using Regression Supervised Learning Systems

In this chapter we will be using three regression supervised learning systems. We are
using regression models as they can be used to predict a continuous quantity output,
whereas machine learning classification algorithms predict a set of discreet values.

We will be using the K-Nearest Neighbour Regressor, the Decision Tree Regressor
and the Random Forest Regressor from the SciKitLearn library.

56.6 K-Nearest Neighbour Regressor

K-Nearest Neighbour (or KNN) is one of the simplest and most widely used algo-
rithms within the machine learning world. KNN uses past data to predict the clas-
sification of new data based on a similarity measure (the nearest neighbour aspect).
The closer a new data point is to a group of related data points then the more likely it
is to be classified as being of that type of data. The k value in the nearest neighbour
algorithm indicates how may nearby data points should be considered, to determine
the classification of the new value. For example:

In the above diagram, if k (the number of nearest neighbours to be considered) is
3, then the ? data point will be classed as a circle. However, if k is set to 6, then the
? data point will be classed as a square.

SciKitLearn provides the KNeighborsRegressor class as an implementation
of a KNN regressor. This class can be instantiated with the value of k as a parameter
(called n_neighbours). For example:

56.6 K-Nearest Neighbour Regressor 637

knn_model = KNeighborsRegressor(n_neighbors=3)
The above line of code creates a new KNN model instance initialised with the

value of k (n-neighbours) set to 3.
We can now train the KNN model object using the training feature set and the

training target output, for example:

model.fit(training_features, training_target)

Once this has run the KNN model object has been taught based on the training
data.

The question now is how well has this worked?
There are two metrics commonly used to assess how good a learning system such

as the KNN regressor is; these are Root Mean Square Error (RMSE) and R-squared:

• RMSE is a standard way to measure the error of a model in predicting data. It is
used in machine learning as a way of evaluating the accuracy (or usefulness) of
a trained model. In general, the smaller the RMSE value the better the result. Of
course, small is a relative term, but when an RMSE value is compared with the
RMSE values obtained for alternative models on comparative data sets, it can be
used as a relative guide to the utility of one model against another.

• R-squared is a statistical measure of how close the data is to the fitted regression
line. In other words, it indicates how well the model fits the data as a percentage,
with zero indicating a very poor fit and 100% indicating a perfect fit. Thus, the
higher the R-squared value the better.

We can thus use these metrics to assess how well our KNN model fits the data it
was trained with as well as how successful it is with the test data (it has never seen
before). The following code does exactly that using functions provided by NumPy
and SciKitLearn:

print(f’KNeighborsRegressor(n_neighbors=3)’)

Determine the metrics - against the training data
pred_train_rf = model.predict(training_feature_set)
trainingRMSE = np.sqrt(mean_squared_error(training_target_
attribute, pred_train_rf))
trainingRSquared = r2_score(training_target_attribute,

pred_train_rf)
trainingRSquared *= 100
Determine the metrics based on the test dataset
pred_test = model.predict(test_feature_set)
testingRMSE = np.sqrt(mean_squared_error(test_target_attribute,

pred_test))
testingRSquared = r2_score(test_target_attribute, pred_test)
testingRSquared *= 100
The values obtained for the training and testing R-squared values are multiplied

by 100 to convert them into a normal percentage for printing purposes.
The results obtained from running the metrics against the trained KNN model are

presented below:

638 56 Machine Learning in Python

KNeighborsRegressor(n_neighbors=3)
Testing KNN against Training data
Training RMSE – 6.8
Training R-squared – 91.5%
Testing KNN against test data
Testing RMSE – 10.3
Testing R-squared – 84.3%

In the above metrics we can see that the RMSE values are quite low, and the
R-squared values are both over 80%. However, can we do better? In the next section
we will explore the Decision Tree Regressor model.

56.7 Decision Tree Regressor

A Decision Tree learning system is one that builds a single rooted Decision Tree,
typically used to classify future values. The tree is built in general, by splitting the
data at each point in the tree based on an algorithm used to determine the best way to
differentiate between that data. There are several algorithms used to create a Decision
Tree such as ID3, C4.5 and CART (Classification and Regression Tree).

The SciKitLearn library provides the DecisionTreeRegressor class. This
class follows a similar pattern to the KNN regressor. This means that we must
instantiate the class and configure the regressor as appropriate. For example:

dt_model = DecisionTreeRegressor(max_depth=4,
min_samples_leaf=0.13,
random_state=3)

In this case we have configured the max_depth of the tree to be 4. We have
also set the min_samples_leaf parameter to 0.13. This parameter is used to
indicate the number of samples required before a leaf node is split into a branch
(where 0.13 represents 13%). Finally, random_state is set to 3 to ensure that the
behaviour of the tree is deterministic.

Next, we can train the Decision Tree model instance. Note that we do this in the
same way as we did for the KNN model instance:

dt_model.fit(training_features, training_target)

We can now obtain the RMSE and R-squared metrics for the dt_model. Again,
this is done in the same way as for the KNN model. This illustrates the common
pattern being provided by SciKitLearn for each of the learning systems we are
working with.

The results obtained for the Decision Tree Regressor are

DecisionTreeRegressor(max_depth=4, min_samples_leaf=0.13,
random_state=3)
Testing Decision Tree against Training data
Training RMSE – 11.1

56.8 Random Forest Regressor 639

Training R-squared – 81.4%
Testing Decision Tree against test data
Testing RMSE – 10.7
Testing R-squared – 80.0%

Interestingly these results are not generally as good as for the KNN example on
the training data. The RMSE value for the KNN was 7.2, but here it is 11.1 and the
R-squared value was 91.3%, whereas here it is 81.4%. However, the test data results
are slightly better. For the KNN the RMSE value was 11.1, but here it is 10.7 and
the R-squared results for KNN were 77.9, but here they are 80%. However, overall
the results are very close and given that the training and testing data is generated
randomly, if we ran both experiments again we might get slightly different results.
Thus overall, there is not much to separate the two machine learning approaches.

The question is can we do better? One option would be to explore different settings
for the DecisionTreeRegressor such as modifying the maximum depth of the tree or
changing the percentage required before a leaf node is split into a branch. Alterna-
tively, we could choose to try the Random Forest model (which is essentially a forest
of Decision Trees).

56.8 Random Forest Regressor

Decision Trees are useful, but they can overfit the training data, Random Forest
overcomes this by essentially creating a forest of Decision Trees. The SciKitLearn
library provides the RandomForestRegressor class that can be used to create an
implementation of a Random Forest regressor that can be trained in a similar manner
to the Decision Tree and KNN models.
To create a Random Forest regressor object, we use the
RandomForestRegressor class and set the parameters used with this class as
appropriate, for example:

rf_model = RandomForestRegressor(max_depth=4,
n_estimators=500)

In this case we have set the maximum depth of the tree and the n_estimators
parameter (which indicates the size of the forest).

Next, we train the Random Forest object as before:

rf_model.fit(training_features, training_target)

Finally, we obtain the metrics for the Random Forest model:

RandomForestRegressor(max_depth=4, n_estimators=500)
Testing Random Forest against Training data
Training RMSE – 7.4
Training R-squared – 92.4%
Testing Random Forest against test data
Testing RMSE – 9.6

640 56 Machine Learning in Python

Testing R-squared – 91.8%

Again, the RMSE values are not that dissimilar to those obtained for both the
KNN and Decision Tree models on the training data. However, the results obtained
for the test data are significantly better.

56.9 Summary of Metrics Obtained

The following table summarises the metrics obtained for the three regression models
we have created.

Model Training Testing

RMSE R-squared (%) RMSE R-squared (%)

KNN 6.8 91.5 10.3 84.3

Decision tree 11.1 81.4 10.7 80

Random forest 7.4 92.4 9.6 91.8

Overall, there is not that much difference between the KNN and Decision Tree
models on the testing data, but the Random Forest approach represents a significant
improvement on both for the test data. We shall therefore create a Random Forest
Regression-based predictor for the new data obtained for 2021.

56.10 Creating the Regressor Object

We can same our predictor object (implemented using the
RandomForestRegressor class) to a binary format file using the pickle
package provided with Python:

import pickle

file = open(’random_forest_regressor.pkl’, "bw")
pickle.dump(rf_model, file)

Once we have done this we can reload and use this regressor to process new data
whenever required. This is done again using the Python pickle page:

file = open(’random_forest_regressor.pkl’, "br")
regressor = pickle.load(file)
For example, we can use it to analyse COVID data for 2021 to predict the

percentage change in retail and recreational mobility.
Using the Pandas library, we can load and configure the CSV file containing the

data for 2021. This can involve ordering the data by date, removing columns not
used by the regressor object as shown below:

56.10 Creating the Regressor Object 641

df = pd.read_csv(’covid_data_2021_only.csv’)
df.sort_values(by=["date"], ignore_index=True, inplace=True)
Store date column for use with output
dates = df[’date’]
Drop date as now used in classifier
df.drop([’date’], axis=’columns’, inplace=True)

Make sure all columns have a value even if its Zero
df[’hospitalCases’] = df[’hospitalCases’].fillna(0)
df[’newAdmissions’] = df[’newAdmissions’].fillna(0)
df[’newCasesByPublishDate’] =
df[’newCasesByPublishDate’].fillna(0)

We can use the regressor object to predict the retail and recreational percentage
change for the COVID 2021 data using the predict() method:

predictions = regressor.predict(df)

The results variable now holds the predictions for each row in the DataFrame
df. However, this is not particularly useful on its own as we now need to relate the
predictions back to the 2021 COVID data. We can do this by merging with the COVID
data and the dates column into a new DataFrame and graphing both the original data
and the predicted percentage change. As the scales are so different, we are graphing
them one above the other as shown below.

The top graph illustrates the number of new COVID cases, new hospital admis-
sions and total hospital cases as published by the UK government across the first
10 months of 2021.

The lower graph shows the predicted percentage change in retail and recreational
mobility. Note that the lower graphs X scale is negative; the lower down the graph
the greater the percentage change is:

642 56 Machine Learning in Python

These graphs show that as the number of new COVID cases decreases the Random
Forest regressor predicts that the percentage change in retail and recreational mobility
will decrease (notice the bottom graph has a negative scale on the left). However, as
new COVID cases rise then the change in mobility negatively increases.

Note that this ignores vaccinations in 2021.

56.11 Online Resources

• https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm K-Nearest Neigh-
bour.

• https://en.wikipedia.org/wiki/Root-mean-square_deviation RMSE (Root Mean
Square Error).

• https://en.wikipedia.org/wiki/Coefficient_of_determination R-squared
• https://en.wikipedia.org/wiki/Decision_tree_learning Decision Tree Algorithms.
• https://en.wikipedia.org/wiki/ID3_algorithm ID3 algorithm.
• https://en.wikipedia.org/wiki/C4.5_algorithm C4.5 Algorithm.
• https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regres

sion_trees_(CART) Classification And Regression Tree (CART).
• https://en.wikipedia.org/wiki/Random_forest Random Forest.
• https://pandas.pydata.org/ Pandas.
• https://scikit-learn.org/ SciKitlearn.

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Root-mean-square_deviation
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/C4.5_algorithm
https://en.wikipedia.org/wiki/Predictive_analytics%23Classification_and_regression_trees_(CART)
https://en.wikipedia.org/wiki/Predictive_analytics%23Classification_and_regression_trees_(CART)
https://en.wikipedia.org/wiki/Random_forest
https://pandas.pydata.org/
https://scikit-learn.org/

Chapter 57
Pip and Conda Virtual Environments

57.1 Introduction

Many Python developers use a virtual environment to handle the modules installed for
a particular project. For many developers pip virtual environments are the go-to way
of handling such configurations. For the majority of this book this is the approach we
have assumed. However, within the Data Science world just as many developers use
conda and the associated Anaconda environment. This chapter introduces conda,
Anaconda and why they are so popular with data scientist.

57.2 Virtual Environments

As a quick refresher we will consider why a virtual environment is an essential
element of any Python developers’ workspace.

Python provides pip as its default module installation tool. However, by default
pip installs modules into the central Python runtime. This is efficient but only suits a
single user on a single machine working on single project scenario. This is because it
installs modules into the central Python runtime that module is installed for everyone
using that installation. This may not seem like much of an issue but consider that a
single user has multiple projects active on their computer. Each project has its own
requirements for the modules being used. For example, one project is using Pandas
1.5 and another project is using Pandas 2.0. These are different versions of the same
library! If we install one version of Pandas into the central Python runtime, everyone
will get that version; if we now install a newer version, it will overwrite the previous
version! In general, this is a bad idea. Typically, we want each project to have its own
set of third-party libraries and the versions of those libraries.

© Springer Nature Switzerland AG 2023
J. Hunt, Advanced Guide to Python 3 Programming,
Undergraduate Topics in Computer Science

643

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-40336-1_57&domain=pdf
https://doi.org/10.1007/978-3-031-40336-1_57

644 57 Pip and Conda Virtual Environments

To do this, pip provides a facility known as a pip virtual environment. A virtual
environment is a configuration of Python modules that can be set up on a per project
basis.

That is each individual Python project (or program) can have its own virtual
environment and that virtual environment can be activated as and when required.
The virtual environment is then used to configure all the modules used, isolating
one virtual environment’s configuration from another. Although it should be noted
that there is no reason why several Python programs cannot share the same virtual
environment, it is a very common practice to have a virtual environment per program.

57.3 Working with Pip

To use a virtual environment, it is necessary to first create this virtual environment.
This is done using the Python command itself (rather than the pip command), for
example:

python -m venv venv

In the above the Python command is being passed the -m option followed by
venv. This indicates that you want Python to run the venv module. The name
venv stands for virtual environment. This is followed by the name of the virtual
environment you wish to create. A common pattern is to call this venv—this is then
created in the current directory, for example:

% mkdir proj
% cd proj
% python -m venv venv
% ls -la
total 0
drwxr-xr-x 3 jeh staff 96 19 Jun 17:04 .
drwxr-xr-x 18 jeh staff 576 19 Jun 17:04 ..
drwxr-xr-x 6 jeh staff 192 19 Jun 17:04 venv

57.3.1 Activating a Pip Environment

We can now activate the virtual environment using the <virtual_env_name>/
bin/activate (or activate.bin on Windows) command. On a Mac we can
run this command using the source Mac command, for example:

% source venv/bin/activate
(venv) %

Note that on this Mac you can see the virtual environment that has been activated
as it is shown before the prompt in round brackets.

57.3 Working with Pip 645

On a Windows machine this file will be a bat file, and therefore you can activate
it by directly running the activate.bat file, for example:

> venv\Scripts\activate.bat

57.3.2 Installing Modules Using Pip

We can now install specific modules into this virtual environment and those will be
hidden from any other virtual environment. For example, if we first check to see
which is installed in our virtual environment using pip list, we can see:

% pip list
Package Version
---------- -------
pip 23.1.2
setuptools 67.6.1

From this we can see that there are two modules installed into the virtual envi-
ronment. We can now install modules into this environment. To do this, we use the
pip install command which has the following syntax:

pip install module-name

The following terminal session illustrates what happens when we do this for
Pandas:

% pip install pandas
Collecting pandas

Using cached pandas-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
(11.6 MB)
Collecting python-dateutil>=2.8.2 (from pandas)

Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247
kB)
Collecting pytz>=2020.1 (from pandas)

Using cached pytz-2023.3-py2.py3-none-any.whl (502 kB)
Collecting tzdata>=2022.1 (from pandas)

Using cached tzdata-2023.3-py2.py3-none-any.whl (341 kB)
Collecting numpy>=1.21.0 (from pandas)

Downloading numpy-1.25.0-cp311-cp311-macosx_10_9_x86_64.whl
(20.0 MB)

20.0/20.0 MB 8.5 MB/
s eta 0:00:00
Collecting six>=1.5 (from python-dateutil>=2.8.2->pandas)

Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)
Installing collected packages: pytz, tzdata, six, numpy, python-
dateutil, pandas
Successfully installed numpy-1.25.0 pandas-2.0.2 python-dateutil-
2.8.2 pytz-2023.3 six-1.16.0 tzdata-2023.3

646 57 Pip and Conda Virtual Environments

If we now ask pip to list what has been installed, we can now see these modules
listed:

% pip list
Package Version
--------------- -------
numpy 1.25.0
pandas 2.0.2
pip 23.1.2
python-dateutil 2.8.2
pytz 2023.3
setuptools 67.6.1
six 1.16.0
tzdata 2023.3

We can now see that pip has installed Pandas (version 2.0.2) but also the modules
that Pandas depends upon such as NumPy 1.25.0 and size (1.16.0).

57.3.3 Deactivating a Pip Environment

We can deactivate the virtual environment and activate other virtual environments
as required. For example to deactivate it all, we have to do is issue the command
deactivate (or deactivate.bat on a Windows machine).

[(venv) % deactivate
jeh@Johns-iMac proj %

In many cases this is handled for the developer by tools such as PyCharm.

57.3.4 Check Version of Pip

You can check the version of pip using.

pip --version

57.3.5 Installing Modules into a Pip Environment

New modules can be installed using pip install <module name>
For example:

pip install pandas

57.3 Working with Pip 647

or if a specific version of a module is required then you can specify the version
number after the module name using two ‘==’, for example:

pip install pandas==1.5.2

To update pip itself use:

pip install --upgrade pip

Note that this is the pip command being passed the request to install something,
in this case the upgrade for pip. On Windows you might want to use a variation on
this command as shown below:

python -m pip install --upgrade pip

57.3.6 Freezing Modules

The pip freeze command can be used to create a requirements format file. This
file contains information on the installed modules that can be used by the pip
command to configure another virtual environment to include the same modules (and
version of those modules). This allows two users to share their virtual environment
configurations.

For example:

(genesis_venv)% pip freeze
numpy==1.24.3
pandas==2.0.1
python-dateutil==2.8.2
pytz==2023.3
six==1.16.0
tzdata==2023.3
(genesis_venv) %

This prints to the output each of the modules installed. If we wish this information
to be stored into a file, we can use the redirection arrow, for example:

% pip freeze > johnsenv.txt

We can now use this in another virtual environment to set that environment up to
use the same set of modules:

% pip install -r johnsenv.txt

648 57 Pip and Conda Virtual Environments

57.4 Conda

So given there is pip and pip virtual environments why do we have conda? Conda is
an open-source package management system and environment management system
for installing, configuring and managing software packages and dependencies. It is
commonly used in Python programming but can also support other programming
languages.

There are three main reasons why conda is used instead of pip within many Data
Science projects; these are:

1. Conda manages Python as well as the modules that are installed for a specific
project. That is when a conda environment is set up, you can specify which
version of Python should be used with it, for example Python 3.10, or 3.9 or
3.12, etc., whereas with pip Python must already be installed, and it is up to the
developer themselves to handle the situation where different versions of Python
are required on their machine. A side benefit of this is that the same way of
installing Python is used within conda on Macs, Windows and Linux boxes,
whereas using pip you need to understand how to install Python on each of these
platforms and how manage these different implementations.

2. Conda can manage and install tool binaries, whereas pip takes Python source
code and compiles it on demand for use by developers.

3. Conda uses channels which are hosted on Anaconda. In contrast Pip uses the
Python package index repository (PyPi) module repository. The default conda
channels are maintained by Anaconda itself (the company tat created conda). It
is a curated repository which aims for additional stability and integrity between
libraries and environment support. In addition there is the conda-forge community
channel, which tends to have additional third-party modules on it and may be
required for additional packages.

The benefit with both Anaconda and conda-forge is that a lot of work is done/
automated to provide standardised builds of packages.

Technically there is a fourth difference between pip and conda, pip only works
with Python, but conda can be used with any language. However, as we are focussed
on Python we will ignore that difference here.

Here are some key features and concepts associated with conda:

• Package management: Conda provides facilities for installing, updating and
removing software (Python) packages. It provides access to a vast repository
of pre-built packages, including libraries, tools and applications. Conda handles
dependencies between packages, ensuring compatibility and resolving conflicts.

• Environment management: Conda can be used to create its version of virtual
environments known as conda environments. Environments provide a controlled
and reproducible environment for managing the version of Python and the libraries
you want to work with on one or more projects.

• Cross-platform support: Conda is designed to work across different operating
systems, including Windows, macOS and Linux.

57.5 Anaconda 649

• Conda channels: Conda uses channels to host and distribute packages. Channels
are repositories where packages are hosted and made available for installation.
The default channel is the Anaconda repository, but additional channels can be
added to access packages from different sources or organisations.

• Conda-forge: Conda-forge is a community-driven channel that provides a large
collection of open-source packages that are not part of the default Anaconda
distribution. It offers an extensive range of packages maintained by contributors
from various backgrounds.

• Anaconda. Conda is often used in combination with Anaconda, which is a distri-
bution that includes conda along with a comprehensive collection of Python pack-
ages and tools for scientific computing and Data Science. It is thus widely used
within the Data Science community to manage the Python environments for Data
Science projects.

So why use pip at all—the short answer is because it comes with the Python
runtime itself and is therefore readily available to anyone with a Python installation.
In contrast it is necessary to install conda separately to Python. A common way in
which people do this is to install Anaconda. A second issue with Anaconda is that it
has some restrictions which may make it less suitable for commercial use (unless a
commercial license is paid), whereas pip has no such restrictions.

57.5 Anaconda

Anaconda is a popular distribution of the Python programming language, primarily
used for Data Science and scientific computing. It aims to a default distribution of
tools and libraries for data analysis, machine learning and scientific research.

Anaconda supports a range of IDEs such as Jupyter Notebook, Spyder and Visual
Studio Code. These IDEs are pre-configured and bundled with Anaconda, providing
a seamless development environment for Data Science and scientific computing.

57.5.1 Installing Anaconda

You can download Anaconda from the Anaconda web site using the URL https://
www.anaconda.com/download/. Alternatively, if you are on a Mac, you can use
home-brew to install Anaconda via brew cask using:

https://www.anaconda.com/download/
https://www.anaconda.com/download/

650 57 Pip and Conda Virtual Environments

You will also need to add the Anaconda bin directory to your PATH variable, for
example:

export PATH="/usr/local/anaconda3/bin:$PATH"

This can be done in your ~/.zshrc file.
You can verify that the Anaconda environment (and conda) has been installed

successfully by issuing the conda command at the prompt, for example:

conda

This should display the conda usage information.
You could also start the Anaconda navigator tool. This can be used to see the

modules available, manage your conda environments as well as the IDEs you use:

57.6 Working with Anaconda 651

57.6 Working with Anaconda

When using conda to manage your version of Python and the dependencies that you
have in a project you can either use the command line, the Anaconda web interface
or facilities embedded in tools such as PyCharm. In this section we will look at the
command line tools as this makes what is going on most explicit.

57.6.1 Checking the Conda Version

You can check which version conda you have installed sing he conda info command:

% conda info

active environment : None
user config file : /Users/jeh/.condarc

populated config files : /Users/jeh/.condarc
conda version : 23.3.1

conda-build version : 3.24.0
python version : 3.10.9.final.0

virtual packages : __archspec=1=x86_64
__osx=10.16=0
__unix=0=0

.

.

This shows that I have conda version 23.3.1 installed at the moment; it also shows
where Anaconda is installed, etc.

57.6.2 Updating Conda

To update conda, you can use conda itself; this can be done using the command:

conda update conda

Issuing this command will cause conda to update itself and all the packages it
uses, for example:

Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan ##
environment location: /usr/local/anaconda3
added / updated specs:
- conda

The following packages will be downloaded:

package | build

652 57 Pip and Conda Virtual Environments

---------------------------|-----------------
.
.
.

Proceed ([y]/n)? y

Downloading and Extracting Packages

Preparing transaction: done
Executing transaction: done

If we now check the conda info, we should see that the conda version has been
updated. In this case the conda version is now:

conda version : 23.5.0

57.6.3 Creating a Conda Environment

The first thing we need to do to use a conda configuration with a project is to create
the conda environment.

To create a new conda environment, you use the conda create command along
with a name for the environment and optionally the version of Python to install; this
is done using the following format.

conda create —name <nameofenv> python=<python version>

As an example,

% conda create --name data-proj-311 python=3.11
Collecting package metadata (current_repodata.json): done
Solving environment: done
Package Plan ##

environment location: /usr/local/anaconda3/envs/data-proj-311

added / updated specs:
- python=3.11

The following NEW packages will be INSTALLED:

bzip2 pkgs/main/osx-64::bzip2-1.0.8-h1de35cc_0
ca-certificates pkgs/main/osx-64::ca-certificates-2023.05.30-
hecd8cb5_0
.
.

Proceed ([y]/n)? Y
.
.
done
#

57.6 Working with Anaconda 653

To activate this environment, use

$ conda activate data-proj-311

To deactivate an active environment, use

$ conda deactivate

57.6.4 Listing Available Conda Environments

You can list what conda environments are available using the conda env list
command, for example:

% conda env list
conda environments:

base * /usr/local/anaconda3
bio-proj-310 /usr/local/anaconda3/envs/bio-proj-310
data-proj-311 /usr/local/anaconda3/envs/data-proj-311
test-proj-309 /usr/local/anaconda3/envs/test-proj-309

In this example, there are four conda environments available, base, bio-pros-310,
data-pro-311 and test-pro-309. Each project has its own version of Python and module
dependencies.

You can also use the --export option to export the set of dependencies to a
text file.

conda list --export > proj-dependencies.txt

This will create a file in the current directory which describes the modules loaded
in the environment their versions and a checksum value to verify that the versions
used elsewhere are the same.

654 57 Pip and Conda Virtual Environments

Such a file can then be used by others to create a new environment with the same
dependencies using the—file option to the conda create command:

conda create --name <envname> --file <dependency-file.txt>

For example:

conda create --name new-proj-env --file proj-dependencies.txt

57.6.5 Activating a Conda Environment

You can activate a conda environment using conda activate <nameofenv>, for
example:

% conda activate data-proj-311
(data-proj-311) jeh@Johns-iMac ~ %

Note that on the Mac machine being used here the current conda environment is
now part of the prompt so that you always know which conda environment is the
current one.

The name used for the conda environment can be anything, personally I tend to
use the name of the project I am working on and the version of Python it has been
set up with. This is useful as a quick reference but could become an issue as you can
change the version of Python after an environment has been created.

You can also see the environment in the Anaconda navigator as the Environments
tab lists current environments:

57.6 Working with Anaconda 655

57.6.6 Deactivating a Conda Environment

The current conda environment can be deactivated using the conda deactivate
command, for example:

(data-proj-311) jeh@Johns-iMac ~ % conda deactivate
(base) jeh@Johns-iMac ~ %

In the above you can see that we are no longer ‘in’ the data-proj-311 conda
environment after deactivating, as the prompt now includes the (base) environment
which is the default conda Python environment.

57.6.7 Listing the Modules Loaded into a Conda
Environment

To list the available modules (and their versions) in a conda environment use the
conda list command, for example:

% conda list
packages in environment at /usr/local/anaconda3/envs/data-proj-
311:

Name Version Build Channel
bzip2 1.0.8 h1de35cc_0
ca-certificates 2023.05.30 hecd8cb5_0
libffi 3.4.4 hecd8cb5_0
ncurses 6.4 hcec6c5f_0
openssl 3.0.8 hca72f7f_0
pip 23.1.2 py311hecd8cb5_0
python 3.11.3 hf27a42d_1
readline 8.2 hca72f7f_0
setuptools 67.8.0 py311hecd8cb5_0
sqlite 3.41.2 h6c40b1e_0

656 57 Pip and Conda Virtual Environments

tk 8.6.12 h5d9f67b_0
tzdata 2023c h04d1e81_0
wheel 0.38.4 py311hecd8cb5_0
xz 5.4.2 h6c40b1e_0
zlib 1.2.13 h4dc903c_0

This shows the default set of modules loaded for any new conda environment.
Note python is itself listed as a module within a conda environment.

You can also use the Anaconda navigator tool to see what has been installed in a
particular environment.

57.6.8 Removing an Anaconda Environment

To remove a conda environment, use the conda env remove —name <envname>
command, for example:

conda env remove --name data-proj-311

Alternatively use the Anaconda navigator tool and select remove for a given
environment.

57.6.9 Installing a Module into a Conda Environment

Of course one of the reasons for using conda in the first place is to be able to install
and manage additional module. To install a module into a conda environment, use
the conda install <module-name> command, for example:

(data-proj-311) jeh@Johns-iMac ~ % conda install pandas
Collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan ##

environment location: /usr/local/anaconda3/envs/data-proj-311

added / updated specs:
- pandas

The following packages will be downloaded:

package | build
---------------------------|-----------------

.

.
numpy-1.24.3 | py311h728a8a3_1 11 KB
numpy-base-1.24.3 | py311h53bf9ac_1 6.9 MB
pandas-1.5.3 | py311hc5848a5_0 12.5 MB

57.6 Working with Anaconda 657

--
Total: 202.1 MB

The following NEW packages will be INSTALLED:

.

.
numpy pkgs/main/osx-64::numpy-1.24.3-py311h728a8a3_1
numpy-base pkgs/main/osx-64::numpy-base-1.24.3-py311h53bf9ac_1
pandas pkgs/main/osx-64::pandas-1.5.3-py311hc5848a5_0

Proceed ([y]/n)? y

Downloading and Extracting Packages
(data-proj-311) jeh@Johns-iMac ~ %

which has installed Pandas and associated supporting modules. The only issue with
this is that, at the time of writing, conda defaulted to installing Pandas 1.5.3, whereas
the current release is 2.0.2. To ensure that the current version of a module is installed,
we can use:

conda install <library-name>=<library-version>

For example:

% conda install pandas=2.0.2

Unfortunately in this case, at the time of writing, the main Anaconda repository
doesn’t have the latest version of Pandas available so we have to use the condo-forge
channel, as shown below:

% conda install -c conda-forge pandas=2.0.2

This will install Pandas 2.0.2 into the current conda environment.

57.6.9.1 Removing Anaconda

You can remove Anaconda from your system using the Anaconda-clean program.
This can be installed using conda and then executed directly, for example:

conda install anaconda-clean

then

anaconda-clean --yes

658 57 Pip and Conda Virtual Environments

57.7 Anaconda in PyCharm

It is also possible to work with conda in PyCharm. For example when creating a
new project, you can select to use conda rather than a pip virtual environment when
creating a project:

In this case the new environment will be managed by conda and stored in
the.conda directory rather than in the current project.

57.8 Online Resources

• https://www.anaconda.com/ Anaconda Home page.
• https://www.anaconda.com/download/ Anaconda download page.
• https://medium.com/ayuth/install-anaconda-on-macos-with-homebrew-c94437

d63a37 guide to installing Anaconda on a Mac using HomeBrew.

https://www.anaconda.com/
https://www.anaconda.com/download/
https://medium.com/ayuth/install-anaconda-on-macos-with-homebrew-c94437d63a37
https://medium.com/ayuth/install-anaconda-on-macos-with-homebrew-c94437d63a37

	Preface to the Second Edition
	Preface to the First Edition
	What You Need
	Conventions
	Example Code and Sample Solutions

	Contents
	1 Introduction
	1.1 Introduction
	1.2 Useful Python Resources

	Part I Advanced Language Features
	2 Python Type Hints
	2.1 Introduction
	2.2 Pythons Type System
	2.3 The Challenge for Python Developers
	2.4 Static Typing
	2.5 Python Type Hints
	2.6 Type Hint Layout
	2.7 Type Hints for Multiple Types
	2.8 The Self Type
	2.9 The Benefits of Type Hints
	2.10 Summary
	2.11 Online Resources

	3 Class Slots
	3.1 Introduction
	3.2 The Problem
	3.3 Slots to the Rescue
	3.4 Performance Benefits
	3.5 Why Not Use Slots?
	3.6 Online Resource

	4 Weak References
	4.1 Introduction
	4.2 How Garbage Collection Works: Reference Counting
	4.3 Weak References
	4.4 When to Use Weak References
	4.5 The Weakref Module
	4.6 Creating Weak References
	4.7 Retrieving Objects from Weak References
	4.8 The WeakValueDicitonary
	4.9 WeakKeyDictionary
	4.10 Proxy Objects
	4.11 Online Resources

	5 Data Classes
	5.1 Introduction
	5.2 A Traditional Class
	5.3 Defining Data Classes
	5.4 Defining Additional Behaviour
	5.5 The Dataclass Decorator
	5.6 Custom Factory for Fields
	5.7 Immutable Dataclasses
	5.8 Data Classes and Inheritance
	5.9 Post Initialisation
	5.10 Initialisation Variables
	5.11 Positional Attributes
	5.12 Exercise

	6 Structural Pattern Matching
	6.1 Introduction
	6.2 The Match Statement
	6.3 Matching Classes with Positional Attributes
	6.4 Matching Against Standard Classes
	6.5 Online Resource

	7 Working with pprint
	7.1 Introduction
	7.2 The pprint Data Printer Module
	7.3 Basic pprint Usage
	7.4 Changing the Width
	7.5 Changing the Depth
	7.6 Managing the Indentation Level
	7.7 Reducing Line Breaks Using Compact
	7.8 The pformat Function
	7.9 The saferepr() Function
	7.10 Using the PrettyPrinter Class
	7.11 Online Resource

	8 Shallow v Deep Copy
	8.1 Introduction
	8.2 Copying a List of Lists
	8.3 The Problem with Copying
	8.4 The Copy Module to the Rescue
	8.5 Using the deepcopy() Function
	8.6 Online Resource

	9 The __init__ Versus __new__ and __call
	9.1 Introduction
	9.2 The __new__ and __init__ Methods
	9.3 The __new__ Method
	9.4 When to Use the __new__ Method
	9.5 Using __new__ to Create a Singleton Object
	9.6 The __init__ Method
	9.7 Can __new__ and __init__ Be Used Together?
	9.8 The __call__ Method
	9.9 Summary

	10 Python Metaclasses and Meta Programming
	10.1 Introduction
	10.2 Metaprogramming
	10.3 Decorators as a Form of Metaprogramming
	10.4 Metaclasses for Metaprogramming
	10.4.1 Singleton Metaclass

	10.5 Exec and Eval for Metaprogramming
	10.5.1 The exec() Function
	10.5.2 The eval() Function
	10.5.3 eval Versus exec()

	Part II Computer Graphics and GUIs
	11 Introduction to Computer Graphics
	11.1 Introduction
	11.2 Background
	11.3 The Graphical Computer Era
	11.4 Interactive and Non Interactive Graphics
	11.5 Pixels
	11.6 Bit Map Versus Vector Graphics
	11.7 Buffering
	11.8 Python and Computer Graphics
	11.9 References
	11.10 Online Resources

	12 Python Turtle Graphics
	12.1 Introduction
	12.2 The Turtle Graphics Library
	12.2.1 The Turtle Module
	12.2.2 Basic Turtle Graphics
	12.2.3 Drawing Shapes
	12.2.4 Filling Shapes

	12.3 Other Graphics Libraries
	12.4 3D Graphics
	12.4.1 PyOpenGL

	12.5 Online Resources
	12.6 Exercises

	13 Computer Generated Art
	13.1 Creating Computer Art
	13.2 A Computer Art Generator
	13.3 Fractals in Python
	13.4 The Koch Snowflake
	13.5 Mandelbrot Set
	13.6 Online Resources
	13.7 Exercises

	14 Introduction to Matplotlib
	14.1 Introduction
	14.2 Matplotlib
	14.3 Plot Components
	14.4 Matplotlib Architecture
	14.4.1 Backend Layer
	14.4.2 The Artist Layer
	14.4.3 The Scripting Layer

	14.5 Online Resources

	15 Graphing with Matplotlib Pyplot
	15.1 Introduction
	15.2 The pyplot API
	15.3 Line Graphs
	15.3.1 Coded Format Strings

	15.4 Scatter Graph
	15.4.1 When to Use Scatter Graphs

	15.5 Pie Charts
	15.5.1 Expanding Segments
	15.5.2 When to Use Pie Charts

	15.6 Bar Charts
	15.6.1 Horizontal Bar Charts
	15.6.2 Coloured Bars
	15.6.3 Stacked Bar Charts
	15.6.4 Grouped Bar Charts

	15.7 Figures and Subplots
	15.8 3D Graphs
	15.9 Exercises

	16 Graphical User Interfaces
	16.1 Introduction
	16.2 GUIs and WIMPS
	16.3 Windowing Frameworks for Python
	16.3.1 Platform-Independent GUI Libraries
	16.3.2 Platform-Specific GUI Libraries

	16.4 Online Resources

	17 Tkinter GUI Library
	17.1 Introduction
	17.2 Tkinter
	17.3 Windows as Objects
	17.4 Key Concepts
	17.4.1 The Tk Class
	17.4.2 TK Widgets
	17.4.3 The TopLevel Class
	17.4.4 The Frame Class
	17.4.5 Dialogs
	17.4.6 The Canvas Class

	17.5 The Class Inheritance Hierarchy
	17.5.1 Layout Management

	17.6 A Simple Example
	17.7 Tkinter Installation
	17.7.1 Mac Installation
	17.7.2 Windows Installation

	17.8 GUI Builders for Tkinter
	17.9 Online Resources
	17.10 Exercises

	18 Events in Tkinter User Interfaces
	18.1 Introduction
	18.2 Event Handling
	18.3 What is Event Handling?
	18.4 What Are Event Handlers?
	18.5 Event Binders
	18.6 Virtual Events
	18.7 Event Definitions
	18.8 What Types of Event Are There?
	18.9 Binding an Event to an Event Handler
	18.10 Implementing Event Handling
	18.11 An Interactive GUI Application
	18.12 Online Resources
	18.13 Exercises

	19 PyDraw Tkinter Example Application
	19.1 Introduction
	19.2 The PyDraw Application
	19.3 The Structure of the Application
	19.3.1 Model, View and Controller Architecture
	19.3.2 PyDraw MVC Architecture
	19.3.3 Additional Classes
	19.3.4 Object Relationships

	19.4 The Interactions Between Objects
	19.4.1 The PyDrawApp

	19.5 The PyDrawView Constructor
	19.5.1 Changing the Application Mode
	19.5.2 Adding a Graphic Object

	19.6 The Classes
	19.6.1 The PyDrawConstants Class
	19.6.2 The PyDrawView Class
	19.6.3 The PyDrawMenuBar Class
	19.6.4 The PyDrawController Class
	19.6.5 The DrawingModel Class
	19.6.6 The DrawingView Class
	19.6.7 The DrawingController Class
	19.6.8 The Figure Class
	19.6.9 The Square Class
	19.6.10 The Circle Class
	19.6.11 The Line Class
	19.6.12 The Text Class

	19.7 Reference
	19.8 Exercises

	Part III Computer Games
	20 Introduction to Games Programming
	20.1 Introduction
	20.2 Games Frameworks and Libraries
	20.3 Python Games Development
	20.4 Using Pygame
	20.5 Online Resources

	21 Building Games with Pygame
	21.1 Introduction
	21.2 The Display Surface
	21.3 Events
	21.3.1 Event Types
	21.3.2 Event Information
	21.3.3 The Event Queue

	21.4 A First pygame Application
	21.5 Further Concepts
	21.6 A More Interactive pygame Application
	21.7 Alternative Approach to Processing Input Devices
	21.8 pygame Modules
	21.9 Online Resources

	22 StarshipMeteors Pygame
	22.1 Introduction
	22.2 Creating a Spaceship Game
	22.3 The Main Game Class
	22.4 The GameObject Class
	22.5 Displaying the Starship
	22.6 Moving the Spaceship
	22.7 Adding a Meteor Class
	22.8 Moving the Meteors
	22.9 Identifying a Collision
	22.10 Identifying a Win
	22.11 Increasing the Number of Meteors
	22.12 Pausing the Game
	22.13 Displaying the Game Over Message
	22.14 The StarshipMeteors Game
	22.15 Online Resources
	22.16 Exercises

	Part IV Testing
	23 Introduction to Testing
	23.1 Introduction
	23.2 Types of Testing
	23.3 What Should Be Tested?
	23.4 Types of Testing
	23.4.1 Unit Testing
	23.4.2 Integration Testing
	23.4.3 System Testing
	23.4.4 Installation/Upgrade Testing
	23.4.5 Smoke Tests

	23.5 Automating Testing
	23.6 Test-Driven Development
	23.6.1 The TDD Cycle
	23.6.2 Test Complexity
	23.6.3 Refactoring

	23.7 Design for Testability
	23.7.1 Testability Rules of Thumb

	23.8 Online Resources
	23.9 Book Resources

	24 PyTest Testing Framework
	24.1 Introduction
	24.2 What is PyTest?
	24.3 Setting up PyTest
	24.4 A Simple PyTest Example
	24.5 Working with PyTest
	24.6 Parameterised Tests
	24.7 Online Resources
	24.8 Exercises

	25 Mocking for Testing
	25.1 Introduction
	25.2 Why Mock?
	25.3 What is Mocking?
	25.4 Common Mocking Framework Concepts
	25.5 Mocking Frameworks for Python
	25.6 The Unittest.Mock Library
	25.6.1 Mock and Magic Mock Classes
	25.6.2 The Patchers
	25.6.3 Mocking Returned Objects
	25.6.4 Validating Mocks Have Been Called

	25.7 Mock and MagicMock Usage
	25.7.1 Naming Your Mocks
	25.7.2 Mock Classes
	25.7.3 Attributes on Mock Classes
	25.7.4 Mocking Constants
	25.7.5 Mocking Properties
	25.7.6 Raising Exceptions with Mocks
	25.7.7 Applying Patch to Every Test Method
	25.7.8 Using Patch as a Context Manager

	25.8 Mock Where You Use It
	25.9 Patch Order Issues
	25.10 How Many Mocks?
	25.11 Mocking Considerations
	25.12 Online Resources
	25.13 Exercises

	Part V File Input/Output
	26 Introduction to Files, Paths and IO
	26.1 Introduction
	26.2 File Attributes
	26.3 Paths
	26.4 File Input/Output
	26.5 Sequential Access versus Random Access
	26.6 Files and I/O in Python
	26.7 Online Resources

	27 Reading and Writing Files
	27.1 Introduction
	27.2 Obtaining References to Files
	27.3 Reading Files
	27.4 File Contents Iteration
	27.5 Writing Data to Files
	27.6 Using Files and with Statements
	27.7 The Fileinput Module
	27.8 Renaming Files
	27.9 Deleting Files
	27.10 Random Access Files
	27.11 Directories
	27.12 Temporary Files
	27.13 Working with Paths
	27.14 Online Resources
	27.15 Exercise

	28 Stream IO
	28.1 Introduction
	28.2 What is a Stream?
	28.3 Python Streams
	28.4 IOBase
	28.5 Raw IO/UnBuffered IO Classes
	28.6 Binary IO/Buffered IO Classes
	28.7 Text Stream Classes
	28.8 Stream Properties
	28.9 Closing Streams
	28.10 Returning to the Open() Function
	28.11 Online Resource
	28.12 Exercise

	29 Working with CSV Files
	29.1 Introduction
	29.2 CSV Files
	29.2.1 The CSV Writer Class
	29.2.2 The CSV Reader Class
	29.2.3 The CSV DictWriter Class
	29.2.4 The CSV DictReader Class

	29.3 Online Resources
	29.4 Exercises

	30 Working with Excel Files
	30.1 Introduction
	30.2 Excel Files
	30.3 The Openpyxl. Workbook Class
	30.4 The Openpyxl. WorkSheet Objects
	30.5 Working with Cells
	30.6 Sample Excel File Creation Application
	30.7 Loading a Workbook from an Excel File
	30.8 Online Resources
	30.9 Exercises

	31 Regular Expressions in Python
	31.1 Introduction
	31.2 What Are Regular Expressions?
	31.3 Regular Expression Patterns
	31.3.1 Pattern Metacharacters
	31.3.2 Special Sequences
	31.3.3 Sets

	31.4 The Python re Module
	31.5 Working with Python Regular Expressions
	31.5.1 Using Raw Strings
	31.5.2 Simple Example
	31.5.3 The Match Object
	31.5.4 The search() Function
	31.5.5 The match() Function
	31.5.6 The Difference Between Matching and Searching
	31.5.7 The finadall() Function
	31.5.8 The finditer() Function
	31.5.9 The split() Function
	31.5.10 The sub() Function
	31.5.11 The compile() Function

	31.6 Online Resources
	31.7 Exercises

	Part VI Database Access
	32 Introduction to Databases
	32.1 Introduction
	32.2 What Is a Database?
	32.2.1 Data Relationships
	32.2.2 The Database Schema

	32.3 SQL and Databases
	32.4 Data Manipulation Language
	32.5 Transactions in Databases
	32.6 Further Reading

	33 Python DB-API
	33.1 Accessing a Database from Python
	33.2 The DB-API
	33.2.1 The Connect Function
	33.2.2 The Connection Object
	33.2.3 The Cursor Object
	33.2.4 Mappings from Database Types to Python Types
	33.2.5 Generating Errors
	33.2.6 Row Descriptions

	33.3 Transactions in PyMySQL
	33.4 Online Resources

	34 PyMySQL Module
	34.1 The PyMySQL Module
	34.2 Working with the PyMySQL Module
	34.2.1 Importing the Module
	34.2.2 Connect to the Database
	34.2.3 Obtaining the Cursor Object
	34.2.4 Using the Cursor Object
	34.2.5 Obtaining Information About the Results
	34.2.6 Fetching Results
	34.2.7 Close the Connection

	34.3 Complete PyMySQL Query Example
	34.4 Inserting Data to the Database
	34.5 Updating Data in the Database
	34.6 Deleting Data in the Database
	34.7 Creating Tables
	34.8 Online Resources
	34.9 Exercises

	Part VII Logging
	35 Introduction to Logging
	35.1 Introduction
	35.2 Why Log?
	35.3 What is the Purpose of Logging?
	35.4 What Should You Log?
	35.5 What not to Log
	35.6 Why not Just Use Print?
	35.7 Online Resources

	36 Logging in Python
	36.1 The Logging Module
	36.2 The Logger
	36.3 Controlling the Amount of Information Logged
	36.4 Logger Methods
	36.5 Default Logger
	36.6 Module Level Loggers
	36.7 Logger Hierarchy
	36.8 Formatters
	36.8.1 Formatting Log Messages
	36.8.2 Formatting Log Output

	36.9 Online Resources
	36.10 Exercises

	37 Advanced Logging
	37.1 Introduction
	37.2 Handlers
	37.2.1 Setting the Root Output Handler
	37.2.2 Programmatically Setting the Handler
	37.2.3 Multiple Handlers

	37.3 Filters
	37.4 Logger Configuration
	37.5 Performance Considerations
	37.6 Exercises

	Part VIII Concurrency and Parallelism
	38 Introduction to Concurrency and Parallelism
	38.1 Introduction
	38.2 Concurrency
	38.3 Parallelism
	38.4 Distribution
	38.5 Grid Computing
	38.6 Concurrency and Synchronisation
	38.7 Object Orientation and Concurrency
	38.8 Threads V Processes
	38.9 Some Terminology
	38.10 Online Resources

	39 Threading
	39.1 Introduction
	39.2 Threads
	39.2.1 Thread States
	39.2.2 Creating a Thread
	39.2.3 Instantiating the Thread Class

	39.3 The Thread Class
	39.4 The Threading Module Functions
	39.5 Passing Arguments to a Thread
	39.6 Extending the Thread Class
	39.7 Daemon Threads
	39.8 Naming Threads
	39.9 Thread Local Data
	39.10 Timers
	39.11 The Global Interpreter Lock
	39.12 Online Resources
	39.13 Exercise

	40 MultiProcessing
	40.1 Introduction
	40.2 The Process Class
	40.3 Working with the Process Class
	40.4 Alternative Ways to Start a Process
	40.5 Using a Pool
	40.6 Exchanging Data Between Processes
	40.7 Sharing State Between Processes
	40.7.1 Process Shared Memory

	40.8 Online Resources
	40.9 Exercises

	41 Inter Thread/Process Synchronisation
	41.1 Introduction
	41.2 Using a Barrier
	41.3 Event Signalling
	41.4 Synchronising Concurrent Code
	41.5 Python Locks
	41.6 Python Conditions
	41.7 Python Semaphores
	41.8 The Concurrent Queue Class
	41.9 Online Resources
	41.10 Exercises

	42 Futures
	42.1 Introduction
	42.2 The Need for a Future
	42.3 Futures in Python
	42.3.1 Future Creation
	42.3.2 Simple Example Future

	42.4 Running Multiple Futures
	42.4.1 Waiting for All Futures to Complete
	42.4.2 Processing Results as Completed

	42.5 Processing Future Results Using a Callback
	42.6 Online Resources
	42.7 Exercises

	43 Concurrency with AsyncIO
	43.1 Introduction
	43.2 Asynchronous IO
	43.3 Async IO Event Loop
	43.4 The Async and Await Keywords
	43.4.1 Using Async and Await

	43.5 Async IO Tasks
	43.6 Running Multiple Tasks
	43.6.1 Collating Results from Multiple Tasks
	43.6.2 Handling Task Results as They Are Made Available

	43.7 Online Resources
	43.8 Exercises

	44 Performance Monitoring and Profiling
	44.1 Introduction
	44.2 Why Monitor Performance and Memory?
	44.3 Performance Monitoring and Profiling
	44.4 Performance Monitoring
	44.4.1 The Time Module
	44.4.2 The Timeit Module
	44.4.3 The Psutil Module

	44.5 Python Profiling
	44.5.1 The cProfile Module
	44.5.2 The Line_Profiler Module
	44.5.3 The Memory_Profiler Module
	44.5.4 Additional Third-Party Libraries

	44.6 Profiling with cProfile
	44.7 Memory Profiling
	44.8 Online Resources

	Part IX Reactive Programming
	45 Reactive Programming Introduction
	45.1 Introduction
	45.2 What Is a Reactive Application?
	45.3 The ReactiveX Project
	45.4 The Observer Pattern
	45.5 Hot and Cold Observables
	45.6 Differences Between Event Driven Programming and Reactive Programming
	45.7 Advantages of Reactive Programming
	45.8 Disadvantages of Reactive Programming
	45.9 The RxPy Reactive Programming Framework
	45.10 Online Resources

	46 RxPy Observables, Observers and Subjects
	46.1 Introduction
	46.2 RxPy Library
	46.3 Observables in RxPy
	46.4 Observers in RxPy
	46.5 Multiple Subscribers/Observers
	46.6 Subjects in RxPy
	46.7 Observer Concurrency
	46.7.1 Available Schedulers

	46.8 Online Resources
	46.9 Exercises

	47 RxPy Operators
	47.1 Introduction
	47.2 Reactive Programming Operators
	47.3 Piping Operators
	47.4 Creational Operators
	47.5 Transformational Operators
	47.6 Combinatorial Operators
	47.7 Filtering Operators
	47.8 Mathematical Operators
	47.9 Chaining Operators
	47.10 Online Resources
	47.11 Exercises

	Part X Network Programming
	48 Introduction to Sockets and Web Services
	48.1 Introduction
	48.2 Sockets
	48.3 Web Services
	48.4 Addressing Services
	48.5 Localhost
	48.6 Port Numbers
	48.7 IPv4 Versus IPv6
	48.8 Sockets and Web Services in Python
	48.9 Online Resources

	49 Sockets in Python
	49.1 Introduction
	49.2 Socket to Socket Communication
	49.3 Setting up a Connection
	49.4 An Example Client Server Application
	49.4.1 The System Structure
	49.4.2 Implementing the Server Application
	49.4.3 Socket Types and Domains
	49.4.4 Implementing the Client Application

	49.5 The Socketserver Module
	49.6 Http Server
	49.7 Online Resources
	49.8 Exercises

	50 Web Services in Python
	50.1 Introduction
	50.2 RESTful Services
	50.3 A RESTful API
	50.4 Python Web Frameworks
	50.5 Online Resources

	51 Flask Web Services
	51.1 Introduction
	51.2 Flask
	51.3 Hello World in Flask
	51.3.1 Using JSON

	51.4 Implementing a Flask Web Service
	51.4.1 A Simple Service
	51.4.2 Providing Routing Information

	51.5 Running the Service
	51.6 Invoking the RESTFul Service
	51.6.1 The Final Solution

	51.7 Online Resources

	52 Flask Bookshop Web Service
	52.1 Introduction
	52.2 Building a Flask Bookshop Service
	52.3 The Design
	52.4 The Domain Model
	52.5 Encoding Books into JSON
	52.6 Setting Up the GET Services
	52.7 Deleting a Book
	52.8 Adding a New Book
	52.9 Updating a Book
	52.10 What Happens if We Get It Wrong?
	52.11 Bookshop Services Listing
	52.12 Exercises

	Part XI Data Science: Data Analytics and Machine Learning
	53 Introduction to Data Science
	53.1 Introduction
	53.2 Data Science
	53.3 Data Science Tools and Techniques
	53.4 Data Analytics Process
	53.5 Python and Data Science
	53.6 Machine Learning for Data Science
	53.7 Online Resources

	54 Pandas and Data Analytics
	54.1 Introduction
	54.2 The Data
	54.2.1 The UK Government COVID Data Set
	54.2.2 The Google Mobility Data Set

	54.3 Python Pandas
	54.3.1 Pandas Series and DataFrames

	54.4 Loading and Analysing UK COVID Data Set
	54.5 Loading the Google Mobility Data Set
	54.6 Merging Two DataFrames
	54.7 Analysing the Combined Data
	54.8 Summary

	55 Alternatives to Pandas
	55.1 Introduction
	55.2 Comparing Pandas 2.0.0
	55.3 Pandas 1.x v 2.x
	55.4 Pandas Versus Other Libraries and Tools
	55.5 Online Resources

	56 Machine Learning in Python
	56.1 Introduction
	56.2 The Data
	56.3 SciKitLearn
	56.4 The Problem
	56.5 Using Regression Supervised Learning Systems
	56.6 K-Nearest Neighbour Regressor
	56.7 Decision Tree Regressor
	56.8 Random Forest Regressor
	56.9 Summary of Metrics Obtained
	56.10 Creating the Regressor Object
	56.11 Online Resources

	57 Pip and Conda Virtual Environments
	57.1 Introduction
	57.2 Virtual Environments
	57.3 Working with Pip
	57.3.1 Activating a Pip Environment
	57.3.2 Installing Modules Using Pip
	57.3.3 Deactivating a Pip Environment
	57.3.4 Check Version of Pip
	57.3.5 Installing Modules into a Pip Environment
	57.3.6 Freezing Modules

	57.4 Conda
	57.5 Anaconda
	57.5.1 Installing Anaconda

	57.6 Working with Anaconda
	57.6.1 Checking the Conda Version
	57.6.2 Updating Conda
	57.6.3 Creating a Conda Environment
	57.6.4 Listing Available Conda Environments
	57.6.5 Activating a Conda Environment
	57.6.6 Deactivating a Conda Environment
	57.6.7 Listing the Modules Loaded into a Conda Environment
	57.6.8 Removing an Anaconda Environment
	57.6.9 Installing a Module into a Conda Environment

	57.7 Anaconda in PyCharm
	57.8 Online Resources

